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Abstract

The growing popularity of large language mod-
els has raised concerns regarding the poten-
tial to misuse AI-generated text (AIGT). It
becomes increasingly critical to establish an
excellent AIGT detection method with high
generalization and robustness. However, ex-
isting methods either focus on model gener-
alization or concentrate on robustness. The
unified mechanism, to simultaneously address
the challenges of generalization and robust-
ness, is less explored. In this paper, we ar-
gue that robustness can be view as a specific
form of domain shift, and empirically reveal
an intrinsic mechanism for model generaliza-
tion of AIGT detection task. Then, we pro-
posed a novel AIGT detection method (DP-
Net) via dynamic perturbations introduced by
a reinforcement learning with elaborated re-
ward and action. Experimentally, extensive
results show that the proposed DP-Net signifi-
cantly outperforms some state-of-the-art AIGT
detection methods for generalization capacity
in three cross-domain scenarios. Meanwhile,
the DP-Net achieves best robustness under two
text adversarial attacks. The code is publicly
available at https://github.com/Yimyxj/C-Net.

1 Introduction

Recently, the emergence of large language models
(LLMs) has significantly enhanced the capabilities
of natural language generation. With continuous
improvements in model parameters, data scale, and
AI-human alignment techniques, these LLMs are
now capable of generating text that is grammati-
cally correct, semantically coherent, and very sim-
ilar to human-written text, making it difficult for
humans to distinguish between machine-generated
and human-written content. As powerful tools for
streamlining content creation, LLMs are widely
used across various domains, including journal-
ism, academia, and social media. However, the
threats posed by AI-generated text (AIGT), such

as academic dishonesty (Wu et al., 2023; Zeng
et al., 2024), fake news (Su et al., 2024; Hu et al.,
2024), and false comments (Mireshghallah et al.,
2024) have raised significant concerns. To prevent
the LLM abuse with malicious purpose, numer-
ous AIGT detection methods have been proposed,
utilizing the specific feature differences between
human-written text and AI-generated text.

Mainstream AIGT detection methods typically
fall into one of two categories: white-box or black-
box detection, depending on whether the genera-
tor’s parameters are accessible. While some white-
box methods (Sebastian et al., 2019; Wang et al.,
2023; Yang et al., 2024; Li et al., 2023) achieve
high-precision detection by extracting textual fea-
tures from the generator’s output logits, black-box
AIGT detection methods (Corizzo and Leal-Arenas,
2023; Soto et al., 2024; Tian et al., 2024) are gain-
ing increasing attention for their ability to operate
without accessing the model’s parameters, making
them particularly relevant in the context of many
closed-source commercial LLMs.

Current black-box AIGT detection methods
learn deep features on large annotated datasets, pre-
forming well when training and testing samples
are independent and identically distributed (i.i.d).
However, the detection of out-of-distribution
(OOD) samples is inevitable in real-world appli-
cation scenarios. Therefore, some researchers are
concentrated on enhancing generalization capac-
ity for cross-domain detection (Liu et al., 2023b;
Bhattacharjee et al., 2023). These methods aim to
enhance generalization in unknown target domains
through different feature alignment strategy. Some
studies (Mitchell et al., 2023; Zhu et al., 2023)
introduce zero-shot learning methods to achieve
domain-generalization AIGT detection in unpre-
dictable target distributions by extracting effective
domain-invariant features.

To evade detection, users may attempt to modify
the generated text when using AI tools. However,
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current AIGT detectors face challenges in detecting
minor adversarial perturbations (Zhou et al., 2024;
Krishna et al., 2023). Therefore, some research has
explored robust AIGT detection methods (2023;
2024). Despite the good generalization ability of
existing AIGT methods, they are vulnerable for
text adversarial attacks. Meanwhile, some robust
detection method can not achieve good generaliza-
tion for OOD data. An interesting and challeng-
ing problem is how to construct a comprehensive
framework that exhibits high generalization and
robustness against text adversarial attack.

In this paper, we argue that model generalization
and robustness are intrinsically linked. Both con-
cepts can be viewed as responses to variations in-
troduced in the source domain. Specifically, robust-
ness is often validated by introducing minor per-
turbations within the source domain, while OOD
data can be understood as changes in the distribu-
tion resulting from more substantial and specific
disturbances. The analysis spontaneously induce
an evident thinking: Can adding elaborated pertur-
bations simultaneously improve generalization and
robustness of AIGT detection network?

