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Abstract

Mitigating the retention of sensitive or private
information in large language models is essen-
tial for enhancing privacy and safety. Exist-
ing unlearning methods, like Gradient Ascent
and Negative Preference Optimization, directly
tune models to remove unwanted information.
However, these methods often become unstable
because they fine-tune by maximizing cross-
entropy loss, which is the opposite of tradi-
tional loss minimization in learning. This re-
versal creates instability, especially on larger
datasets, as the model struggles to balance
unlearning with maintaining language capac-
ity, leading to over-unlearning. In this paper,
we introduce UNDIAL (Unlearning via Self-
Distillation on Adjusted Logits), a novel and
robust unlearning method. Our approach lever-
ages self-distillation to adjust logits and selec-
tively reduce the influence of targeted tokens.
This technique ensures smooth convergence
and avoids catastrophic forgetting, even in chal-
lenging unlearning tasks with large datasets
and sequential unlearning requests. Extensive
experiments show that UNDIAL can achieve
both robustness in unlearning and scalability
while maintaining stable training dynamics and
resilience to hyperparameter tuning.1

1 Introduction

The increasing widespread use of large language
models (LLMs) (OpenAI, 2023; Microsoft, 2023;
Touvron et al., 2023; Jiang et al., 2023) in user-
facing applications raises significant privacy con-
cerns. Trained on vast, unmoderated web data,
these models risk unintentionally exposing Person-
ally Identifiable Information (PII), such as names
and addresses (Heikkilä, 2022; White, 2023). Fur-
thermore, LLMs are vulnerable to malicious ex-
ploitation, i.e. adversarial attacks (Carlini et al.,

1Our data and code is available at https://github.
com/dong-river/LLM_unlearning

2021, 2023; Nasr et al., 2023), allowing confiden-
tial data to be extracted and heightening concerns
about data security with AI (Levine, 2023).

In addition to these privacy risks, data protec-
tion regulations such as the EU’s General Data
Protection Regulation (GDPR, 2016) and the Cal-
ifornia Consumer Privacy Act (CCPA, 2018) en-
force the “right to be forgotten,” enabling individ-
uals to request the removal of their personal data
from online platforms. This creates an urgent need
for techniques that allow LLMs to effectively “un-
learn” and prevent the disclosure of specific infor-
mation—a process known as LLM unlearning.

Recent advances in LLM unlearning fall into two
main categories. The first category involves using
an auxiliary model to explicitly memorize sensi-
tive information, which is later removed from the
original model using techniques such as contrastive
decoding (Eldan and Russinovich, 2023; Yu et al.,
2022; Huang et al., 2024; Ji et al., 2024) or param-
eter merging (Ilharco et al., 2023; Chen and Yang,
2023). However, this approach introduces infras-
tructure overhead and poses a significant risk if the
auxiliary model is exposed, as it contains exactly
the data meant to be forgotten.

Another line of research focuses on directly tun-
ing the base LLM model to unlearn sensitive infor-
mation, using techniques such as Gradient Ascent
(GA) (Jang et al., 2023) and Negative Preference
Optimization (NPO) (Zhang et al., 2024). These
approaches are gaining more attention as they align
more closely with the growing emphasis on AI
safety (Gallegos et al., 2023; Łucki et al., 2024).

Despite these advances, the recent unlearning
benchmark MUSE (Shi et al., 2024) highlights
a major drawback in current methods: applying
unlearning to larger corpora leads to a decline in
general language usefulness. This limits its usage
in real-world settings, as an effective unlearning
method must scale reliably with increasing data
sizes, and accommodate continual updates—all
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Figure 1: An illustration of the self-distillation process in the proposed UNDIAL method: The original logits
generated by the model are adjusted by subtracting the one-hot distribution of the target token. The student model is
then fine-tuned to approximate this modified logit distribution. Since the adjustments rely solely on the original
model’s outputs, this is a self-distillation process to de-emphasize the token to be forgotten.

while maintaining the model’s overall language
capabilities.

In this work, we introduce a novel direct-tuning
method, UNDIAL, which enables Unlearning via
Self-Distillation with Adjusted Logits. As shown
in Figure 1, we generate a target distribution by re-
ducing the logit of the token to be unlearned. This
target distribution is fixed during self-distillation,
ensuring a stable optimization process. Unlike GA
and NPO, which suffer from significant model ca-
pacity degradation as datasets scale and training
extends, UNDIAL demonstrates strong robustness
to data scaling, hyperparameter tuning, and sequen-
tial unlearning, offering the first robust unlearning
method for direct tuning LLMs.

Our main contributions are as follows. 1) We
identify the robustness issues in current unlearning
methods and propose a new, more robust method
based on self-distillation. 2) We demonstrate the
effectiveness and robustness of UNDIAL across
various hyperparameter settings, forget set sizes
and a number of unlearning requests. 3) We also ex-
plore a variant of UNDIAL that focuses solely on
specific set of tokens like named entities or nouns,
which can further improve its overall performance.

