Amphista: Bi-directional Multi-head Decoding for Accelerating
LLM Inference

Zeping Li'*, Xinlong Yang'**, Ziheng Gao!, Ji Liu', Guanchen Li!, Zhuang Liu',
Dong Li', Jinzhang Peng', Lu Tian'!, Emad Barsoum'
! Advanced Micro Devices, Inc. 2 Peking University
{zeping.li, emad.barsoum } @amd.com

Abstract

Large Language Models (LLMs) inherently
use autoregressive decoding, which lacks paral-
lelism in inference and results in significantly
slow inference speed. While methods such
as Medusa constructs parallelized heads, they
lack adequate information interaction across
different prediction positions. To overcome
this limitation, we introduce Amphista, an en-
hanced speculative decoding framework that
builds upon Medusa. Specifically, Amphista
models an Auto-embedding Block capable of
parallel inference, incorporating bi-directional
attention to enable interaction between differ-
ent drafting heads. Additionally, Amphista inte-
grates Staged Adaptation Layers, which ensure
a seamless transition of semantic information
from the target model’s autoregressive infer-
ence to the drafting heads’ non-autoregressive
inference, effectively achieving paradigm shift
and feature fusion. Experimental results on Vi-
cuna models using MT-Bench and Spec-Bench
demonstrate that Amphista achieves substan-
tial acceleration while maintaining generation
quality. On MT-Bench, Amphista delivers up
to 2.75x speedup over vanilla autoregressive
decoding and 1.40x over Medusa on Vicuna
33B in wall-clock time.

1 Introduction

Generative large language models (LLMs) have
made remarkable advances in language processing
by scaling the transformer decoder block, offering
a potential pathway toward Artificial General In-
telligence (AGI) (OpenAl, 2022; Touvron et al.,
2023). However, the autoregressive nature of next-
token prediction and the large parameter size of
foundational models result in low inference effi-
ciency, marked by high latency per token and low
throughput per second during decoding.

In this context, acceleration during inference has
become a burgeoning research area. Speculative de-

“Equal contribution.

Vicuna 7B Vicuna 7B

90.0 BN Amphista 90.0 BN Amphista
3800 BN Medusa g
S 3
s 80.0
700
-g. 60.0 > 70.0
£
£ 500
g .
<
— 400
s 2. 50
£ 300

200 40.0

BN Medusa
Head-1 Head-2 Head-3 Head-4 Head-1 Head-2 Head-3 Head-4

cy (100%)

2
>

Top-5 Accura
2
2

L

Figure 1: Top-1/5 accuracy for different heads of
Medusa and Amphista. We perform testing with ran-
domly sampled 5% ShareGPT conversation data. Am-
phista far outperforms Medusa in terms of head accu-
racy, especially for the latter two heads.

coding (Stern et al., 2018; Chen et al., 2023) uses a
draft model for preliminary multi-step speculative
inference and a target model to verify the specula-
tive predictions, emerging as a very promising al-
gorithmic strategy. Notably, by employing a rejec-
tion sampling strategy (Leviathan et al., 2023), the
generation quality and accuracy of the speculate-
and-verify framework are consistent with those of
the target model, making speculative decoding a
lossless acceleration framework. Medusa decod-
ing (Cai et al., 2024) innovatively uses the target
model’s last hidden states to implement a multi-
heads inference framework. It is widely adopted
for its efficient acceleration and simple structure.

Nonetheless, as illustrated in Figure 1, we find
that the prediction accuracy of separately inde-
pendent Medusa heads is relatively low, which
progressively worsens and adversely impacts ac-
celeration performance in downstream tasks. To
mitigate these inaccuracies stemming from the ab-
sence of feature dependencies while maintaining
parallel inference, we first introduce the Auto-
embedding Block, which integrates a bi-directional
self-attention mechanism (Vaswani et al., 2017).
This structure not only allows earlier heads to at-
tend to subsequent ones, but more importantly,
enables backward heads to leverage information
from preceding heads. This enhancement allows

8925

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 8925-8938
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

mailto:zeping.li@amd.com
mailto:emad.barsoum@amd.com

drafting heads to better capture contextual infor-
mation, thereby improving the acceptance rate of
their predictions. Moreover, in the multi-step draft-
ing framework, this non-autoregressive structure
achieves lower drafting latency compared to an
autoregressive approach.

Additionally, we identify a significant gap be-
tween the autoregressive target model and the
non-autoregressive draft model in their prediction
paradigms. To bridge this discrepancy and fur-
ther enhance feature representations across differ-
ent drafting heads, we propose the Staged Adap-
tation Layers. These layers serve as an interme-
diary module to facilitate feature integration and
transformation between the target model and draft
heads. Once adopted, semantically enriched fea-
tures are passed through MLP activations and fed
into the auto-embedding block. This enhances the
bi-directional attention mechanism’s ability to fuse
features across heads, ultimately boosting accep-
tance rates and reducing wall-clock time.

Lastly, to further align the draft model with
the target model with minimal computational cost,
we incorporate the sampled token from the target
model’s latest prediction into the staged adaptation
layers. This critically integrated information har-
monizes Amphista with the target model, yielding
a significant improvement in performance.

On MT-Bench, Amphista achieves up to 2.75x
speedup over vanilla autoregressive decoding and
1.40x over Medusa on Vicuna 33B, as consistently
high accuracy (see Figure 1). To summarize, our
contributions are as follows:

* We present Amphista, a non-autoregressive and
innovatively cost-efficient inference acceleration
framework, built upon the foundational princi-
ples of Medusa decoding.

* We introduce the Auto-embedding Block, which
enables bi-directional interaction among different
heads by facilitating collaborative information
exchange during the drafting phase. Additionally,
the Staged Adaptation Layers are introduced to
bridge the gap between autoregressive and non-
autoregressive token prediction through a two-
stage adaptation process. Finally, the integration
of a sampled token from the target model further
aligns the draft and target models with minimal
computational overhead.

* We perform comprehensive evaluations on a di-
verse set of foundational models. The results

show that Amphista consistently outperforms
Medusa in terms of both acceptance rate and
speed-up, across various generation tasks.