In order to exploring the rationality of the above
thinking, we first empirically reveal an intrinsic
mechanism for model generalization through mak-
ing quantitative and qualitative experiments. Then,
in light of the intrinsic mechanism, we propose a
novel AIGT detection method via dynamic pertur-
bations (called DP-Net). The crux of DP-Net is
that dynamic perturbations, added into embedding
matrix in training phase, are yielded by a reinforce-
ment learning with elaborated reward and action.
Extensive experiments demonstrate that the pro-
posed DP-Net can significantly improve the gener-
alization and robustness for AIGT detection task.
Our contributions are as follows:

• We empirically reveal an intrinsic mechanism
for generalization capacity of AIGT detection.
In other words, adding slight perturbations
into source domain can effectively simulate
the domain shift between source and target
domains.

• We propose a novel AIGT detection method
(DP-Net) via dynamic perturbations which are
adaptively yielded by the reinforcement learn-
ing with elaborated reward and action.

• Extensive experiments demonstrate that the
proposed DP-Net achieves state-of-the-art

generalization in three cross-domain scenarios
and achieves best robustness under two text
adversarial attacks.

2 Related Work

2.1 Supervised Detector

Supervised classifiers are trained on large labeled
datasets to extract representations that can effec-
tively distinguish between two classes of text sam-
ples. For instance, Zhong et al. (2020) combined
the actual structure of text with a classifier based on
RoBERTa (Liu et al., 2020) to improve detection
accuracy. Tian et al. Tian et al. (2024) introduce
a length-sensitive Multiscale Positive-Unlabeled
Loss, which enhances the detection performance of
short texts while maintaining the detection efficacy
for long texts. These methods achieve strong detec-
tion performance in detecting datasets belonging
to the same domain as the training set, but usually
fail when faced with datasets that are not in the
domain of the training set. To enhance the model’s
generalization ability in known target domain, Liu
et al. (2023b) combined maximum mean discrep-
ancy with contrastive learning to obtain domain-
invariant representations, facilitating adaptation of
classifiers from source to target generators. Verma
et al. (2024) proposed Ghostbuster, a method that
processes documents through a series of weaker
language models, conducts a structured search over
possible combinations of their features, and then
trains a classifier on the selected features to predict
whether the documents are AI-generated.

2.2 Zero-shot Detector

With the widespread use of LLMs, AIGT detectors
often encounter unknown domain detection in prac-
tical applications, which has sparked a growing
interest in zero-shot domain generalization detec-
tors. Mitchell et al. (2023) proposed a text per-
turbation method to measure the log probabilities
difference between original and perturbed texts. Su
et al. (2023) proposed a zero-shot method that mea-
sures the log-probability difference between origi-
nal text and perturbed text using text perturbation
techniques, significantly improving AIGT detec-
tion performance. Venkatraman et al. (2024) argue
that humans tend to evenly distribute information
during language production, whereas AI-generated
text may lack this uniformity. Therefore, they in-
troduce uniform information density features to
quantify the smoothness of token distribution, aid-
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ing in the identification of AI-generated text.

3 Methodology

3.1 Intrinsic Mechanism Analysis

Following Pedro (2000), the machine learning error
can be decomposed into three components: noise,
bias, and variance. Consider an example x with
the true label y, and a learner f that predicts f(x)
given a training set D. For certain loss functions L,
the following decomposition of ED,y[L(f(x), y)]
holds:

ED,y

[
L(f(x), y)

]
= c1Enoise + L

(
E (y),ED(f(x))

)
︸ ︷︷ ︸

Bias

+ c2ED

[
L
(
ED(f(x)), f(x)

)]
︸ ︷︷ ︸

Variance
(1)

Empirically, both generalization and robustness
are influenced by the sensitivity of model to fluc-
tuations in the training data. We find that appro-
priately calibrated noise perturbations can signifi-
cantly reduce the variance component of the gen-
eralization error without substantially affecting the
bias or noise components. This reduction in vari-
ance leads to improved generalization performance
across diverse data distributions. Specifically, by
introducing noise, the variance component of the
error becomes directly proportional to both the
noise variance and the squared gradient norm of
the model. This insight forms the foundation of
our design. If the noise variance is too large, the
model may become overly insensitive to the true
patterns in the data, increasing variance and lead-
ing to poor generalization. Conversely, if the noise
variance is too small, the model may overfit the
specific characteristics of the training data, fail-
ing to generalize well to unseen data, which also
increases variance. Therefore, we employ rein-
forcement learning during training to dynamically
adjust the noise distribution, enhancing both the its
robustness and ability to generalize to unseen data.