2 Background and Related Work

2.1 Memorization in Large Language Models

LLMs can precisely reproduce previously memo-
rized data, especially when they get prompted in
specific ways (Carlini et al., 2021; Bender et al.,
2021; Tirumala et al., 2022; McCoy et al., 2023).
This memorization behavior, while useful for en-
capsulating factual knowledge (Petroni et al., 2019;
Khandelwal et al., 2020), also presents significant
legal ramifications and challenges due to the un-
intended memorization of private material. Such
instances increase the susceptibility of LLMs to
extraction attacks or membership inference at-

tacks (Carlini et al., 2021; Shokri et al., 2017;
Mireshghallah et al., 2022). Recent studies have
shown that, as these models grow in size, the dy-
namics of memorization fasten, leading to a lin-
ear increase in the fraction of data that can be ex-
tracted (Tirumala et al., 2022; Carlini et al., 2023).
To amortize such dynamics, techniques such as
data deduplication (Lee et al., 2022; Kandpal et al.,
2022; Nguyen et al., 2020) or private training are
studied (Yu et al., 2021; Tramèr and Boneh, 2021),
showing positive effect on reducing memorization.

2.2 Unlearning in Large Language Models

Given the massive amounts of data involved in
training LLMs, retraining these models each time
to remove memorized data is impractical. Thus
machine unlearning focuses on how to effectively
eliminate unintentional memorized content after
the model is trained (Cao and Yang, 2015; Gi-
nart et al., 2019; Guo et al., 2020; Bourtoule et al.,
2021). The unlearning algorithms can broadly fall
into the following two categories:

Direct Tuning Methods. Jang et al. (2023) first
formalize the problem of LLM unlearning and pro-
pose to use gradient ascent (GA) to achieve unlearn-
ing. Instead of minimizing loss, GA maximizes the
loss on tokens to be forgotten, forcing the model to
forget specific knowledge. However, Zhang et al.
(2024) note that GA causes rapid collapse. They
propose Negative Preference Optimization (NPO)
which diverges slower than GA both in theory and
practice. Alternative approaches tune the model to
deflect(Maini et al., 2024) or predict random labels
(Yao et al., 2024) on the knowledge that should be
forgotten.

Leveraging Auxiliary Models Eldan and Russi-
novich (2023); Ji et al. (2024) first fine-tune a
model to memorize the forget set and then leverage
contrastive decoding (Li et al., 2023) to suppress
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Figure 2: Training dynamics of Direct Tuning methods on the MUSE benchmark (Shi et al., 2024). MUSE
divides data into two sets: the Forget set, containing the information to be unlearned, and the Retain set, which
measures the impact of unlearning on unrelated knowledge. Ideally, unlearning should be precise, affecting only the
Forget set without disturbing the Retain set. MUSE provides fine-tuned models for both sets as optimal reference
points. To capture the training dynamics, we compute the average KL divergence between the unlearned model and
the MUSE reference models over the Forget and Retain sets. An effective unlearning model should closely match
both references, with near-zero divergence indicating successful unlearning and model performance preservation.

the generation of unwanted memorization at de-
code time. Task Arithmetic (TA) approaches (Il-
harco et al., 2023) also fine-tune a model to mem-
orize the forget set and leverage linear parameter
merging (Matena and Raffel, 2022) to remove the
memorization in model weights. Majmudar et al.
(2022) apply linear interpolation with uniform dis-
tribution at the decoding time and show that this
satisfies certain differential privacy criteria. Chen
and Yang (2023) tune multiple unlearning layers
to handle sequential unlearning requests and then
fuse and plug them back into the base LLM.

We set aside post-processing methods such as di-
rectly prompting LLMs to add a guardrail (Thaker
et al., 2024); our focus is on removing knowledge
directly from the base LLM via fine-tuning.

3 Methodology

Motivation with an Example. As highlighted
by Zhang et al. (2024), Direct Tuning methods face
the challenge of instability. Methods like GA and
NPO, designed to directly unlearn from the original
model, often lead to the so-called over-unlearning
issue, where the algorithm continues to unlearn af-
ter the corresponding knowledge is forgotten. This
often leads to the model to collapse with the model
capacity dropping to zero. While NPO partially
mitigates this by adding a regularization term to
slow the rate of divergence, it fails to prevent long-
term collapse in practice (Fan et al., 2024).

To demonstrate this critical issue, we apply GA
and NPO methods on the MUSE dataset and il-
lustrate the training dynamics in Figure 2. As

shown in the results, both GA and NPO exhibit
model collapsing, although NPO diverges more
slowly than GA as also shown in Shi et al. (2024);
Fan et al. (2024),where both GA and NPO lead to
over-unlearning and thus to a substantial decline in
model usefulness and performance.