2 Preliminaries

In this section, we introduce some preliminary
background related to our work as follows:
Speculative Decoding. Speculative decoding has
been successfully applied to LLM decoding algo-
rithm recently (Leviathan et al., 2023; Chen et al.,
2023). The core idea is to leverage a small, lower-
quality model (draft model) together with a large,
higher-quality model (target model) to accelerate
token generation. Concretely, in each decoding
step, the algorithm first uses the draft model to
autoregressively generate a sequence of future to-
kens. These drafted tokens are then verified by the
target model in a single forward pass. During the
verification process, a certain strategy is applied to
determine which tokens are accepted by the target
model and which are rejected and discarded. Previ-
ous work (Leviathan et al., 2023) has theoretically
and empirically demonstrated that the token output
distribution of speculative decoding is consistent
with the autoregressive generation of original target
model, but with fewer decoding steps, thus enhanc-
ing generation efficiency.

Medusa Decoding. Medusa Decoding (Cai et al.,
2024) represents an efficient speculative decoding
algorithm based on the draft-and-verify principle,
inheriting principles from blockwise parallel de-
coding (Stern et al., 2018). Specifically, Medusa
integrates independent MLP layers, called drafting
heads, with the target model to form a unified archi-
tecture. In each decoding step, the target model’s
Im_head samples the next token, while the next-i
MLP heads predict tokens at subsequent positions.
These drafted tokens are then verified by the target
model’s forward pass to decide their acceptance.
By leveraging lightweight MLP layers, Medusa
strikes an effective balance between computational
efficiency and prediction accuracy, leading to sub-
stantial acceleration. Hydra (Ankner et al., 2024),
which is a subsequent state-of-the-art optimization
based on Medusa, transforms the independent MLP
heads into sequentially dependent MLP heads, fur-
ther enhancing the predictive accuracy.

Tree Attention. Tree attention (Miao et al., 2024;
Cai et al., 2024) enables parallel computation
of attention scores for multiple draft candidates.
Medusa uses a tree causal mask, allowing each

8926

Target Model Amphista: Non-Autoregressive Decoding

% : Rejected
T 41 token ! T2 token T3 token Ttrs1 token (x)
A A t
LM Head, LM Head, LM Head,,
t t
LM Head I,____________ o]
1 1
1 1
Target Model Hidden States : Bidirectional :
1 1
I t I
Decoder XN 1 | <& Positional g :
1 r L 1
————1 ————— f----T_--_T ————— 4
MLP block i [mpk, e i

f

Attention block

bl
1
Transformer 1
Decoder 1
1
1
1
1

Transformer
Decoder

4
Input: T4, Ty, ..., T,

Figure 2: The Framework of Amphista Decoding. Our method improves Medusa in two folds: (1) We introduce
staged adaptation layers, consisting of a group of causal Transformer Decoder layers built upon the target model, to
adapt the target model’s hidden states and the sampled token in two stages. This module ensures that the adapted
features contain richer contextual information, supporting multiple-token predictions rather than focusing solely
on the immediate next-token prediction. (2) We introduce an auto-embedding block, which is a bi-directional
Transformer Encoder module with positional encoding. This block allows each head to attend to others, fostering

cooperative predictions and thereby enhancing the speculative accuracy during the drafting stage.

node to attend only to its ancestors, efficiently pro-
cessing multiple candidate sequences simultane-
ously (see Appendix A.1 for details).

3 Amphista

The overview of Amphista is shown in Figure 2.
Building its pipeline upon target model, Amphista
contains two main modules: (1) Staged Adapta-
tion Layers. They are causal Transformer Decoder
layers that adapt the target model’s hidden states
and sampled token embedding in two stages, each
focusing on different drafting positions. This adap-
tation process results in hidden states that are en-
hanced with position-aware contextual information,
improving overall prediction accuracy, especially
for the latter steps. (2) Auto-embedding Block. It
is a Transformer Encoder module that conducts bi-
directional self-attention computations among the
representations of different draft heads, allowing
each head can be attended by the others. This facil-
itates collaborative prediction among these heads,
thereby improving overall prediction accuracy.

3.1 Staged Adaptation Layers

Figure 2 demonstrates the relevant details of our
staged adaptation layers. Although target model’s

hidden states contain semantically rich information,
there are still differences in the representation re-
quirements between the target model and the draft
heads. Specifically, the hidden states of the target
model are trained only for predicting the next to-
ken, while draft heads need more contextual and
positon-aware hidden states to perform multi-step
speculation. To address this problem, Medusa-2
applies LoRA (Hu et al., 2021) for joint training of
the target model and draft heads, which may com-
promise the generality on downstream tasks. Hydra
employs a single prefix layer for all positions, lack-
ing targeted adaptation for different positions. We
propose an effective adaptation method by incor-
porating two adaptation layers to transform and
adapt the strong semantic information from the tar-
get model in stages. Specifically, given the hidden
states hy at position t from the target model’s final
layer and the embedding of the token e;y; sam-
pled from h;, we use the two adaptation layers to

transform them in stages as below:
hi = SAL(fct([he; ers1]), kviy_q), "
hi = SAL?(fé([hy; err1)), kvTy_q)-

S AL stands for the Stage-one Adaptation Layer
that adapts target model hidden states and sampled

8927

token embedding, while S AL? stands for the Stage-
two Adaptation Layer that adapts SAL'’s output
hidden states as well as the sampled token embed-
ding. The function fc! and fc? are fully connected
layers employed to transform features derived from
the concatenation of hidden states and token em-
beddings. The terms kvi, , and kv?, ;| repre-
sent the key-value caches for each adaptation layer.
Subsequently, adapted hidden states h; and h? are
fed into the first and second halves of the drafting
heads respectively, ensuring that each adaptation
layer focuses on adapting target model’s semantic
representations in specific future locations.

