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Abstract

Large Language Models (LLMs) often exhibit
positional bias in long-context settings, under-
attending to information in the middle of in-
puts. We investigate the presence of this bias in
long-form summarization, its impact on faith-
fulness, and various techniques to mitigate this
bias. To consistently evaluate faithfulness, we
first compile a benchmark of eight human-
annotated long-form summarization datasets
and perform a meta-evaluation of faithfulness
metrics. We show that LLM-based faithful-
ness metrics, though effective with full-context
inputs, remain sensitive to document order,
indicating positional bias. Analyzing LLM-
generated summaries across six datasets, we
find a "U-shaped" trend in faithfulness, where
LLMs faithfully summarize the beginning and
end of documents but neglect middle content.
Perturbing document order similarly reveals
models are less faithful when important docu-
ments are placed in the middle of the input. We
find that this behavior is partly due to shifting
focus with context length: as context increases,
summaries become less faithful, but beyond
a certain length, faithfulness improves as the
model focuses on the end. Finally, we exper-
iment with different generation techniques to
reduce positional bias and find that prompting
techniques direct model attention to specific po-
sitions, whereas more sophisticated approaches
offer limited improvements. Our data and
code are available in https://github.com/
meetdavidwan/longformfact.

1 Introduction

Large language models (LLMs) have enabled high-
quality summary generation. However, the use of
LLMs for long-context scenarios, where either the
source document(s) or the generated summary is
very long, still remains challenging (Chang et al.,

*Work done during an internship at Salesforce AI Re-
search.
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Figure 1: Positional bias in long-form summarization:
On two representative models and datasets, summaries
are less faithful to the documents in the middle.

2024; Kim et al., 2024a). A recent line of work has
identified a problem with LLMs, positional bias,
where models attend less to relevant information
in the middle (Liu et al., 2024a). This “lost-in-
the-middle” trend has been observed beyond long-
form question-answering and for summarization
(Ravaut et al., 2024), where LLMs do not utilize
information from the middle of the documents.

One question that arises from such studies is:
How does this affect faithfulness? Previous stud-
ies have shown that models hallucinate when they
are uncertain in their responses (Cao et al., 2022;
van der Poel et al., 2022). From the “lost-in-the-
middle” finding, it can be inferred that the weak at-
tention towards the middle context should also lead
to hallucinations when generating content about
that part. In this paper, we take a step further and
analyze the relationship between faithfulness and
positional bias for long-form summarization, as
summarized in Table 1. We focus on the following
research questions: (1) What is the best configura-
tion of LLM-based faithfulness metric for long-
form summarization, and how does positional
bias affect the metrics? (2) Are LLM-generated
summaries prone to positional bias? (3) What
methods can reduce positional bias?
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RQ1: How to measure faithfulness for long-form summarization?

- LLM-based metrics excel at using full context.
- Taking the maximum faithfulness score over documents and average over summary sentences is the best merging strategy.
- LLM-based metrics are sensitive towards different orders of documents.

RQ2: How faithful are the summaries with respect to the input documents? Are they prone to positional bias?

- Summaries show lead or lost-in-the-middle bias for faithfulness.
- LLMs are sensitive towards perturbation of documents.
- LLM exhibit a shift of focus with different lengths of the input source, summarizing information towards the end more
faithfully when encountering long context.

RQ3: How to reduce such positional bias?

- Simply prompting the models to focus on the different locations of the documents is moderately effective.
- Performing methods that changes the input structure (i.e., hierarchical merging or incremental updating) hurts faithfulness.

Table 1: Summary of our research questions and key findings.

For our analysis of faithfulness in long-form doc-
ument summarization, we first need to determine
the best faithfulness metrics, as very few studies
have performed an extensive study. Specifically,
we want to verify whether current automatic met-
rics can evaluate summaries well given the large
context. And if the metric needs to break the in-
put context into chunks, what is the best way to
merge the faithfulness scores. To do so, we collate
a large, unified benchmark LONGFORMFACT for
evaluating the performance of metrics on long-form
summarization across 8 human-annotated bench-
marks. We evaluate LLM-based metrics and find
that the models handle full context well, and for the
splitting case, taking the maximum over the source
documents and taking the average across the sum-
mary sentences yield the highest correlation with
human judgments. We further perform a perturba-
tion experiment for the full-context setting, where
we sort the documents according to their similar-
ity with the summary. An ideal metric should not
be affected by the order of the documents, but we
find that the metrics are sensitive towards order
perturbation and thus suffer from positional bias.