To evaluate the rationality of the intrinsic mech-
anism, i.e., adding slight perturbations into source
domain can effectively simulate the domain shift
between source and target domains, we make some
quantitative and qualitative experiments. For the
quantitative experiment, we leverage the Roberta
network to extract semantic spaces of different
domains, and then Kullback-Leibler Divergence
(KLD) is used to measure domain shift of the dif-

ferent semantic spaces. As shown in Figure 2, we
can find that the KLD of “RC-RC+G” is similar
to those of other two cross-domain scenarios, i.e.
“RC-WC” and “RC-PL” from the blue lines. The
trend are also exhibited by the experimental results
from the pink lines. While, the results shown by
green lines have obvious KLD gap, which is dif-
ferent from other two. The experimental results
demonstrate that adding slight perturbations to the
source domain effectively simulates the domain
shift between different domains. In addition, since
different cross-domain scenarios have different do-
main shift, the network can learn excellent domain-
invariant features, adding dynamic perturbations in
the training phase.

For the qualitative experiment, we validate the
impact of noise on the detection performance of
the model in unknown domains, and the exper-
imental results are shown in Figure 3. The ex-
periments demonstrate that introducing dynamic
perturbations during the training process can effec-
tively improve model generalization. Additionally,
a single type of noise cannot guarantee optimal
performance of the model in unknown target do-
main. We also obtain similar results by visualizing
the features extracted by detectors using different
training strategies, as shown in Figure 3. It is found
that a single type of noise cannot guarantee an
improvement in the detector’s performance in un-
known domains. Therefore, we continuously adjust
the noise distribution during training through re-
inforcement learning to encourage the model to
learn more generalized feature representations. As
shown in Figure 3, by introducing a reinforcement
learning joint training strategy, the model is able
to achieve clearer decision boundaries in unknown
target domains. We treat attacks on text as minor
perturbations to the source domain, which repre-
sents a specific case of domain shift. Therefore,
introducing dynamic perturbations can also inher-
ently enhance the robustness of model.

According to the above quantitative and qualita-
tive analysis, we proposed a novel AIGT detection
method via dynamic perturbations (DP-Net) mainly
consists of three modules: Text Encoding, Noise
Enhancement and Reinforcement Learning Train-
ing. The detail architectures of the DP-Net are
introduced as following sections.

3.2 Text Encoding and Noise Enhancement
We introduce noise-enhanced samples during train-
ing to improve the generalization and robustness of
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Figure 1: Visualization results of features extracted by detectors with different training strategies.

Figure 2: KL divergence between different
distributions.X-Y represents the distance between the
two distributions X and Y, while "RC", "PL", and
"WC" refer to Reddit ChatGPT, PeerRead Llama, and
WikiHow ChatGPT, respectively. Additionally, "+G"
indicates the addition of Gaussian noise.

the detector. The overall process is as follows.
First, text x consisting of n tokens is encoded

by a pre-trained RoBERTa (Liu et al., 2020) with
fixed parameters to obtain text embedding Ex in
text encoding module.

Next, we randomly generate a Gaussian noise
N (µ, σ2) with its mean µ and variance σ2 within
a specified range. Then the noise is added to the
embedding of input text Ex to obtain the noise-
enhanced embedding En:

En = Ex +N (µ, σ2) (2)

After that, the original embedding and the noise-
enhanced embedding are input into a feature ex-
tractor to obtain low-dimensional classification rep-
resentations zx and zn, respectively:

zx/n = Extractor(Ex/n) (3)

Where zx/n reperents zx or zn and Ex/n represents
Ex or En.

To improve the ability of detector to align noisy
samples with original samples, we introduce a dis-
tance loss Ldis to minimize the distance between

Figure 3: The impact of adding noise on the general-
ization performance of model. ’NE’ stands for training
with noise-enhanced samples.

the two embeddings:

Ldis = ∥zx − zn∥22 (4)

Then zx and zn are processed by a softmax
function to obtain the predicted probabilities ŷx

and ŷn, respectively. After that, two cross-entropy
losses Lclsx and Lclsn are incorporated to increase
prediction accuracy.