Moreover, NPO is also very sensitive to different
hyperparameter setups and thus difficult to tune. In
the early stages of training, the distance on the for-
get set remains approximately constant (see Figure
2 left), showing that the model is not unlearning as
expected. After this initial plateau stage, the model
briefly begins to unlearn but quickly collapses. This
instability reflects how sensitive NPO is to hyper-
parameter tuning and the need to stop training at
exactly the right moment. Even slight overshoot-
ing can lead to severe performance degradation, i.e.
over-unlearning.

In contrast, UNDIAL consistently shows robust
performance throughout training, converging to a
stable distribution. This stability allows for flexible
stopping points without any degradation risk. UN-
DIAL also achieves a substantially lower forget-set
distance in far fewer steps, making it not just robust,
but highly efficient.

3.1 UNDIAL: Method Description

The main contribution of our method is self-
distillation, where the model learns from its own
predictions rather than external labels. Given an
original model Moriginal and a sequence x1:T that
we aim to unlearn, the model generates a pre-
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softmax logit distribution at each token t ∈ [1, T ]:

logitoriginal ∼ Moriginal( · |x<t),

representing a distribution over the vocabulary. To
unlearn a specific token xt, we reduce its logit
value, forming an adjusted distribution:

logitadjusted ∼ logitoriginal − γext ,

where ext is a one-hot vector for token xt and γ is a
hyperparameter controlling the unlearning strength.
We then apply softmax to convert the adjusted log-
its into a probability distribution padjusted, which
de-emphasizes the tokens to be unlearned.

We perform self-distillation to learn the adjusted
distribution by optimizing the model parameters
θ so that Mθ can approximate the adjusted logits.
This is done by minimizing the following loss func-
tion:

L = min
θ

Ex∼Dunlearn

[
T∑

t=1

H(padjusted, pMθ
)

]

where H is the cross-entropy between the adjusted
and model-generated distributions. As padjusted is
fixed, minimizing this loss corresponds to minimiz-
ing the KL-divergence between the two distribu-
tions, enabling the model to ”forget” the specific
tokens. In case of memorization, the token xt is
typically the highest logit token among the entire
vocabulary, i.e. xt = argmaxx∈Vporiginal( · |x<t).
To guide the model away from generating the mem-
orized token, we subtract γ from its logit, encourag-
ing the model to generate the second-highest token
instead. This reduces the probability of the memo-
rized token; see again the example in Figure 1.

Why is UNDIAL Robust? Unlike GA and NPO,
which rely on maximizing loss, our method avoids
the inherent instability via properly defining the
target distribution. In GA and NPO, it is difficult to
determine the optimal stopping point because the
model lacks a clear convergence target. This often
results in over-unlearning, instability, and eventual
model degradation, especially when training is ex-
tended. The absence of a clear endpoint leads to a
delicate balance between unlearning and retaining
useful information, making these methods prone to
catastrophic forgetting. In contrast, UNDIAL em-
ploys a well-defined target distribution that guides
the model toward a stable outcome. This clear
objective ensures smooth convergence, reducing
the risk of over-unlearning and model degradation,

and providing a robust, predictable optimization
process. By focusing on a structured target, UN-
DIAL achieves both effective unlearning and the
preservation of overall model performance.

3.2 Variant: Focused UNDIAL (FUNDIAL)

In the initial version of UNDIAL, self-distillation
is applied uniformly across all tokens. However,
not all tokens carry equal importance—some fulfill
syntactic roles, while others, such as entity names
and factual references, hold more critical informa-
tion. For unlearning, it is more effective to apply
stronger penalties to key tokens that encapsulate
factual knowledge. Although identifying which
tokens contain sensitive information can be subjec-
tive and challenging, we take a simple yet effective
approach by treating nouns and entities as key to-
kens. This leads to a variant of our self-distillation
method, where we adjust the distribution specif-
ically for these key tokens. More formally, we
introduce an entity indicator 1e so that the loss for
this variant only applies to specific targeted tokens:

Lf = min
θ

Ex

[
T∑

t=1

1e(xt)H(padjusted, pMθ
)

]
.

In his paper, we use the spaCy parser to extract
entities and nouns, but a natural extension for the
future could use an estimated probability of being
a key token.

4 Case Study One: Extraction Data

4.1 Dataset and Model

Following Jang et al. (2023), we use the dataset
from the Training Data Extraction Challenge2 to
conduct unlearning. This dataset contains 15, 000
examples from the Pile dataset (Gao et al., 2021),
each consisting of 200-token sequences. More im-
portantly, the examples in this dataset have been
proven to be memorized and are extractable from
LLMs in the GPT-Neo family. This dataset is rela-
tively smaller comparing to MUSE, allowing us to
conduct extensive ablation studies.