3.2 Auto-embedding Block

Figure 2 shows the detailed design of our Auto-
embedding Block. Given a set of K drafting MLP
heads, MLP;, head is tasked with predicting the
token in the (¢ + &+ 1)-th position. Upon obtaining
adapted hidden states h; and h? from the first and
second staged adaptation layers, we first utilize
the MLP layers to project them into more position-
aware and semantically rich hidden states:

h, = MLP,(h}), k=1,2,...,|K/2],

, 2

hy = MLP.(h?), k=|K/2|+1,...,K,
where MLP; € R%*?_and d is the dimension of the
target model hidden states. We then concatenate
these K hidden states along the seq_len dimen-
sion:

H' = concat([h}, hy, hY, ..., hg]), 3)
where H' € RE*? 1In order to further enhance
the relative positional information among different
heads, we introduce additional positional encod-
ings. Specifically, we introduce a learnable posi-
tional embedding PE € R¥ >4, and the position-
encoded hidden states I, are expressed as:

H,= H'+ PE. “)

Finally, we employ an effective and efficient bi-
directional self-attention module to enable mutual
awareness among the drafting heads and use addi-
tional learnable Im-head to sample the top-k draft
tokens in each position:

attn, = Self-Attention(H), 5)
d_logits;, = LM-Heady (attn,o[k]), k=1,..., K.
(6)

In the end, these draft tokens are organized into
a draft tree and then verified by the LLM through
tree attention. Unlike the independent heads in
Medusa and the sequentially dependent heads in
Hydra, Amphista adopts bi-directionally dependent
heads. This approach enhances overall prediction
accuracy while maintaining a non-autoregressive
mechanism, potentially reducing the substantial
computation overhead associated with sequential
calculations (i.e., autoregressive manner).

3.3 Training Objective

Our loss function integrates two components to
achieve a dual objective. First, we employ a Cross-
Entropy (CE) loss between the logits of Amphista
and those of the target model to align their output
token distributions. Second, we utilize a language
modeling (LM) loss to quantify the discrepancy
between Amphista’s outputs and the ground truth
tokens. This approach enables Amphista not only
to emulate the target model but also to assimilate
predictive capabilities from the real corpus.

ACAmphista =)\1 Ealignmem +)\2 »Clma (7)
Latignment = CE(d_logits;, logitst, ., ;), (8)
Lim = CE(d_logits;, gti1144)- ©)

Note that d_logits; and logitsT,, ,, are the log-
its from Amphista and the target model for token
Tt 4144, while gtiy14; represent the ground truth
labels of token 7314;. The terms A; and Ay are
weighting factors for the two objectives.

4 Experiments

4.1 Experimental Settings

Models and Baselines. Following (Cai et al., 2024;
Li et al., 2024; Ankner et al., 2024), we use Vicuna
family of models (Zheng et al., 2024) as our tar-
get model. Specifically, we implement our method
on Vicuna 7, 13, and 33B models with four draft-
ing heads. As for compared baseline methods, we
choose original Speculative Decoding, Lookahead
(Fu et al., 2024), Medusa (Cai et al., 2024) and
Hydra (Ankner et al., 2024) for comparison.

Training and Datasets. For the training stage,
again following (Cai et al., 2024; Ankner et al.,
2024), we use ShareGPT ' dataset to fine-tune
our proposed module while keeping target model
frozen. Training is conducted using HuggingFace

!ShareGPT. 2023. https://huggingface.co/datasets/Aeala/
ShareGPT_Vicuna_unfiltered

8928

https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered

Table 1: The speed-up comparison on MT-Bench and Spec-Bench between different methods under greedy sampling

setting (Temperature = 0). We regard the speed-up of vanilla autoregressive decoding as 1.00x.

. Spec-Bench
Model Size - Method MT-Bench Translation Summarifation QA Math RAG Ave
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.62x 1.11x 1.66x 146x 145x 1.61x 1.45x%
7B Lookahead 1.44x 1.15x 1.26x 1.25x 1.56x 1.13x 1.27x
Medusa 1.87x 1.42x 1.42x 1.50x 1.74x 1.39x 1.50x%
Hydra++ 2.37x 1.92x 1.80x 1.94x 2.43x 2.04x 2.03x
Ampbhista (ours) 2.44 x 1.96 x 2.11x 1.94x 245x 2.20x 2.13x
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.66x 1.17x 1.75% 144x 1.59x 1.73x 1.53x
13B Lookahead 1.34x 1.08 x 1.23x 1.15x 1.51x 1.15x 1.22x
Medusa 1.85x% 1.55x 1.55x% 1.53x 1.88x 1.51x 1.60x
Hydra++ 2.34x 1.75x 1.85x 1.85x 231x 1.86x 1.92x
Amphista (ours) 2.49x 1.88 % 2.14x 1.88x 2.41x 2.04x 2.07x
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.73x 1.28x 1.76x 1.54x 1.71x 1.69x 1.60x
33B Lookahead 1.32x 1.09x 1.21x 1.16x 1.55x 1.16x 1.24x
Medusa 1.97x 1.72x 1.62x 1.66x 2.06x 1.61x 1.73x%
Hydra++ 2.54x 1.93x 2.10x 2.04x 2.63x 2.17x 2.17x
Amphista (ours) 2.75x 2.11x 2.49x 212x 2.83x 2.44x 2.40x

Trainer, which we employ with AdamW optimizer
(81=0.9, (2=0.999) and a cosine learning rate
schedule with warmup strategy, the initial learn-
ing rate is set to le-3 and we train 4 epochs. At
the evaluation stage, we use MT-Bench (Zheng
et al., 2024) and Spec-Bench (Xia et al., 2024)
as our benchmark. MT-Bench is an open source
multi-turn conversation benchmark. Spec-Bench
is a well-acknowledged and comprehensive bench-
mark designed for assessing speculative decoding
methods across diverse application scenarios.
Metrics. Following previous speculative decoding
work, we choose tokens/s and tokens/step as our
main metrics. Tokens/step measures the average
token length accepted per forward pass of the target
LLM. Tokens/s represents the overall throughput
of the acceleration algorithm, which is influenced
by both the prediction accuracy of the speculator
and the drafting latency of the speculator.