Lclsx/n
= −

[
y log(ŷx/n) + (1− y) log(1− ŷx/n)

]
(5)

where y is the true label of text x. The final model
loss L is defined as:

L = λ1 · Lclsx + λ2 · Lclsn + λ3 · Ldis (6)

where λ1, λ2 and λ3 are adjustable hyper-
parameters.

3.3 Reinforcement Learning Training
To enhance sample diversity and guide the model in
finding more suitable noise parameters for the un-
known target domain, we introduce reinforcement
learning. Inspired by Liu et al. (2023a), we treat
the mean and variance of Gaussian noise during
training as a continuous control task. We employ
an actor-critic algorithm called Deep Deterministic
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Figure 4: The overall framework of DP-Net. This framework includes three modules: text encoding, noise
enhancement, and reinforcement learning training.

Policy Gradient (DDPG) (Lillicrap et al., 2019),
which leverages deep neural networks to learn de-
terministic policies in continuous action spaces to
control the noise distribution, aiming to maximize
cumulative rewards through a combination of off-
policy learning and target network stabilization.

We design a reward function based on the train-
ing loss of original samples and noise-enhanced
samples to guide this process. The reward function
is defined as:

reward(L) =

{ −log(L− ϵ) L− ϵ > 0
eϵ−L L− ϵ ≤ 0

(7)

where ϵ is an adjustable threshold hyper-parameter.
We store the tuple (s, a, r, s′) into the experience

replay buffer R, where s represents the current
noise distribution state, a is the action taken, s′ is
the subsequent state resulting from the action, and
r is the reward received. Next, DDPG is used to
optimize the policy by maximizing the Q-function,
aiming to maximize the long-term cumulative re-
ward for actions taken in all states.

For each sampled tuple, the target Q-value is
computed using the target networks:

yi = ri + γQ′(s′i, µ
′(s′i|θν

′
)|θQ′

) (8)

where γ is the discount factor, Q′ and ν ′ are the
target Q and policy networks, respectively. The
parameters θQ of the Q-network are then updated
by minimizing the loss function L(θQ):

L(θQ) = E(s,a,r,s′)[(Q(si, ai|θQ)− yi)
2] (9)

The policy network ν is updated using the deter-
ministic policy gradient:

∇θνJ(θ
ν) = Es∼R

[
∇aQ(s, a | θQ)

∣∣∣∣
a=ν(s)

∇θνµ(s | θν)
]

(10)

Algorithm 1 DP-Net Algorithm
Input: source domain training data D = {X,Y }
Parameter: Maximum number of iterations max_episode,
exploration steps per episode max_step, loss weight
λ1, λ2, λ3, reward threshold ϵ
Output:Trained detector Detector

1: env← Env() # Initialize environment
2: agent← DDPG() # Initialize reinforcement learning

agent
3: for episode in max_episode do
4: Initial current state s
5: for step in max_step do
6: Retrieve the current action a based on s
7: Act based on the s to obtain the next state s′.
8: for all x sampled from D do
9: Predict all x based on s′ to obtain the loss L

with Eq.6 and the reward r with Eq.7
10: Update encoder Detector based on L
11: end for
12: Store s, a, r and s′ in experience replay bufferR
13: update politic network ν and critic network Q
14: s← s′ # update state
15: end for
16: end for
17: return Trained detector Detector

This update seeks to maximize the expected re-
turn by adjusting the parameters θν of the policy
network.

The target networks’ parameters are updated us-
ing a soft update strategy:

θQ
′ ← τθQ + (1− τ)θQ

′
(11)

θν
′ ← τθν + (1− τ)θν

′
(12)

where τ ≪ 1 is a small parameter that ensures slow
updates to the target networks, thereby providing
stability to the training process.

We illustrate the general process in pseudo Al-
gorithm 1.
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Corpus Human Davinci003 ChatGPT FlanT5
Wikipedia 3,000 3,000 2995 0

Reddit 3,000 3,000 3,000 3,000
WikiHow 3,000 3,000 3,000 0
peerread 5,798 2,344 2,344 0

arXiv 3,000 3,000 3,000 3,000

Table 1: Sample numbers from different sources in M4.