4.2 Unlearning Metrics

Memorization Accuracy (MA) (Jang et al., 2023)
measures the frequency of a given model M out-
putting the exact memorization tokens given the
context, and it is computed as follows:

2https://github.com/google-research/
lm-extraction-benchmark
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MA(x) =

∑T−1
t=1 1[argmax(pθ (·|x<t)) = xt]

T− 1

Extraction Likelihood (EL) (Jang et al., 2023)
generalizes the token level matching in the MA
metric to n-gram overlap matching:

ELn(x) =

∑T−n
t=1 Overlapn(M(·|x<t), x≥t)

T− n

Overlapn(a,b) =
|n-gram(a) ∩ n-gram(b)|

|n-gram(a)|
Note that looping over all the context lengths from
1 to T − n is computationally expensive. We thus
approximate MA and EL by only evaluating the
overlap every m tokens, i.e., on the context length
as multiples of m. We set m = 40.

4.3 ‘Model Usefulness’ Metrics
In addition to unlearning metrics, we also evaluate
general model usefulness via conventional Natural
Language Understanding (NLU) benchmarks and
Generation (NLG) tasks.

NLU Benchmarks and Metrics. We measure the
NLU capabilities by reporting the accuracy on six
established NLU benchmarks: HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2020),
COPA (Gordon et al., 2012), ARC (Clark et al.,
2018), PIQA (Bisk et al., 2020), and PubMedQA
(Jin et al., 2019). These evaluations are QA-style
and are in line with the field’s established best prac-
tices as used in previous studies (Jang et al., 2023;
Eldan and Russinovich, 2023).

NLG Benchmarks and Metrics. Here, we rely on
the WikiText-103 datasets (Merity et al., 2017). We
select 5,000 samples from each dataset and use the
first 32 tokens as a context prompt for the model
to generate a continuation. The quality of these
continuations is assessed using established open-
generation metrics: MAUVE (Pillutla et al., 2021)
for semantic coherence, Repetition (Welleck et al.,
2020) to check for redundancy, and Perplexity to
evaluate overall fluency.

4.4 Results and Discussion
We now compare the results of our method UN-
DIAL against all the representative baseline ap-
proaches such as Gradient Ascent (GA), Negative
Preference Optimization (NPO), Differential Pri-
vacy (DP), Task Arithmetic (TA), and Contrastive
Decoding (CD), outlined previously in § 2. The
experimental details can be found in Appendix A.1,
while a brief description of each baseline model is
available in Appendix A.2.
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Figure 3: UNDIAL versus baselines when perform-
ing unlearning on the GPT-Neo 125M model. The
method with lower EL scores and higher MAUVE
scores is considered better, i.e., towards the upper-right
corner. For each of the methods, we vary the unlearning
strength, naturally creating a curve of Pareto type show-
ing the trade-off between memorization accuracy (EL)
and language capacity (MAUVE).

Unlearning versus Model Usefulness. Figure 3
illustrates the trade-off between the memorization
metric, Extraction Likelihood (EL), and the model
usefulness metric, MAUVE. As we adjust the un-
learning intensity for each method, a Pareto Fron-
tier naturally emerges, with the ideal point located
in the upper-right quadrant. Our method excels
here, achieving state-of-the-art language perfor-
mance while maintaining high unlearning accuracy.
The NPO method, while capable of comparable per-
formance with careful tuning, quickly loses robust-
ness as parameter settings change, demonstrating
its sensitivity and lack of stability.

Full NLU & NLG Evaluation. Table 1 presents
results for QA-style NLU benchmarks and NLG
tasks. Notably, NLG tasks are much more sensi-
tive to unlearning, while NLU scores remain stable,
within a 5% margin from the GPT-Neo baseline.
In contrast, NLG metrics show significant perfor-
mance drops for several unlearning methods.

Focusing on rows with similar EL values around
0.1 (indicating a 50% reduction in memorization),
we observe that methods like GA, TA, DP, and
CD degrade NLG performance significantly, as re-
flected in sharply lower MAUVE scores. Methods
relying on auxiliary models (TA, DP, CD) perform
worse on NLG tasks, showing a greater trade-off
between memorization and usefulness. In con-
trast, NPO and our method UNDIAL maintain high
MAUVE scores and experience less degradation in
PPL and Rep3 metrics.

When reducing memorization further (EL <
0.05), NPO also sees a sharp decline in genera-
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NLG Evaluation NLU Evaluation
Method Coeff EL3(↓) MAUVE PPL(↓) Rep3(↓) PIQA ARC COPA WinoG. PubMed HellaS. Avg

GPT-Neo (125M) - 0.202 0.718 17.192 0.035 0.634 0.383 0.630 0.515 0.574 0.282 0.503

0.05 0.117 0.305 24.089 0.174 0.613 0.365 0.680 0.521 0.575 0.279 0.504+TA 0.10 0.035 0.017 35.556 0.515 0.560 0.291 0.560 0.514 0.535 0.264 0.454