After determining the faithfulness metrics for
long-form summarization, we use it to perform an
extensive analysis of the faithfulness of the gener-
ated summaries across the input documents. Across
6 datasets, we generate summaries and plot the
faithfulness scores to verify whether the model hal-
lucinates more for the documents in the middle.
Similar to Ravaut et al. (2024) that analyzes con-
text utilization for summarization, we observe a
U-shape and lead bias when analyzing the faithful-
ness of the generated summaries. Next, we perform
a similar order perturbation experiment and find
that LLMs are sensitive to the order, summariz-

ing documents more faithfully for the documents
at the beginning. Lastly, we analyze how length
correlates with faithfulness by measuring how faith-
fulness changes as the input length increases. We
find that models gradually introduce more hallu-
cinations as we introduce more documents, and
after a certain threshold, the model becomes more
faithful as it attends to the documents at the end.

Finally, we investigate methods that attempt to
mitigate positional bias. We explore methods such
as prompting to focus on certain parts, hierarchi-
cal merging, incremental updating, and calibration
methods. We find that prompting methods are mod-
erately effective at improving summary’s faithful-
ness towards certain positions, while more sophis-
ticated methods struggle to address this issue.

2 Preliminaries

2.1 Long-form Summarization

We consider the task of summarization, where a
model generates an m-sentence summary S =
{s1, s2, ..., sm} from input document(s) D. For
long-form summarization tasks, we follow Ravaut
et al. (2024) and generally consider that the doc-
uments need to contain at least 2k tokens. For
this task, such as multi-document summarization,
the input D consists of n documents: D =
{d1, d2, ..., dn}. We refer to the boundaries of
these documents as natural document boundaries,
since there are no restrictions on how long each
document may be. To unify different datasets, we
can similarly split a single-document dataset, such
as a scientific document, into different sections and
refer to these sections as “documents.” Alterna-
tively, one may split the document into fixed-length
chunks of words or tokens. To generate summaries,
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Tasks Num Ex. Doc Split Doc Words Summ Split Summ Words ann. level Models

MultiNews 90 3.4 767.2 7.1 175.0 summ GPT-3.5, UniSumm, PEGASUS
QMSumm 90 - 1252.8 3.04 69.2 summ GPT-3.5, UniSumm, PEGASUS
GovReport 147 - 2353.0 14.5 449.2 sent PEGASUS, BART
PubMed 40 6.9 3299.2 10.4 195.0 sent BART, BARTDPR
ArXiv 146 5.6 4805.6 6.4 164.9 sent PEGASUS, BART
SQuALITY 40 - 5946.4 18.9 387.9 sent BART, BARTDPR
ChemSumm 90 15.4 5974.5 7.2 197.7 summ LongT5, PRIMERA
Diversesumm 377 10.0 7644.1 7.6 203.3 sent GPT-4, GPT-3.5, Vicuna, LongChat

Table 2: Faithfulness meta-evaluation statistics. Ann. level indicates the granularity of the faithfulness annotation.

the entire input is truncated to fit the context win-
dow of each respective model.

2.2 Generating Long-form Summaries

In standard generation, the model Mg processes the
documents D to produce the output summary S,
as represented by Mg(D) = S. To help the model
recognize document boundaries, a special indicator
is usually inserted between each document; the
most commonly used indicator is “====”. Unless
otherwise stated, we use this basic generation setup
in most cases. In Section 5, we further explore
other more advanced generation techniques.

2.3 Faithfulness Evaluation

For faithfulness evaluation, we consider entailment-
based metrics that predict a binary faithfulness la-
bel given the document and the generated sum-
maries. In the simplest form, we can make use of
the full input Me(D,S) ∈ {0, 1}. However, due to
the prohibitive context length, many metrics that
do not have such a large context window require ei-
ther truncating the input—which loses information
crucial for faithfulness evaluation—or splitting the
task into evaluations of different document chunks
and summaries. Thus, we evaluate both D and S
in its more fine-grained form, Me(di, sj) for the
ith document chunk and jth summary sentence.
Finally, to combine the scores, we explore three
aggregation methods for both documents and sum-
mary sentences: Taking the maximum, minimum,
or average AGG ∈ {max,min,mean}. Thus,
the final score is AGGS

n
j=0 AGGD

m
i=0Me(di, sj).