4 Experiments

4.1 Dataset

We use the M4 (Wang et al., 2024) as the bench-
mark dataset to construct various cross-domain sce-
narios. M4 is a large-scale, multi-domain corpus
generated by three LLMs for the AIGT detection
task. We utilize a subset of datasets from M4, with
detailed information provided in Table 1.

In the following experiments, we denote the data
sources by combining the corpus name with the
generator name. For example, ’Arxiv ChatGPT’
signifies that the corpus consists of Arxiv abstracts
(arXiv.org submitters, 2024), and the AI-text gen-
erator used for this corpus is ChatGPT (Ouyang
et al., 2022).

4.2 Baseline Methods

We compared five benchmark methods for black-
box AIGT detection: (1) Naive Classifer is a super-
vised method, which consist of a fixed RoBERTa
model with an additional MLP classification head.
The training process is consistent with Roberta. (2)
Roberta (Liu et al., 2020) is a supervised method.
In this work, we fine-tune the parameters on the
labeled training set and perform detection in the
target domain. (3) SCRN (Huang et al., 2024) em-
ploys a reconstruction network to add and remove
noise from text, extracting a semantic representa-
tion that is robust to local perturbations. It uses two
random noise sources to enhance the representa-
tion and learns through twin networks. In contrast,
our DP-Net approach uses reinforcement learning
to continuously modify the noise distribution dur-
ing training. (4) GLTR (Sebastian et al., 2019)
proposes three simple tests to assess whether the
text is generated in a specific assumed manner. In
this work, we use the most powerful Test-2 feature,
which is the absolute rank of a word, consistent
with Guo et al. (2023). (5) Fast-DetectGPT (Bao
et al., 2024) is an optimized zero-shot detector,
which utilize conditional probability curvature to
elucidate discrepancies in word choices between
LLMs and humans within a given context. In this

study, both the sampling model and the scoring
model used in the method are GPT-2 (Radford et al.,
2019).

4.3 Experimental Setting
During the training process, the agent continuously
adjusts the noise distribution based on the reward at
each step and optimizes both the actor and critic net-
works. Simultaneously, the detector is optimized
based on the model’s final loss. The optimizers
for all networks in the model are Adam, with a
learning rate of 3e−4 for the actor and critic net-
works and 8e−5 for the encoder. A learning rate
decay strategy is introduced to gradually reduce the
learning rate, promoting model convergence. The
model is trained for 300 epochs on the source do-
main data, which is Arxiv ChatGPT, and tested on
different unseen target domains in this experiment.
The weight parameters used during training are
λ1 = 0.5, λ2 = 0.5, λ2 = 0.01 and the threshold
ϵ = 1. In the experiments involving reinforcement
learning, the reported results are averaged across
five random seeds. The GPU used for the experi-
ments is an NVIDIA RTX 4060.

4.4 Domain Generalization Results
We test the generalization ability of our proposed
DP-Net on seven target domains, which include
three different cross-domain scenarios: same gen-
erator across different corpora, same corpus across
different generators, and different corpora across
different generators.

From the Table 2, DP-Net achieves an average
detection accuracy of 86.10% across seven unseen
target domains, surpassing the other baseline meth-
ods by at least 5.55% and demonstrating state-of-
the-art domain generalization performance. This
is because zero-shot detectors like Fast-detectGPT
heavily rely on the selection of proxy models, and
different proxy models can significantly impact
model performance. However, supervised detec-
tors based on training data, such as Roberta, suf-
fer from the lack of target domain data. Training
solely on source domain data prevents the model
from extracting effective domain-invariant features,
resulting in poorer detection performance on un-
seen domains. Additionally, we find that among
the misclassified samples, a larger proportion of
human-written texts were mistakenly classified as
AI-generated texts. We believe that compared to
direct training, adding noise increases the distribu-
tional variance within the same class in the train-
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Method
Naive

Roberta SCRN GLTR
Fast DP-Net

Classifier detectGPT +U(ours) +G(ours)
Target

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Domain

Wikihow-C 64.00 72.89 54.90 68.35 51.10 44.67 44.30 55.48 79.90 79.08 68.52 61.19 66.62 57.34
Wikipedia-C 64.80 73.96 53.90 68.45 53.90 49.58 70.00 76.45 95.40 95.59 96.88 96.97 96.04 96.18