4.2 Evaluation of Amphista

Amphista builds on Medusa to support parallel de-
coding, distinctly diverging from auto-regression
drafting methods. Thus, the representative work of
parallel drafting (i.e., Lookahead), and the state-of-
the-art work based on Medusa (i.e., Hydra), have
been chosen as a competitive baseline method for
comparison. Specifically, Hydra’s best-performing
model (i.e., Hydra++) is used for fair evaluation
and vicuna-68m (Yang et al., 2024) is used as

draft model for the vanilla speculative decoding
method. We conduct all the experiments on A100
40G GPUs, and all the experimental settings are
kept the same for fair comparison.

Table 1 and Table 2 present the speed-up met-
rics compared on MT-Bench and Spec-Bench un-
der greedy and random sampling settings (see
A.2 for more experiment results). Overall, Am-
phista demonstrates significant performance supe-
riority over Medusa and surpasses Hydra’s best
results by a considerable margin across a variety
of generation tasks, and also greatly exceeding
the speed-up achieved by vanilla speculative de-
coding. In detail, Amphista achieves a 2.44x -
2.75x speed-up on MT-Bench and 2.13x - 2.40x
speed-up on Spec-Bench under greedy decoding
setting. Similarly, under random sampling set-
ting, Amphista achieves a 2.37x - 2.85x speed-
up and 1.99x - 2.43x speed-up on MT-Bench
and Spec-Bench with different target model sizes.
These robust results demonstrate that enhancing
non-autoregressive drafting can surpass autoregres-
sive drafting in terms of speed-up, highlighting
the efficiency of our Amphista architecture. Dur-
ing the drafting stage, all computations in non-
autoregressive modeling (i.e., Amphista) can be
processed in parallel, better leveraging the parallel
computing capabilities of modern GPU accelera-
tors. This leads to a more optimal trade-off between
drafting acceptance rate and drafting latency.

8929

Table 2: The speed-up comparison on MT-Bench and Spec-bench between different methods under random
sampling setting (Temperature = 0.7). We regard the speed-up of vanilla autoregressive decoding as 1.00x.

. Spec-Bench
Model Size - Method MT-Bench Translation Summarifation QA Math RAG Ave
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.39x 1.02x 1.41x 1.24x 132x 143x 1.28x%
7B Lookahead 1.28x 1.05x 1.21x 1.12x 1.25x 1.14x 1.16x%
Medusa 1.86% 1.51x 1.47x 1.57x 1.89x 143x 1.57x
Hydra++ 2.35x% 1.81x 1.81x 1.97x 241x 1.74x 1.95x
Ampbhista (ours) 2.37x 1.81x 1.92 % 1.96x 243x 1.79x 1.99x
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.52x 1.08 % 1.57x 1.33x 142x 146x 1.37x
13B Lookahead 1.30x 1.07x 1.19x 1.15x 1.38x 1.14x 1.19x%
Medusa 2.01x 1.65x% 1.62x 1.71x 2.0Ix 157x 1.71x
Hydra++ 2.57x 1.90x 1.99x 2.12x 2.56x 2.04x 2.12x
Amphista (ours) 2.65x 1.93x 2.16x 217x 2.64x 2.15x 2.22x
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Spec-decoding 1.58x 1.21x 1.62x 1.48x 1.59x 1.54x 1.48x
33B Lookahead 1.29x 1.04x 1.18x 1.15x 1.52x 1.14x 1.21x
Medusa 2.06x 1.71x 1.79x 1.76x 2.10x 1.79x 1.83x%
Hydra++ 2.74x 2.01x 2.24x 2.24x 2.82x 226x 231x
Amphista (ours) 2.85x 2.05x 2.51x 229x 290x 239x 2.43x

Moreover, Amphista exhibits a discernible up-
ward trend in speed-up when employed on larger
target models. This can be attributed to Am-
phista’s cost-efficient non-autoregressive model-
ing and effective transformation of semantic infor-
mation from the target model. Amphista allows
for appropriate increases in accepted token length
without introducing excessive additional inference
costs. For more exploration on the performance
potential of Amphista, please refer to A.2.4. For
more exploration on the parameter complexity op-
timization, please refer to A.2.5.

Last but not least, we further provide the ac-
tual throughput of different methods on MT-Bench
with a batch size of 1. As depicted in Figure 3,
Amphista achieves an actual throughput of approx-
imately 120 tokens/s with a 7B target model and
about 80 tokens/s with a 13B target model under
both temperature settings. This performance sur-
passes that of Medusa and Hydra, underscoring
Amphista’s advantages in practical deployment.

4.3 Generation Quality of Amphista

We perform evaluation on XSUM (Narayan et al.,
2018) and CNN/DM (See et al., 2017) to validate
the generation quality of our Amphista (more re-
sults can be found in appendix A.2.1). From the
ROUGE-1/2/L scores (Lin, 2004) in Table 3, we
can find that Amphista can reserve the output distri-
bution quality while achieving 2.10x-2.31x speed-

Temp = 0.7 (Random Sampling)
m Vanilla
BN Medusa

Hydra++

Amphista

Temp = 0 (Greedy)
 Vanilla
1200 B Medusa 1200
Hydra++

Amphista

1000 1000

800 800

Throughput
Throughput

600 600

400 400

Vicuna 7B Vicuna 13B Vicuna 7B Vicuna 13B

Figure 3: Throughput (tokens/s) on MT-Bench with
different target model sizes and temperatures.

Table 3: Results on CNN/DM and XSUM with different
temperatures, AR means Auto-Regressive decoding.

Benchmark ‘ Temp Method ROUGE-1 ROUGE-2 ROUGE-L Speed-up
00 AR 18.74 8.44 12.59 1.00x
’ Amphista 18.70 8.44 12.59 2.15%
CNN/DM 07 AR 17.92 7.65 11.93 1.00x
: Amphista 17.91 7.65 11.92 2.31x
00 AR 17.32 5.05 12.16 1.00x
: Amphista 17.30 5.05 12.15 2.25%
XSUM 0.7 AR 15.99 4.44 11.42 1.00x
| Amphista 15.96 4.43 11.40 2.10x

up compared with vanilla auto-regressive decoding.