0.2 0.090 0.522 76.428 0.002 0.611 0.345 0.546 0.516 0.571 0.277 0.478
0.4 0.016 0.224 181.704 0.000 0.605 0.320 0.523 0.521 0.571 0.266 0.468+DP
0.6 0.001 0.082 308.882 0.000 0.601 0.315 0.539 0.518 0.571 0.261 0.468

0.25 0.089 0.333 52.202 0.056 0.611 0.346 0.644 0.516 0.576 0.278 0.495+CD 0.5 0.017 0.172 158.187 0.042 0.592 0.319 0.630 0.504 0.562 0.273 0.480

1 0.174 0.573 15.133 0.053 0.622 0.367 0.630 0.514 0.575 0.283 0.499
3 0.092 0.119 10.478 0.163 0.611 0.359 0.610 0.505 0.571 0.278 0.489+GA
5 0.000 0.004 3.381 0.990 0.524 0.257 0.560 0.498 0.325 0.258 0.404

1 0.114 0.685 26.538 0.077 0.639 0.383 0.639 0.506 0.573 0.348 0.515+NPO 2 0.038 0.026 17.683 0.138 0.547 0.284 0.547 0.507 0.356 0.283 0.421

3.0 0.111 0.674 32.584 0.010 0.628 0.377 0.620 0.519 0.575 0.283 0.500
10.0 0.019 0.450 65.591 0.005 0.626 0.373 0.620 0.520 0.575 0.282 0.499+UNDIAL (ours)
30.0 0.013 0.437 64.594 0.005 0.626 0.367 0.620 0.519 0.575 0.283 0.498

Table 1: Performance of baseline methods and our UNDIAL method on NLU benchmarks and open-ended
NLG tasks. We highlight the NLU scores in green if the average accuracy decrease is less than 3% and highlight the
NLG scores in red if MAUVE drops more than half, or the repetition metric Rep3 is above 0.1. Different methods
control the unlearning strength via their own dedicated coefficients, which are detailed in Appendix A.2. To interpret
the table, we compare rows with similar EL values, such as those around 0.1, which indicates approximately a 50%
reduction in memorization.
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Figure 4: Effectiveness of the Focused UNDIAL variant versus the basic variant. The left figure shows the
EL vs Mauve trade-off after introducing entity and noun indicators in our method, see §3.2. By focusing on these
specific tokens, we show that the performance can be further improved. The two figures on the right show the stable
training dynamics for a given unlearning strength γ=30 across different variants.

tion quality, with MAUVE scores falling below
0.03. We show examples in Appendix ??, where its
outputs include repetitive or unnatural sentences.
However, UNDIAL continues to generate high-
quality outputs, even at these low memorization
levels, highlighting its ability to balance unlearning
and language generation quality.

This contrast in performance between UNDIAL
and other methods underscores a critical insight
in the field of LLM unlearning. While most exist-
ing methods tend to focus on achieving unlearn-
ing at any cost, this often leads to diminishing the
model’s language generation quality. Our method
demonstrates that it is possible to achieve substan-
tial unlearning (as evidenced by low EL scores)
without sacrificing the quality of language output.
Additionally, UNDIAL proves robust across differ-
ent model sizes, as shown by the favorable scores
of larger GPT-Neo variants (1.3B and 2.7B param-

eters) in Appendix 2.

Focused UNDIAL. In the focused variant, we
strategically fine-tune the model by focusing only
on specific tokens, such as entity names or nouns,
while not training on functional words. This tar-
geted focus aims to improve the model’s retention
of language capabilities by avoiding the impact
on the model predictions which concern functional
words. The effectiveness of this method is shown in
Figure 4. Our analysis reveals that, as in Figure 4,
FUNDIAL outperforms the standard UNDIAL,
which does not distinguish between different types
of tokens. The position of FUNDIAL in the upper
right corner of the curve suggests that a focused
selection of targeted tokens leads to more effec-
tive unlearning and better preservation of language
proficiency.
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5 Case Study Two: MUSE Benchmark

We now evaluate our method on the MUSE dataset
(Shi et al., 2024). MUSE is the most recent and
comprehensive unlearning benchmark with the data
obtained from BBC News passages. The original
work separates the data into two sets: Forget and
Retain. The goal is to unlearn a set of BBC News
passages while retaining knowledge on other news
passages.

For evaluation, question answering is conducted
with respect to the News coming from the two sets.
The questions related to the Forget set will test
knowledge memorization, which we want to keep
low. In contrast, the questions targeting the Retain
set will test whether the unlearning procedure im-
pacts unrelated topics, referred to as utility preser-
vation. Following the setup of Shi et al. (2024), we
use LLaMA-2 7B (Touvron et al., 2023) as the base
model and LoRA (Hu et al., 2022) with rank 8 to
fit the fine-tuning onto one NVIDIA A100.

UNDIAL Achieves a Better Pareto Frontier. Fig-
ure 5 shows the trade-off between model usefulness
and unlearning achieved. By varying the unlearn-
ing strength, we observe that UNDIAL achieves a
superior Pareto Frontier compared to the baseline
methods, including both direct-tuning ones and the
ones relying on auxiliary models (see §2).