Reddit-C 63.10 73.05 51.90 67.51 44.92 45.98 54.90 68.62 91.90 91.91 88.10 88.41 89.62 90.17
Arxiv-D 94.70 94.10 98.00 97.96 51.50 45.37 78.10 76.87 36.00 35.48 90.94 89.89 89.52 88.27
Arxiv-F 98.40 98.37 99.80 99.80 51.04 63.72 83.30 83.18 82.50 80.83 91.66 90.82 90.84 89.91

Peerread-D 60.62 64.83 47.28 57.93 49.80 45.98 46.64 54.70 97.12 97.17 76.15 75.35 77.62 75.93
Reddit-D 63.10 73.05 51.90 67.52 51.00 44.60 55.00 68.71 82.00 81.93 86.10 86.14 87.72 88.04
Average 72.67 78.61 65.38 75.36 51.04 48.56 61.75 69.14 80.55 80.28 85.48 84.11 86.10 83.69

Table 2: Comparison of Models across Different Domains. "+U" indicates adding uniform distribution noise, and
"+G" indicates adding Gaussian noise. "-C","-D","-F" indicate that AIGT is generated by ChatGPT, Davinci, and
FlanT5, respectively.

Method Roberta SCRN GLTR
Fast DP-Net

detectGPT +U(ours) +G(ours)
Attack Method Synonym replacement (ratio=0.2)
Target Domain AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1
Wikipedia-C 52.70 67.89 49.58 44.92 79.30 76.66 90.39 82.72 91.58 91.22 94.60 94.61

Reddit-C 90.00 89.29 49.55 45.90 64.39 50.38 83.01 76.30 83.39 62.02 90.32 89.51
Reddit-D 79.10 82.21 48.88 44.82 63.57 67.11 68.96 64.72 83.44 79.83 88.84 87.74
Average 73.93 79.80 49.34 45.21 69.09 64.72 80.79 74.58 86.98 84.81 91.25 90.62

Attack Method Paraphrase
Method AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Wikipedia-C 53.90 68.45 49.88 45.16 56.40 66.84 61.76 64.35 75.50 69.62 76.50 71.93
Reddit-C 64.90 65.82 49.20 45.37 62.61 66.71 31.32 35.26 68.44 62.02 67.92 62.02
Reddit-D 51.70 67.39 48.63 44.44 58.81 66.71 23.01 28.09 61.58 50.54 61.76 51.37
Average 56.83 67.22 49.24 44.99 59.27 66.75 38.70 42.57 68.51 60.73 68.73 61.77

Table 3: Evaluation of cross-domain adversarial robustness. The source domain is Arxiv ChatGPT. The optimal
results are indicated in bold.

ing samples. This is particularly challenging for
human-written text, which has greater inherent vari-
ation, as the noise makes it harder for the model
to learn a unified representation. Furthermore, we
introduce the RAID dataset to evaluate the per-
formance of DP-Net on more advanced models.
Specifically, we sample 1,000 entries generated
by the llama-70B-chat and 1,000 human entries to
from RAID. As shown in Figure 5, DP-Net achieve
a detection accuracy of 97.20%, surpassing other
baseline methods.

As seen from the visualization results in Figure 6,
DP-Net effectively pulls together texts of the same
class from different domains while pushing apart
texts from different classes. This indicates that
DP-Net has the generalization ability to perform
detection in new, unseen domains. Additionally, we

find that among the misclassified samples, a larger
proportion of human-written texts were mistakenly
classified as AI-generated texts. We believe this
is because that AIGT exhibits smaller intra-class
variance compared to human-written text, making
feature learning simpler. As a result, the model
tends to classify text as AI-generated.

4.5 Cross-Domain Adversarial Robustness

We further evaluate the model’s robustness under
adversarial attacks in cross-domain scenarios. We
perform synonym replacement with a replacement
ratio of 0.2 and paraphrase attacks on the test data
from the unknown target domain. In the para-
phrasing attack, we use Flan-T5-base (Chung et al.,
2022) to rewrite AI-generated text. Additionally,
we also explore the impact of using chatGPT for
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Figure 5: Comparasion of Models on text generated by
LLaMa-70B-chat.

Figure 6: Visualization of Domain Generalization De-
tection Results. The left figure represents the distribu-
tion of the original texts, while the right figure shows
the distribution of the texts obtained through the trained
encoder.

paraphrasing attacks on model performance, results
can be found in the Appendix A.