4.4 Multi-Batching Exploration

In this section, we evaluate the speed-up of Am-
phista in multi-batch scenarios (batch size > 1).
For varying sentence lengths within a batch, we use
padding to align them and always track the position
of the last valid token for each sentence. The ex-
perimental results, presented in Table 6, are based
on randomly sampled prompts from MT-Bench to
generate various batch sizes. Generally, as batch

8930

Table 4: Ablation experiments of different model variants on MT-Bench and Spec-Bench, with the target model
being Vicuna 7B and the evaluation metric being speed-up. Medusa can be considered as Amphista w/o any added
modules, and Hydra can be seen as Medusa w/ sequential dependency heads.

. Spec-Bench
Method Variants MT-Bench Translation Summary QA Math RAG Ave
Medusa 1.86x 1.51x 1.47x 1.57x 1.89x 143x 1.57x
Hydra++ 2.37x 1.92x 1.80x 1.94x 243x 2.04x 2.03x
Amphista w/o Auto-embedding 2.30x 1.82x 2.00x 1.81x 225x 1.99x 1.97x
Amphista w/o Position-Encoding 2.42x 1.96x 2.08x 1.92x 242x 2.18x 2.11x
Amphista w/o Staged-Adaptation 2.14x 1.85x% 1.75x% 1.78x 2.10x 191x 1.88x
Amphista w/ One-Adaptation-Layer 2.31x 1.90x 1.99x 1.83x 235x 2.14x 2.04x
Amphista w/o Sampled-Token 2.25x% 1.88 % 1.80x 1.81x 226x 2.01x 1.95x
Amphista (ours) 2.44x 1.96x 2.11x 1.94x 245x 220x 2.13x

Table 5: Ablation experiments of different model variants on MT-Bench and Spec-Bench, with the target model
being Vicuna 7B and evaluation metric being average accepted length. Medusa can be considered as Amphista
w/o any added modules, and Hydra can be seen as Medusa w/ sequential dependency heads.

. Spec-Bench
Method Variants MT-Bench Translation Summary QA Math RAG Ave
Medusa 2.52 2.12 2.01 205 248 209 215
Hydra++ 3.58 2.80 2.70 291 361 290 2.98
Amphista w/o Auto-embedding 3.16 2.41 2.66 240 3.11 249 260
Amphista w/o Position-Encoding 3.47 2.61 2.90 278 347 291 293
Amphista w/o Staged-Adaptation 291 242 224 230 2.85 238 243
Amphista w/ One-Adaptation-Layer 3.36 249 2.68 271 337 275 280
Amphista w/o Sampled-Token 3.11 243 2.48 245 3.15 255 2.6l
Amphista (ours) 3.50 2.62 3.01 280 3.50 296 2.98

size increases, the GPU’s idle computational re-
sources gradually decrease, resulting in a reduced
speed-up. Additionally, despite the additional com-
putational overhead from different multi-batching
strategies, Amphista consistently achieves around
2x speed-up using the simplest padding method,
demonstrating its acceleration advantage in multi-
batch settings.

Table 6: Speed-up evaluation of Amphista on MT-Bench
with batch size > 1.

Batch Size 1 2 4 6 8
2.32x 2.30x 2.23x 2.11x 2.06x

Speed-up

4.5 Ablation Study

Diverging from other approaches based on spec-
ulative sampling and Medusa, Amphista’s main
insight lies in adapting transformation through
Staged Adaptation Layers and enhancing integra-
tion via the non-autoregressive Auto-embedding
Block. These approaches strengthen semantic in-
formation derived from the target model. In this
section, we conduct comprehensive ablation ex-

periments based on the vicuna 7B model to val-
idate the effectiveness of each proposed module
in our Amphista. Specifically, we conduct five
model variants as follows: (1) Amphista w/o
Auto-embedding which means removing the Auto-
embedding Block. (2) Amphista w/o Position-
Encoding which means removing the additional
position embedding matrix in Auto-embedding
Blcok. (3) Amphista w/o Staged-Adaptation
which means removing staged adaptation layers.
(4) Amphista w/ One-Adaptation-Layer which
means using only one adaptation layer for all the
drafting heads. (5) Amphista w/o Sampled-Token
which means removing sampled token during adap-
tation process. The experimental results are pre-
sented in Table 4, 5. From these comparative re-
sults, some observations can be found as follows:

¢ Amphista w/o Auto-embedding exhibits an ap-
proximate 5%-8% decrease in speed-up perfor-
mance and about a 10%-12% reduction in aver-
age accepted length. This highlights the effective-
ness of the Auto-embedding Block in mitigating
inaccuracies deriving from the independent spec-
ulation of Medusa heads, and demonstrating the

8931

efficiency of non-autoregressive drafting compu-
tations. Additionally, Amphista w/o Position-
Encoding exhibits a slight performance decline,
with an approximate 2% decrease in inference
speed-up, suggesting that position encoding pro-
vides additional benefits.

¢ Amphista w/o Staged-Adaptation leads to a
more significant decline in speed-up (14%) and
average accepted length (16%). This empha-
sizes the importance of bridging the feature gap
between the target model and drafting heads,
and further underscores the critical role of the
staged adaptation layer in enhancing the auto-
embedding block. Additionally, it is noteworthy
that Amphista w/ One-Adaptation-Layer uti-
lizes only a single adaptation layer for all drafting
positions. In contrast to staged adaptation, this
approach poses greater challenges to the adap-
tation process, resulting in some performance
degradation, thereby validating the rationale be-
hind our staged adaptation design.

* Amphista w/o Sampled-Token also causes an
approximate 8% performance decline. Unlike
previous works (e.g., Hydra), we do not use the
sampled token directly for the next step of pre-
diction. Instead, we adapt it along with the tar-
get model’s hidden states. This not only indi-
cates that the sampled token, in addition to target
model hidden states, contains important semantic
information, but also demonstrates the effective-
ness of our staged adaptation approach.

» Thanks to the autoregressive characteristics and
the substantial number of parameters in the MLP
layers, Hydra exhibits great performance in av-
erage token length. However, the computational
overhead of auto-regressive methods is huge,
resulting in significant reductions when trans-
lated into final speed-up. In contrast, Amphista
achieves a comparable average token length to
Hydra, and due to the parallelism and efficiency
of its non-autoregressive computations, it ulti-
mately attains a more favorable overall trade-off.