3 Faithfulness Metrics Meta-Evaluation

Given the limited studies in determining the best
automatic faithfulness metric for long-form sum-
marization, we first aim to comprehensively test
the best strategy for applying current evaluation
methods in the long-form context.

3.1 LONGFORMFACT

To better evaluate faithfulness metrics, we collate a
large, unified benchmark consisting of eight long-
form summarization datasets. We extend the ef-
fort by Zhang et al. (2024a) by including addi-
tional important long-form summarization anno-
tation (Huang et al., 2024; Krishna et al., 2023).
Statistics about the datasets are reported in Table 2.
Similar to prior unifying efforts (Laban et al., 2022;
Tang et al., 2024a; Zhang et al., 2024a), we convert
different annotation schemes into binary faithful-
ness judgments. For Likert-based evaluations, we
consider a summary to be faithful only if it receives
the highest score. We describe the datasets below
and include more details in Appendix A.1:

MultiNews (Fabbri et al., 2019) is a large multi-
document news summarization dataset. Chen et al.
(2023) collected 90 examples with Likert faithful-
ness scores at summary level.

QMSUM (Zhong et al., 2021) is a query-based,
multi-domain meeting summarization dataset.
Chen et al. (2023) similarly collected 90 examples
with summary-level Likert faithfulness scores.

ArXiv (Cohan et al., 2018) is a summarization
dataset of scientific articles. Koh et al. (2022) col-
lected 146 examples by asking whether each sum-
mary sentence contains faithfulness errors.

GovReport (Huang et al., 2021) consists of long
reports from government research agencies. Koh
et al. (2022) collected 147 sentence-level annota-
tions for faithfulness.

ChemSumm (Adams et al., 2023) is a scientific
long-form summarization dataset in the chemical
domain. The authors collected summary-level faith-
fulness annotations represented by binary labels.

PubMed (Cohan et al., 2018) is a scientific long-
form summarization dataset in the medical domain.
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Metric Doc Merge MN QM GR PB AX SQ CS DS Average

MiniCheck

Original 53.8 53.9 50.0 79.7 50.0 83.0 50.9 55.2 59.6
Min 54.7 55.7 55.1 50.0 50.0 83.0 54.2 49.6 56.5

Mean 64.5 55.7 55.1 52.6 53.4 83.0 54.2 46.0 58.1
Max 56.6 55.7 55.1 84.8 62.3 83.0 59.7 49.3 63.3

GPT-4o

Full 52.2 64.3 61.6 80.1 57.6 76.7 63.4 57.4 64.1
Min 50.0 60.7 60.0 54.4 52.1 80.6 54.2 50.3 57.8

Mean 46.3 60.7 60.0 64.3 56.2 80.6 54.2 56.6 59.9
Max 60.0 60.7 60.0 76.0 55.6 80.6 60.6 53.0 63.3

Table 3: BACC on meta-evaluation benchmarks, where MN refers to MultiNews, QM to QMSumm, PB to PubMed,
GR to GovReport, AX to ArXiv, SQ to SQuALITY, CS to ChemSumm, and DS to Diversesumm. Min, mean,
and max represent the respective operations to merge the document-level faithfulness labels, while full predicts
faithfulness with all documents. For MiniCheck, we report the original method by the authors, which internally
performs document chunking. We bold the best merging strategy for each metric and underline the second-best.

Krishna et al. (2023) collected sentence-level bi-
nary judgments of faithfulness. We use the FINE

annotations, containing faithfulness judgments for
each summary sentence.

SQuALITY (Wang et al., 2022) is a question-
focused, long-document summarization dataset,
where the documents are short stories from Project
Gutenberg. Krishna et al. (2023) similarly col-
lected sentence-level binary judgments of faithful-
ness. We use the FINE annotations.

DiverseSumm (Huang et al., 2024) is a multi-
document news summarization dataset that focuses
on conflicting information. The authors collected
sentence-level binary faithfulness judgments.

3.2 Experimental Setup

Evaluation Strategy. Recognizing that models
may exhibit positional bias, we experiment with
assessing the faithfulness of the summary with re-
spect to each document individually, as well as
using the full input source. We also decompose
the summary into individual sentences, a technique
proven effective by Huang et al. (2024). We explore
applying minimum, mean, and maximum aggrega-
tion methods over the documents. For summary
sentence merging, we report mean, and report the
result of different merging strategies in Appendix B.
We use the natural document boundaries to sepa-
rate the documents, and explore chunking the input
into fixed number of tokens in Appendix B.1.