Based on Table 3, our proposed method demon-
strates superior robustness against attacks. It
achieves the highest cross-domain detection accu-
racy under both types of attacks compared to other
baseline methods. Specifically, under the synonym
substitution attack, our method achieves an aver-
age detection accuracy of 91.25% by introducing
Gaussian noise, surpassing other baseline models.
For the paraphrase attack, which significantly al-
ters text distribution, our method attains an average
cross-domain detection accuracy of 68.73%, rep-
resenting a 9.46% improvement over the second-
best baseline model. Additionally, We find that,
DP-Net tends to classify text as AI-generated on
certain out-of-domain datasets, which results in its
F1 score being inferior to that of RoBERTa in the
context of paraphrase attacks. We believe that com-
pared to human-written text, AIGT exhibits smaller
intra-class variance, making feature learning sim-
pler. As a result, the model tends to classify text as
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Noise distribution
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Figure 7: The impact of different noise distribution
types on model generalization. × represents the average
detection accuracy across 7 unkown domains when the
model is trained with noise-augmented samples without
using RL.

AI-generated, leading to a higher recall but lower
precision, which ultimately affects the F1 score.

4.6 Ablation Study

To examine the impact of noise types on model
generalization, we compared the average detection
accuracy across seven unseen domains under differ-
ent noise settings, both with and without Joint Rein-
forcement Learning Training Strategy. The results
shown in Figure 7 indicate that the model’s gen-
eralization performance varies significantly across
different noise settings. By introducing reinforce-
ment learning, the detection accuracy of the model
trained with noise-enhanced samples improved sig-
nificantly. Additionally, as shown in Table 2 and
Table 3, the model trained with Gaussian noise
shows better generalization and robustness against
attacks compared to uniform distribution noise. We
believe this is because Gaussian noise causes sig-
nificant changes in the original sample distribution,
thereby increasing the diversity of the training sam-
ple distribution. This, in turn, enhances the model’s
generalization and robustness after reinforcement
training.

Next, we demonstrate the effectiveness of
the DP-Net structure by adding Gaussian noise
through two variants: (1) DP-Net+G−rl: Only
noise-enhanced training is performed. (2) DP-
Net+G−encoder: In this approach, the encoder pa-
rameters are fixed and used as the environment at
first. Reinforcement learning is employed to find
the optimal distribution, after which the encoder
parameters are trained on the source domain data
based on the optimal distribution.

We trained DP-Net and its variants on data from
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Target Domain
Wikipedia Reddit Arxiv Peerread

Average
ChatGPT ChatGPT Davinci Davinci

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1
DP-Net+G (ours) 96.04 96.18 89.62 90.17 89.52 88.27 82.36 75.39 89.39 87.50

DP-Net+G−rl 67.50 75.47 66.00 74.63 94.00 93.62 70.23 65.58 74.43 77.33
DP-Net+G−encoder 71.00 77.52 75.00 80.00 88.50 87.01 73.79 68.49 77.07 78.26

Table 4: Ablation Experiment Results. The source domain is Arxiv ChatGPT. The optimal results are indicated in
bold.

Arxiv ChatGPT, with the results shown in Table
4. We find that directly adding noise to train the
classifier results in a relatively low average cross-
domain detection accuracy. This may be due to
the significant differences between domains, mak-
ing it difficult for a single noise sample to handle
detection in various domain shift scenarios. For in-
stance, in our experiments, DP-Net+G−rl achieves
the highest detection accuracy on the test data sam-
pled from Arxiv Davinci but performs poorly in
other domains. Additionally, the two-step method
is also affected by a single noise distribution. Al-
though the optimal noise for the current environ-
ment is obtained through reinforcement learning
initially, the model’s generalization remains lower
than that of DP-Net due to the continuous changes
in the training environment and the fixed noise dis-
tribution.

We also explore the data efficiency of DP-Net.
We use 100% and 75% of the training data to train
the model, and compare it with naive classifier,
which is the DP-Net variant after removing noisy
enhanced samples and RL, also trained with only
75% of the training data. The results indicate that
using only 75% of the training data still achieves
results comparable to those obtained using the en-
tire training set. In contrast, reducing the training
samples significantly degrades the performance of
the Naive Classifier, demonstrating that our pro-
posed DP-Net has high data efficiency. Specific
experimental results can be found in Appendix B.