5 Related Work

Increasing techniques have been proposed to en-
hance the inference speed of large language mod-
els (LLMs), covering aspects of system hardware,
model architecture, and decoding algorithms. A
significant branch of these techniques is Model
Compression, which includes methods such as

model quantization (Yao et al., 2023; Dettmers
et al., 2024; Liu et al., 2023a; Ma et al., 2024),
pruning (Belcak and Wattenhofer, 2023; Liu et al.,
2023b; Zhong et al., 2024), and distillation (Zhou
et al., 2024; Sun et al., 2024; Touvron et al., 2021).
Additionally, techniques like kv-cache (Ge et al.,
2023; Kwon et al., 2023), flash-attention (Dao et al.,
2022), and early exiting (Bae et al., 2023; Elhoushi
et al., 2024; Liu et al., 2024a) have also signifi-
cantly reduced inference overhead. Another impor-
tant line is Speculative Decoding, which our work
is based on. It can be broadly categorized into two
types. The first treats the target model and draft
model separately and independently, involving the
use of a small language model (Kim et al., 2024;
Leviathan et al., 2023; Liu et al., 2024b; Monea
et al., 2023; Chen et al., 2024; Du et al., 2024),
external database, or n-grams pool (He et al., 2024;
Fu et al., 2024; Kou et al., 2024; Ou et al., 2024)
to generate candidate token sequences or token
trees (Miao et al., 2024), which the LLM then ver-
ifies. The second type views the draft model as
a dependent approximation of the target model,
deriving the draft model directly from the target
model or building additional modules on top of
the target model for drafting (Stern et al., 2018;
Zhang et al., 2023, 2024; Li et al., 2024; Cai et al.,
2024; Kim et al.; Xiao et al., 2024; Ankner et al.,
2024). Unlike these approaches, we propose a
novel method using an auto-embedding block com-
bined with staged adaptation layers to further en-
hance acceleration.

6 Conclusion

We propose Amphista, an efficient
autoregressive speculative decoding framework
that accelerates inference through parallel decoding
and improves alignment between target and draft
models via feature adaptation. Amphista integrates
two core components: the Auto-embedding
Block, leveraging bi-directional self-attention for
collaborative speculation among drafting heads,
and Staged Adaptation Layers, transforming
target model semantics for multi-step predictions.
Additionally, Amphista exploits sampled tokens to
further optimize alignment. Extensive experiments
confirm the superiority of Amphista, showcasing
the promise of non-autoregressive methods in
speculative decoding.

non-

8932

Limitations

While we have found and adhered to using bi-
directional self-attention for non-autoregressive
modeling as an efficient inference structure, we
have not yet fully explored the optimal structure of
the Auto-embedding Block module. Specifically,
this includes experimenting with different interme-
diate sizes (i.e., the hidden dimensions used in self-
attention computations) and increasing the number
of self-attention layers within the auto-embedding
block to enhance its modeling depth (see A.2.4).
Both of these structural optimizations could po-
tentially improve Amphista’s acceleration perfor-
mance within the current framework. Additionally,
this work primarily focuses on scenarios where the
batch size is equal to one, with limited optimization
for larger batch sizes. We leave these areas as our
future work and also hope that researchers inter-
ested in non-autoregressive inference acceleration
will build upon this foundation.

Acknowledgement

We acknowledge the helpful discussions from
Kolorin Yan, Fuwei Yang, Ethan Yang, Xiandong
Zhao, Mahdi Kamani, and Vikram Appia during
the writing process of this work.

References

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding. Preprint, arXiv:2402.05109.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. 2023. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. pages 5910-5924,
Singapore.

Peter Belcak and Roger Wattenhofer. 2023. Expo-
nentially faster language modelling. arXiv preprint
arXiv:2311.10770.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D. Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. Preprint,
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. Preprint,
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. Preprint,
arXiv:2402.12374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Preprint, arXiv:2205.14135.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu,
Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Ligiang
Nie, Zhaopeng Tu, and Yang You. 2024. Glide with a
cape: A low-hassle method to accelerate speculative
decoding. Preprint, arXiv:2402.02082.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed A Aly, Beidi Chen, and Carole-
Jean Wu. 2024. Layerskip: Enabling early exit
inference and self-speculative decoding. Preprint,
arXiv:2404.16710.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of 1lm
inference using lookahead decoding. Preprint,
arXiv:2402.02057.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you

8933

https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2402.02082
https://arxiv.org/abs/2402.02082
https://arxiv.org/abs/2402.02082
https://arxiv.org/abs/2404.16710
https://arxiv.org/abs/2404.16710
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2402.02057

what to discard: Adaptive kv cache compression for
IIms. arXiv preprint arXiv:2310.01801.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee,
and Di He. 2024. Rest: Retrieval-based speculative
decoding. Preprint, arXiv:2311.08252.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W Mahoney, Amir Gholami,
and Kurt Keutzer. 2024. Speculative decoding with
big little decoder. Advances in Neural Information
Processing Systems, 36.

Taehyeon Kim, Ananda Theertha Suresh, Kishore A
Papineni, Michael Riley, Sanjiv Kumar, and Adrian
Benton. Exploring and improving drafts in blockwise
parallel decoding. In Workshop on Efficient Systems
for Foundation Models 1@ ICML2024.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. Cllms: Consistency large lan-
guage models. Preprint, arXiv:2403.00835.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. Preprint,
arXiv:2401.15077.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng
Ni, Kai Han, and Yunhe Wang. 2024a. Kangaroo:
Lossless self-speculative decoding via double early
exiting. Preprint, arXiv:2404.18911.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Che-
ung, Zhijie Deng, Ion Stoica, and Hao Zhang.
2024b. Online speculative decoding. Preprint,
arXiv:2310.07177.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023a. Llm-qat: Data-free quantization aware
training for large language models. Preprint,
arXiv:2305.17888.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023b. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024. The era of
1-bit llms: All large language models are in 1.58 bits.
Preprint, arXiv:2402.17764.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.
2024. Specinfer: Accelerating large language model
serving with tree-based speculative inference and
verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Vol-
ume 3, pages 932-949.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

OpenAl. 2022. Chatgpt: Chatgpt: Optimizing language
models for dialogue.