Evaluation Models. We primarily experiment
using GPT-4o as the backbone LLM for the metric.
We also explore the applicability of MiniCheck1

(Tang et al., 2024b) – an automatic metric that has

1We use Bespoke-MiniCheck-7B.

demonstrated efficacy comparable to GPT-4 perfor-
mance – to the long-context setting. We note that
MiniCheck by default splits the input into chunks
of fixed number of tokens and takes the maximum
over the documents, which we include as one of the
baselines. Additionally, we present results using
the Llama-3.1-8B model in Appendix B.2.

Metric. To account for class imbalance, we use
balanced accuracy (BACC) to calculate metrics’
correlations with human judgments.

3.3 Results
The main results are shown in Table 3. For
MiniCheck, we observe that taking the maximum
over the document achieves the highest correla-
tions on average. This shows that this document
aggregation method achieves the best results even
for long-form summarization. Interestingly, the
original strategy of taking the maximum over fixed
input context performs on average 3.7% lower than
using natural document boundaries, suggesting that
only evaluating the relevant context is important.
We also note that MiniCheck trails the strongest
GPT-4o-based metric by only 0.8%, while match-
ing the performance of GPT-4o-based metric with
the same aggregation method.

When looking at the GPT-4o-based metric, us-
ing the full context performs the best, achieving
the highest accuracy in 5 out of 8 cases and second-
best accuracy in 2 of the remaining 3 cases. This
suggests that LLMs can utilize long context effec-
tively for evaluation. The second-highest ranking
evaluation strategy is still merging the documents
by taking the maximum over the documents, per-
forming on average only 0.3% lower than using the
full context, aligning with MiniCheck results and
previous findings on the best merging strategy.
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Document order

Dataset Random? Original Top Middle Bottom Sensitivity

ArXiv ✕ 57.6 56.6 55.1 57.0 2.5
ChemSumm ✕ 63.4 61.6 57.4 59.7 6.0

PubMed ✕ 80.1 83.2 83.9 85.5 5.4
MultiNews ✓ 52.2 60.0 56.7 56.7 7.8

DiverseSumm ✓ 57.4 55.0 55.4 56.5 2.4

Avg. Sensitivity - - 3.2 3.8 3.0 -

Table 4: BACC using GPT-4o-based metric when order
of the documents are perturbed. ‘Random’ indicates
whether the initial document orders are random.

Perturbed Document Order. In addition to stan-
dard meta-evaluation, we also perform an analysis
by ordering the documents in terms of importance.
Specifically, for datasets where document bound-
aries exist, we calculate the importance of each
document relative to the model-generated summary
using sentence similarity.2 We then order the doc-
uments into top (beginning), middle, and bottom
(end), corresponding to the placement of the most
important documents. To illustrate, assume there
are five documents with importance ranks of 1, 3,
2, 5, and 4, where rank 1 denotes the most impor-
tant and rank 5 the least. The "top" ordering would
sort documents by importance (e.g., 1-2-3-4-5), the
"bottom" ordering would prioritize the least impor-
tant documents (e.g., 5-3-4-2-1), and the "middle"
ordering would reflect a mid-tier arrangement (e.g.,
4-2-1-3-5). Note that the only change from the
regular case is the document order, which should
have no effect for MultiNews and DiverseSumm,
where the documents are in random order, but may
have an effect for the other datasets where it breaks
the natural flow of the document.The results are
presented in Table 4. In addition to BACC, we also
include sensitivity, defined as the maximum differ-
ence between scores computed using the original
ordering and those with different orderings.

Overall, we find that the metric is sensitive to
document order, with high sensitivity observed
across each dataset and reaching a 7.8% differ-
ence for MultiNews. When comparing only the
top, middle, and bottom orderings, we find no clear
trend across datasets; however, on average, the sen-
sitivity is highest when the important document is
placed in the middle. This indicates that the metric
achieves the lowest BACC when the important doc-
ument is in the middle, whereas placing it at the
top results in the smallest difference, suggesting
that the LLM has a stronger lead bias, i.e. perform-

2We use SentenceTransformer (Reimers and Gurevych,
2019) with the all-mpnet-base-v2 model.