Additionally, we compare DP-Net with a differ-
ent RL method, Deep Q-Network (DQN). In this
approach, we treat the changes of mean and vari-
ance in noise distribution as a discrete control task
while keeping all other settings the same as the
DDPG method. The experiments show that DQN,
with its discretized actions, exhibits more stable
rewards after multiple iterations than DDPG. The
results demonstrate that the generalization perfor-
mance of both methods on the six unseen domains

is comparable. Specific experimental results can
be found in Appendix C.

5 Conclusion

We have proposed a novel AIGT detection method
via dynamic perturbations (DP-Net) to simultane-
ously improve the model generalization and ro-
bustness against text adversarial attack. The DP-
Net combines RL with a noise-enhanced training
strategy. It adaptively introduces noise-enhanced
samples to train the encoder, enhancing model gen-
eralization and robustness. Experiments show that
the DP-Net performs excellently in robustness tests,
maintaining high average detection accuracy under
attacks in cross-domain situations. By continuously
adjusting the distribution through RL, the introduc-
tion of Gaussian noise enables the model to achieve
better generalization and robustness compared to
uniform noise.

6 Limitation

The revealed intrinsic mechanism dose not be
proved by explicit mathematical expression, which
unable to accurately guide the perturbation design,
hindering the performance improvement. In ad-
dition, for the case of multiple source domains,
the proposed DP-Net has not comprehensively ex-
plored.
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A Paraphrase Attack Using ChatGPT

To further evaluate the robustness of DP-Net un-
der adversarial attacks in cross-domain scenarios,
we conduct further paraphrasing of the text using
ChatGPT, and the results are presented in the table
A1.

B Data Efficiency

We trained the model using both 100% and 75%
of the training data and compared its performance
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Method GLTR
Fast DP-Net

detectGPT +U(ours)+G(ours)
Wikipedia-C 75.54 87.33 95.90 96.40

Reddit-C 43.44 62.22 90.10 91.90
Reddit-D 39.86 57.70 90.10 91.80
Average 52.95 69.08 92.03 93.37

Table A1: AUROC of cross-domain adversarial ro-
bustnes under paraphrase attack using chatGPT. The
source domain is Arxiv ChatGPT.

Figure 8: Data efficiency experiment. NC-75% indi-
cates using 75% of the training set to train the Naive
classifier. The source domian is Arxic ChatGPT.

to that of a naive classifier. The naive classifier is
also trained using only 75% of the data. The ex-
perimental results are shown in the figure 8. In our
DP-Net implementation for this experiment, we
introduce Gaussian noise. The results indicate that
using only 75% of the training data still achieves re-
sults comparable to those obtained using the entire
training set, with only a 2.34% decrease in perfor-
mance. In contrast, reducing the training samples
significantly degrades the performance of the naive
classifier, which drops from 85.52% with the full
training set to 65.57%. This result indicates that
our proposed DP-Net demonstrates high data effi-
ciency.

C Comparison of Different
Reinforcement Learning Methods.

We compare DP-Net with a different reinforcement
learning method, Deep Q-Network (DQN), which
does not use an actor-critic framework. DQN ap-
proximates the action-value function, which esti-
mates the potential future rewards of taking certain
actions in given states. Additionally, DQN employs
a target network, which is periodically updated, to
provide more consistent target values during the
learning process. As shown in the figure 9, The

Figure 9: Detection result on 6 different domains using
different reinforcement learning methods to train mod-
els. The source domian is Arxic ChatGPT.

Figure 10: Comparison of reward between DDPG and
DQN methods.

models trained using the two reinforcement learn-
ing methods exhibit comparable generalization per-
formance. Additionally, as shown in Figure 10,
the use of discrete action distributions simplifies
the environment, resulting in more stable rewards
over 300 iterations when using DQN compared to
DDPG.

D Computational Complexity Analysis

We compare the inference time of DP-Net on 2000
samples with other baselines. As shown in Table
A2, DP-Net achieves the fastest inference time,
requiring only 35.53 seconds.

Method inference time(s)
DP-Net+G 35.53

Fast DetectGPT 78.45
SCRN 69.95

RoBERTa 37.48

Table A2: Comparison on inference time.
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