Jie Ou, Yueming Chen, and Wenhong Tian. 2024.
Lossless acceleration of large language model via
adaptive n-gram parallel decoding. arXiv preprint
arXiv:2404.08698.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, and Felix Yu. 2024.
Spectr: Fast speculative decoding via optimal trans-
port. Advances in Neural Information Processing
Systems, 36.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In International
conference on machine learning, pages 10347-10357.
PMLR.

8934

https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2310.07177
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2402.17764
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. Preprint, arXiv:2401.07851.

Bin Xiao, Chunan Shi, Xiaonan Nie, Fan Yang, Xi-
angwei Deng, Lei Su, Weipeng Chen, and Bin Cui.
2024. Clover: Regressive lightweight speculative
decoding with sequential knowledge. arXiv preprint
arXiv:2405.00263.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun
Chen. 2024. Multi-candidate speculative decoding.
Preprint, arXiv:2401.06706.

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn,
and Yuxiong He. 2023. A comprehensive study on
post-training quantization for large language models.
arXiv preprint arXiv:2303.08302.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang,
and Yunfei Cheng. 2024. Recurrent drafter for
fast speculative decoding in large language models.
Preprint, arXiv:2403.09919.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-

tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Fric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Shuzhang Zhong, Zebin Yang, Meng Li, Ruihao Gong,
Runsheng Wang, and Ru Huang. 2024. Propd: Dy-
namic token tree pruning and generation for llm par-
allel decoding. arXiv preprint arXiv:2402.13485.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-Francois Kagy, and Rishabh Agar-
wal. 2024. Distillspec: Improving speculative
decoding via knowledge distillation. Preprint,
arXiv:2310.08461.

8935

https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.06706
https://arxiv.org/abs/2403.09919
https://arxiv.org/abs/2403.09919
https://arxiv.org/abs/2310.08461
https://arxiv.org/abs/2310.08461

A Appendix
A.1 Draft Tree

For a fully fair comparison, we adopt the same draft
tree structure as Medusa and Hydra. As shown
in Figure 4, this tree is a sparse structure with a
depth of 4, representing four drafting heads, and in-
cludes a total of 64 nodes, including the root node
(the token sampled in the final step of the target
model). Each layer’s nodes represent the tokens
obtained by top_k sampling from the correspond-
ing drafting head. The entire tree is constructed
using an auxiliary dataset by maximizing the ac-
ceptance probability of the whole tree (Cai et al.,
2024). Moreover, a specially designed tree mask is
used to correctly compute attention scores while si-
multaneously handling multiple paths, as described
in Figure 5.

However, in some cases, due to the lack of re-
dundant computational power (such as in high-
throughput inference service scenarios) or par-
allel accelerators, an excessive number of tree
nodes may lead to significant computation over-
head, thereby affecting the acceleration efficiency
of the algorithm. Consequently, we configure vary-
ing numbers of draft tree nodes without changing
the tree depth for more comprehensive comparison,
and the experimental results are shown in Table
7. From these results we observe that as the num-
ber of tree nodes decreases, the width of the tree
reduces, leading to a decrease in speed-up for all
compared methods. However, the decline is slightly
less pronounced for Amphista, owing to its higher
head accuracy. Furthermore, across various tree
node configurations, we consistently achieve op-
timal performance, demonstrating the advantages
of our algorithm in practical deployment and low-
resource scenarios.

Table 7: Speed-up comparison on MT-Bench with vary-
ing number of draft tree nodes.

Figure 4: Draft tree used in Medusa, Hydra and our
Amphista.

Key A
Next-0 token

Next-1 tokens
A (Head-1)

Query
B
c Next-2 tokens

(Head-2)

. . @

HEEE EHE -

Visible

. Masked
———E

Figure 5: An Illustration of Tree Attention. Assum-
ing Medusa has only 2 heads, where head-1 generates
the top-2 tokens and head-2 generates the top-3 tokens,
resulting in 6 candidate sequences (e.g., ABD). Addi-
tionally, a special tree mask is designed to ensure causal
relationships among the top-k nodes of each head.

is vicuna 7B. Specifically, we perform zero-
shot evaluation and the input prompt template
is 'Article:'+'Original Text'+'Summary:'.
Additionally, for input prompts exceeding a length
of 2048, we perform truncation to meet the target
model’s input requirements.

Table 8: The speed-up metric comparison on Humaneval
and GSMS8K between different methods under greedy
setting. The target model is vicuna 7B and 13B, and we
regard the speed-up of vanilla auto-regressive decoding
as 1.00x.

Method ‘ Node =22 Node=35 Node=45 Node =64 Model Size Benchmark Vinilla AR Medusa Hydra++ Amphista
Medusa 1.71x 1.80x 1.87 % 1.87x 7B Humaneval 1.00x 2.40% 2.76x 3.02x
Hydrat+ | 2.17x 2.26x 2.28x 2.37x OSMSK 100x 187x 2l4x 23«
. Humaneval 1.00x 2.11x 2.75% 3.00x
Amphista 2.29 % 2.37x 2.42 % 2.44 < 13B GSMSK 100 Losx 239 268

A.2 Additional Experiments Results

A.2.1 Evaluation on XSUM and CNN/DM

We use XSUM (Narayan et al., 2018) and
CNN/DM (See et al., 2017) for evaluating the
generation quality of Amphista, the target model

A.2.2 Code Generation and Math Reasoning

In this section, we provide more experimental re-
sults on code generation and math reasoning. we
choose public Humaneval (Chen et al., 2021) and
GSMB8k (Cobbe et al., 2021) benchmark for evalua-

8936

Table 9: The speed-up and average accepted length metric comparison with the target model being vicuna 7B. We

regard the speed-up of vanilla auto-regressive decoding as 1.00x.