Direct tuning methods like GA and NPO suffer
from model collapse, placing them near the ori-
gin. Some variants of those methods attempt to
correct this by applying gradient ascent on the For-
get set and gradient descent on the Retain set to
balance the trade-off (Zhang et al., 2024; Maini
et al., 2024). While these adjustments help reduce
model collapse, they still underperform relative to
UNDIAL.

Importantly, UNDIAL has the unique ability to
achieve state-of-the-art performance without even
relying on the Retain set at all. Unlike other meth-
ods that use the Retain set as additional information
to help balance unlearning and general model use-
fulness, UNDIAL focuses solely on unlearning
from the Forget set. This underscores the power of
our approach: put simply, it achieves better results
than methods that require extra data to maintain
performance.

UNDIAL Shows Robust Training Dynamics.
Going back to the motivational example in Fig-
ure 2, we reiterate that UNDIAL exhibits robust
training dynamics while GA and NPO suffer from
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Figure 5: Results on MUSE-News wih LLaMA-2
7B. Knowledge Memorization and Utility Preservation
refer to the accuracy on Q&A with respect to the BBC
News that aim to be forgotten and retained, respectively.
The results of the baseline models are directly taken
from Shi et al. (2024). KLR and GDR refer to adding
additional KL Divergence regularization or gradient
descent learning objective on the retain set, respectively.

‘over-unlearning’ and catastrophic forgetting.

UNDIAL is More Robust to Different Hyper-
parameter Setups. In Figure 6, we illustrate the
robustness of UNDIAL by varying the learning
rate and unlearning strength γ. We find that under
different learning rates and unlearning strengths γ,
the model still converges. However, it should be
noted that, as expected, opting for more aggressive
unlearning (i.e., increasing the unlearning strength)
does hurt the model usefulness. For instance, in
Figure 6(a), the forget distance of γ set to 2, 4, 8
converges to a similar value while larger values
for γ lead to higher retain distances. However,
while we observe some degradation and trade-off
between unlearning and general model usefulness,
unlike the other direct-tuning unlearning methods,
UNDIAL does not suffer from the collapse issue,
see Figure 2 again.

Unlearning with UNDIAL is More Scalable and
Sustainable. In real-world setups, the Forget set
can become very large (the scalability feature) and
the unlearning requests may come sequentially
(sustainability). Shi et al. (2024) test for these
features and show that current unlearning methods
are not robust to larger Forget set and sequential
unlearning requests. However, we find that UN-
DIAL is much more scalable and sustainable than
the baseline methods. Figure 7(left) shows that
with larger Forget sets, model usefulness of UN-
DIAL is still reasonably well maintained, while
GA and NPO’s scores drop sharply.

8833



0 20 40 60 80 100
Steps

0

500

1000

1500

2000

2500

3000

3500

4000

Fo
rg

et
 D

ist
an

ce

UNDIAL ( =16)
UNDIAL ( =8)
UNDIAL ( =4)
UNDIAL ( =2)

UNDIAL ( =16)
UNDIAL ( =8)
UNDIAL ( =4)
UNDIAL ( =2)

0 20 40 60 80 100
Steps

0

100

200

300

400

500

600

700

Re
ta

in
 D

ist
an

ce

UNDIAL ( =16)
UNDIAL ( =8)
UNDIAL ( =4)
UNDIAL ( =2)
UNDIAL ( =16)
UNDIAL ( =8)
UNDIAL ( =4)
UNDIAL ( =2)

Figure 6: Robust training dynamics of UNDIAL across different hyperparameter setups. We show the
training dynamics of our method with different learning rates (red: 1e-4, blue: 1e-5) and unlearning strengths
(γ = 2, 4, 8, 16). The forget and retain distances are measured by the KL divergence between the unlearned model
and the optimal model from Shi et al. (2024). Unlike the unstable behavior of GA and NPO (see Figure 2), UNDIAL
demonstrates stable training across all hyperparameter settings, confirming its robustness across different setups.
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Figure 7: Robustness to (left) forget set size and (right) sequential unlearning requests. We conduct scaling and
sequential unlearning tasks as done by Shi et al. (2024). The baseline results on GA and NPO are taken from the
original MUSE paper. In both tasks, UNDIAL is the most robust method and exhibits the best performance.

The experiments on sequential unlearning re-
quests further demonstrate the robustness of UN-
DIAL. As shown in Figure 7(b), even as the num-
ber of unlearning requests increases, UNDIAL con-
sistently maintains model utility above 0.4 with
minimal degradation. In contrast, all baseline meth-
ods, including those with Retain set regularization,
cause the model to collapse, with utility dropping
close to zero as unlearning requests accumulate.