Tasks Doc Split Doc Words Summ Split Summ Words

MultiXScience 5 804.9 6.9 186.0
PubMed 5 2850.3 7.4 190.1
MultiNews 5 4925.5 8.5 215.3
ArXiv 5 5825.5 7.1 181.6
DiverseSumm 10 7561.5 16.0 452.5
SummHay 100 87913.1 7.5 52.2

Table 5: Statistics for the generated summaries.

ing better when the important documents are at
the beginning of the input. Therefore, it may still
be beneficial to use the metric that evaluates each
document individually and aggregates the results
via the maximum operation to reduce positional
bias. This approach achieves a similar BACC com-
pared to the full-context setting while inherently
not being sensitive to input order.

Takeaway. We demonstrate that while the GPT-
4o based metric is able to utilize the full context,
the model exhibits a “lost-in-the-middle” behavior
when using an LLM as the metric. Therefore, we
recommend evaluating each document individually
and taking the maximum faithfulness score.

4 Faithfulness of Long-form Summaries

Next, we evaluate the faithfulness of summaries
generated from different datasets, and perform de-
tailed faithfulness analysis, including assessing
faithfulness across each document, performing a
perturbed analysis in which we sort documents by
importance, and understanding how faithfulness
changes as the number of documents increases.

4.1 Experimental Setup

Datasets. We include two representative multi-
document summarization datasets, MultiNews
(Fabbri et al., 2019) and MultiXScience (Lu et al.,
2020); two long-form summarization datasets,
ArXiv and PubMed (Cohan et al., 2018); and
two recent summarization datasets with extremely
long contexts, DiverseSumm (Huang et al., 2024)
and SummHay (Laban et al., 2024). For ArXiv,
PubMed, MultiNews, and MultiXScience, we ran-
domly sample 100 examples from the validation
set, each consisting of five documents or sections.
For DiverseSumm, we use all original 10 docu-
ments and randomly sample 100 examples. The
dataset statistics are shown in Table 5.

Models. To comprehensively evaluate positional
bias across a range of models, we run GPT-
3.5, GPT-4o (OpenAI, 2024), Llama-3.1-8B and
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Figure 2: Faithfulness analysis across different positions of documents.

70B (Dubey et al., 2024), and Mixtral-7×8B and
Mixtral-8×22B (Jiang et al., 2024). For SummHay,
due to the high computational cost, we reuse
the provided generated summaries from GPT-4o,
Claude-Opus, and Gemini-1.5-pro.

Evaluation Metrics. Although GPT-4o demon-
strates better faithfulness performance in Sec-
tion 3.3, we choose MiniCheck for its nearly com-
parable performance, as well as its greater effi-
ciency and lower cost. In Appendix C.6, we show
evaluating with GPT-4o-based metric on a small
subset, which exihibits similar trends.

4.2 Faithfulness Analysis
Our main analysis evaluates whether the summary
is more faithful to documents in certain positions.
To do so, we calculate the Minicheck faithfulness
score with respect to all documents individually.
We note that if we directly report the summary’s
faithfulness of each document, it may not accu-
rately reflect faithfulness, as it is also confounded
by coverage, i.e., how much the summary draws on
content from each document. In fact, Huang et al.
(2024) use the faithfulness score per document to
measure coverage bias, and we provide an analysis
of this coverage in Appendix C.5 as well as an anal-
ysis of document content overlap in Appendix C.1.
To remove the effect of coverage, we consider attri-
bution; that is, determining which document each
sentence of the summary is discussing. For each
summary sentence, we take the maximum faithful-

ness score over all documents. This is, in fact, the
same process as one of the best document merging
strategies reported in Section 4.4.

To illustrate, assume we have as input five docu-
ments with no overlap, and a summary consisting
of five sentences, each sentence perfectly faithful to
one of the documents and unfaithful with respect to
the others. If we were to calculate the faithfulness
score for each document separately, this summary
would appear to be only 20% faithful towards each
document (since only one sentence is faithful and
the other four are not), as the score is misconstrued
by coverage. However, if we only take the max-
imum faithfulness score over the documents, we
remove the coverage effect and show that the sum-
mary is indeed faithful towards all documents.

In Appendix C.4, we demonstrate that taking the
maximum over the faithfulness scores as attribution
also exhibits the same trend as using SuperPAL
(Ernst et al., 2021), a document-summary sentence
alignment method that achieves the best alignment
for long-form summarization (Krishna et al., 2023).