. Spec-Bench

Metric Method MT-Bench Translation Summarization QA Math RAG Ave
Vanilla 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Soeed Hydra++ 2.37x 1.92x 1.80x 1.94x 243x 2.04x 2.03x
peec-up EAGLE 2.58x 1.94x 221 202x 2.57x 230x 221x
Amphista 2.44% 1.96x 2.11x% 1.94x 245x 220x 2.13x
Amphista-c 2.63 % 2.09x 2.23x 2.06x 2.61x 234x 2.27x

Vanilla 1.00 1.00 1.00 100 100 1.00 1.00

Hydra++ 3.58 2.80 2.70 291 361 290 298

Average Accepted Length)) 1 3.84 292 332 314 393 331 332
Amphista 3.50 2.62 3.01 280 350 296 298

Amphista-ce | 3.58 2.70 3.14 290 362 308 3.00

tion, and the target model is vicuna 7B and vicuna
13B. According to the results in Table 8, we can ob-
serve that due to the universal template and notation
of code generation and mathematical reasoning, al-
most all compared methods achieve a higher speed-
up. Furthermore, Amphista algorithm consistently
attains optimal performance, demonstrating the su-
periority of our approach.

A.2.3 Exploring The Optimal Number of
Adaptation Stages.

In this section, we analyze the impact of varying
the number of adaptation stages on the final perfor-
mance of Amphista (see 10). The staged adaptation
approach was introduced to facilitate the progres-
sive transformation of features, and our ablation
study has demonstrated that employing two adapta-
tion stages outperforms a single-stage design. This
indicates that using multiple adaptation layers to
adapt to different positions is more effective than
relying on a single layer for all positions.

Although it is theoretically possible to further
increase the number of adaptation stages, our ex-
periments reveal two critical limitations. First, as
the number of layers increases, the parameter count
increases significantly, leading to increased model
complexity. Second, the additional adaptation lay-
ers provide diminishing returns, with only mini-
mal improvements in mean accept length, while
introducing higher inference time overhead and re-
ducing the overall speed-up metric. Given these
trade-offs, we identified the two-layer approach as
the optimal balance, effectively enhancing perfor-
mance without unnecessary computational burden.

Table 10: Experimental results for different numbers of
staged adaptation layers.

Stages 1 2 3 4
Accept Length | 3.36 3.50 3.46 3.51
Speed-up 231x 244x 223x 224X

A.2.4 Exploring The Potential of Amphista

In this section, we conduct a preliminary explo-
ration of Amphista’s scaling ability to demon-
strate its potential for performance enhancement.
By leveraging the efficiency of non-autoregressive
modeling, we increase the number of auto-
embedding blocks, which are essential modules
within Amphista, while maintaining parallel infer-
ence. This approach yields remarkable results, de-
tailed in Table 9. Specifically, we employ two lay-
ers of self-attention in the auto-embedding module,
renaming our method as Amphista-«. This adjust-
ment leads to an average accepted length increase
of approximately 0.1-0.2 tokens and a notable 5%-
8% improvement in overall speed-up, highlighting
Amphista’s performance growth potential. We an-
ticipate this to be a highly promising and potent
attribute of Amphista.

Table 11: Experiment results of LoRA-like Im heads
optimization. Note that we consider the speed-up of full
rank Im head as 1.00x.

Benchmark ‘ rank=4096 (full) rank=64 rank=128 rank=256 rank=512

MT-bench 1.00x 0.98x 1.01x 1.02x 0.99x
Spec-bench 1.00x 1.00x 1.00x 1.01x 0.98x

A.2.5 Parameter Complexity Optimization of
Amphista

In this part, we propose LoRA-like drafting Im

heads to further optimize the original learnable Im

8937

Input Prompt: Write a code to calculate Fibonacci numbers

Here is a Python code to calculate Fibonacci numbers
python

def fibonacci(n)
ifn<=1:

return n
else
return fibonacci(n-1) + fibonacci(n-2)

for i in range(10)
print(fibonacci(i))

This code defines a function “fibonacci- that takes an integer 'n" as input and returns the °n "~ th Fibonacci number. The function uses
recursion to calculate the Fibonacci numbers, starting with the first two numbers (1and 1) and then using the previous two numbers to
calculate the next two number

The code then uses a “for” loop to print the first 10 Fibonacci numbers.</s>

Figure 6: Case Study on Code Generation. Tokens in
red means those generated by Amphista and tokens in
black means those generated by target model itself.

Input Prompt: What good habits can make the body healthier?

¢ of these include:

hole grains, and lean proteins.

There are many good habits that can help keep the body healthy. S

night,
your hands

5. Avoiding smoking ssive nsumption.
6. Managing stress through activities su editation, yoga, or deep
7 Getting regular check-ups and screen has blood pressure ch
8. Practicing safe sex and avoid

g plenty hroughout the d

ding risk) jors that can spread sex
T

Figure 7: Case Study on Text Generation. Tokens in
red means those generated by Amphista and tokens in
black means those generated by target model itself.

heads of Amphista, which significantly reduces the
parameter amount and complexity. Specifically,
we use two low-rank matrices to replace the origi-
nal Im head matrix. The experimental results are
shown in Table 11, we choose Vicuna 7B as target
model, so the parameter count of Im head is 4096
*32000. With the increase of rank, we can reduce
the number of learnable parameters by up to 45%
while maintaining almost the same performance,
which greatly reduces the complexity of model pa-
rameters and reflects the advantages and potential
of Amphista in practical deployment.

A.3 Case Study

Here we show some real case studies (see Figure
6, 7) on Amphista inference, the target model is
Vicuna 7B. Note that we do not apply any special
processing to the tokenizer’s output, preserving the
original results. Tokens highlighted in red rep-
resent those generated by Amphista during each
step of decoding. Tokens in black indicate those
generated by target model. From these practical
examples, we can observe that in the vast majority
of cases, Amphista generates at least two tokens
per decoding step. This generally results in a stable
at least 2x speed-up, demonstrating the efficiency
of our algorithm. Additionally, Amphista’s output
is consistent with the target model’s auto-regressive
decoding output, ensuring the generation quality of
Amphista.

8938