This empirically validates that UNDIAL is able
to avoid instability issues via properly defining the
target distribution during unlearning. This ensures
a more controlled and stable unlearning process.
The robustness of our training dynamics is a key
factor in maintaining model stability, particularly
when scaling to larger datasets or handling sequen-
tial unlearning requests.

6 Conclusion

We introduced UNDIAL, a novel unlearning
method based on self-distillation, which effectively
balances reducing memorization with preserving

language generation and understanding capabili-
ties. Our approach represents a significant advance-
ment in direct-tuning unlearning methods, offering
improved robustness from multiple angles. Ex-
tensive experiments on the Extraction Data and
MUSE benchmarks demonstrated state-of-the-art
unlearning performance. Additionally, we show
that UNDIAL is highly resilient across varying
hyperparameters, different forget set sizes, and se-
quential unlearning requests. With its ability to
prevent model collapse and scale efficiently, UN-
DIAL presents a promising next step for real-world
applications requiring unlearning from LLMs.

Limitations

We focus on a selected set of underlying language
models (e.g., GPT-Neo and LLaMA-2 7B): this
was motivated by their prior use on the same evalu-
ation benchmarks coupled with the computational
resources and budget available. Although these
models already offer valuable insights into the un-
learning performance of different approaches, we
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acknowledge that there is a possibility to extend
the study to many other and larger LLMs in the
future.

We also note that for the focused FUNDIAL
variant of our approach, we take a reasonable
yet very simplifying assumption on using only
nouns and named entities as targeted tokens for
the unlearning process. While empirically proven
as effective, this approach may not always accu-
rately identify the sensitive information and we
envision more sophisticated approaches for the se-
lection of focused tokens in future work. For in-
stance, on potential improvement may be integrat-
ing an auto-detection mechanism for identifying
privacy-sensitive data. This would enhance the
method’s adaptability and ensure more comprehen-
sive unlearning without relying solely on prede-
fined classes of tokens.

Ethical Consideration

Our paper introduces a novel method for address-
ing privacy concerns in LLMs. The approach aims
to enhance data privacy and security in LLM ap-
plications, aligning with broader societal needs for
responsible AI. The societal consequences of im-
proving privacy in LLMs are significant, potentially
fostering greater trust and safety in LLMs used in
various domains. Longer-term, we hope that mod-
els and initiatives focused on mitigating and re-
moving concerns with how LLMs deal with private
and sensitive data would also increase the (digital)
society-wise trust in the (controlled) usefulness of
such models.
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A Appendix

A.1 Hyperparameter Selection
We conducted our experiments using the GPT-Neo
models (Black et al., 2021), as they were used for
extracting memorization data (Carlini et al., 2021).
We tested different model sizes: 125M, 1.3B, and
2.7B. Specifically, for the 125M model, we set the
batch size to 64. For the larger 1.3B model, we used
a mini-batch size of 16 and combined it with a gra-
dient accumulation step of 4 to make up the same
64 batch size per gradient update. For all our exper-
iments, we used the AdamW optimizer (Loshchilov
and Hutter, 2017).

A.2 (A Brief Summary of) Baseline Models
Multiple techniques have been recently proposed to
address the unlearning challenge in LLMs, which
we treat as the main baselines and briefly out-
line them in what follows. To describe the auto-
regressive text generation process in models, we
use the notation xt ∼ pθ(·|x<t), where θ repre-
sents model parameters, and x<t is the contextual
information prior to position t.

Gradient Ascent (GA). Jang et al. (2023) intro-
duce a technique that leverages memorized data
identified from extraction attacks (Carlini et al.,
2021) to perform gradient ascent. This method de-
creases the probability of generating these memo-
rized tokens by maximizing the log-likelihood loss
on the memorized data, a reversal of the typical
minimization approach:

LUL = −∑T
t=1 log(pθ(xt|x<t))

We vary training epochs in our experiments in Table
A.2.

Negative Preference Optimization (NPO)
Zhang et al. (2024) treats the forget set as
negative preference data and adapts the offline
DPO objective to tune the model to assign low
likelihood to the forget set without straying too far
from the original model. Specifically, the NPO
loss function becomes:

LNPO(θ) = − 2

β
Ex∼Dforget

[
log σ

(
−β log

pθ(xt|x<t)

ptarget(xt|x<t)

)]
,

where ptarget(xt|x<t) refers to the target model
probabilities, σ is the sigmoid function, and β con-
trols the divergence from the target model ftarget.
We set β = 0.1 in our experiments following
Zhang et al. (2024) and we vary training epochs in
our experiments in Table A.2.
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Differential Privacy (DP). Traditional DP meth-
ods (Bassily et al., 2014; Abadi et al., 2016) involve
adding noise to gradients during the model train-
ing. However, the required noise level often scales
with the number of parameters, leading to vacuous
bounds for LLMs. While more effective DP meth-
ods for fine-tuning have been suggested (Li et al.,
2022; Yu et al., 2022), their performance discrep-
ancies persist as the unlearning dataset increases
(Anil et al., 2022). A more direct baseline is to
apply linear interpolation with uniform distribution
at the decoding time, i.e.

p(xt|x<t) = softmax((1− λ)zt + λu),
where zt represents the pre-softmax layer model
output and u is the uniform distribution over the
vocabulary.

Task Arithmetic (TA). Ilharco et al. (2023) ap-
ply ’task arithmetic’ as a method for unlearning.
This method fine-tunes a model on data to be for-
gotten and then subtracts these weights from the
base model:
θTA = θ − β · θmemo, then xt ∼ pθTA

(·|x<t)

This coordinated subtraction requires the fine-tuned
model to have the same architecture as the base
model.

Contrastive Decoding (CD). Similar to TA, con-
trastive decoding, as discussed by Li et al. (2023)
and further elaborated by Eldan and Russinovich
(2023), involves fine-tuning a model on data tar-
geted for unlearning. The model’s output proba-
bilities are then adjusted either directly at the last
layer or before it, incorporating an additional ReLU
operation:

p(xt|x<t) = softmax(zt − α · zmemo
t )

OR
p(xt|x<t) = softmax(zt − α ·ReLU(zmemo

t − zt))
where z represents the pre-softmax layer model
output and zmemo refers the fine-tuned model.

A.3 Scaling GPT-Neo on Unlearning
Extraction Data

In Table 2, we present the results of different sizes
of GPT-Neo on the Extraction dataset. We vali-
date that UNDIAL is robust across different model
size from 1.3B to 2.7B and different fine-tuning
methods, from full fine-tune to LoRA fine tune.

A.4 Implementation of UNDIAL
We modified the typical huggingface Trainer with
the following compute loss function.
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Unlearning Evaluation Language Capability Evaluation
Method # Params γ EL3 EL10 MA Similarity MAUVE↑ PPL Rep3 NLUa ↑
GPT-Neo 1.3B - 0.344 0.259 0.953 0.662 0.781 10.473 0.024 0.545

+UNDIAL (FT) 1.3B 3 0.111−0.233 0.040 0.795 0.479 0.772−0.009 12.685 0.024 0.543
+UNDIAL (FT) 1.3B 10 0.070−0.274 0.016 0.777 0.419 0.736−0.045 15.288 0.021 0.546

+UNDIAL (LoRA) 1.3B 3 0.091−0.253 0.023 0.734 0.467 0.756−0.025 12.516 0.030 0.543
+UNDIAL (LoRA) 1.3B 10 0.074−0.270 0.015 0.712 0.424 0.723−0.048 13.293 0.030 0.541

GPT-Neo 2.7B - 0.389 0.309 0.966 0.695 0.800 9.442 0.024 0.582

+UNDIAL (LoRA) 2.7B 3 0.151−0.238 0.067 0.803 0.525 0.795−0.005 10.019 0.027 0.582
+UNDIAL (LoRA) 2.7B 10 0.089−0.300 0.022 0.768 0.467 0.774−0.026 10.787 0.029 0.582

Table 2: Results for different model sizes and with LoRA-based PEFT. FT refers to full-model fine-tuning. We
highlight the performance delta of EL3 and MAUVE. NLUa is the average overall 6 NLU tasks. Lower is better,
except with MAUVE and NLUa.

1 def compute_loss(self, model, inputs, return_outputs=False):
2 input_ids = inputs['input_ids']
3 attention_mask = inputs['attention_mask']
4 student_logits = model(input_ids=input_ids,

attention_mask=attention_mask).logits
5
6 # Shift input_ids and logits for causal language modeling
7 shift_labels = input_ids[..., 1:].contiguous()
8 shift_student_logits = student_logits[..., :-1, :].contiguous()
9

10 # Get teacher logits using the unlearned teacher model
11 with torch.no_grad():
12 teacher_logits = self.unlearn_teacher_model(
13 input_ids=input_ids, attention_mask=attention_mask
14 ).logits
15 shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
16
17 # Create mask for memorized tokens
18 mask = torch.zeros_like(shift_student_logits)
19 batch_indices = torch.arange(mask.shape[0]).view(-1, 1, 1)
20 seq_indices = torch.arange(mask.shape[1]).view(1, -1, 1)
21 mask[batch_indices, seq_indices, shift_labels.unsqueeze(-1)] = 1
22
23 # Apply penalty to teacher logits and compute soft labels
24 pre_softmax = shift_teacher_logits - mask * 10 # assuming a strength of 10
25 soft_label = F.softmax(pre_softmax, dim=-1)
26
27 # Compute cross-entropy loss between student logits and soft teacher labels
28 loss_fct = CrossEntropyLoss(reduction='none')
29 loss = loss_fct(shift_student_logits.view(-1, shift_student_logits.size(-1)),
30 soft_label.view(-1, soft_label.size(-1)))
31 return loss

Figure 8: Python Code for UNDIAL.
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