Results. We present the results in Figure 2.
Generally, we observe that the models exhibit a
dominant U-shaped curve, particularly on ArXiv,
PubMed, MultiNews, and MultiXScience, where
the middle documents are less faithful than the first
or last documents. While most models exhibit this
trend, Mixtral shows a more pronounced lead bias,
especially on ArXiv. The trend for DiverseSumm
is interesting, as it is more of a linear trend. This
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Figure 3: Faithfulness analysis by increasing the context length by adding documents.

Document order

Dataset random? Original Top Middle Bottom Sensitivity

ArXiv ✕ 91.3 91.5 92.2 91.7 0.9
PubMed ✕ 91.3 92.6 93.4 92.2 2.1

MultiNews ✓ 92.2 90.0 89.0 90.6 3.2
MultiXScience ✓ 70.1 67.6 62.1 68.2 8.0

SummHay ✓ 73.5 62.7 66.5 84.6 11.1

Avg. Sensitivity - - 3.4 4.3 3.2 -

Table 6: Faithfulness score when perturbing the doc-
ument order. ‘Random’ indicates whether the initial
document orders are random.

is partly due to the nature of the task, where we
explicitly ask to perform synthesis across the docu-
ments, which helps the model to focus on different
parts. On SummHay, although the three models
behave differently, we observe that GPT-4o and
Claude yield lower faithfulness scores for the mid-
dle document. Interestingly, Gemini is the only
model that exhibits the reverse trend, performing
better on the middle documents; however, its aver-
age faithfulness score is not as high as that of the
other two models. Appendix C.3 includes further
discussions on variance across tasks.

4.3 Perturbed Input Analysis

Next, we conduct a similar perturbation analysis
with GPT-4o as described in Section 3.3, where
we reorder the documents according to importance.
Here, importance is determined using the similarity
between each document and the reference sum-
mary. We exclude DiverseSumm, as it does not
contain reference summaries. The results are re-
ported in Table 6. We observe a similar trend when
we analyze the perturbation for the metric: The
models generally generate the most faithful sum-
maries either with the original order or when the
important document is placed at the front. When
looking at the sensitivity across each ordering, the
middle case has the highest sensitivity. Interest-
ingly, we observe the bottom ordering achieves a
score 21.9 points over the top case for SummHay.
We posit that this is because of how models han-

dle long contexts, i.e., focusing towards the end
when the context increases, which we confirm in
the subsequent analysis on the correlation between
increasing context length and faithfulness.

4.4 Faithfulness and Length Correlation

So far, our analyses have been post-hoc, where we
attempt to analyze the faithfulness scores when the
input is fixed. Here, we try to analyze how faith-
fulness correlates with length by incrementally in-
creasing the number of documents. For all datasets,
we start with summarizing one document, and then
we add one more document and summarize again.
We then calculate the faithfulness scores of the gen-
erated summaries using the corresponding set of
documents. We exclude SummHay here, as it is
computationally expensive to run the subsets for
all 100 documents incrementally.

Results are in Figure 3. In MultiXScience, which
contains relatively few words per document, we ob-
serve a strong lead bias. However, when moving
to long-form summarization on datasets such as
Pubmed and ArXiv, we observe a U-shaped trend:
summary faithfulness decreases as the number of
documents grows, then begins to improve beyond
a certain threshold. This suggests that the model
may “switch modes” at a particular context length
and focus more on documents introduced later. On
MultiNews, a similar pattern appears, as faithful-
ness steadily increases for most models with ad-
ditional input documents. These observations are
consistent with prior research on LLMs’ behavior
with extremely long inputs, where models concen-
trate much of their attention on the later sections
(Kim et al., 2024b; Laban et al., 2024).

5 Methods for Reducing Positional Bias

Finally, we explore different generation methods
and verify whether they can reduce positional bias.
We use the same sets of examples used in Section 4.
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Figure 4: Faithfulness analysis for different summarization techniques.

5.1 Methods
Focus Prompt. We ask the model to focus on dif-
ferent parts of the input. We append the following
instruction to the original prompt: "Focus on the
top documents", "focus on the bottom documents",
and "focus on the documents in the middle".

Hierarchical Merging. Explored in Chang et al.
(2024), this method generates one summary for
each document, and then iteratively merge the sum-
maries. We explore both merging two summaries
at a one until one final summary is produced, as
well as one pass over all the individual summaries.

Incremental Updating. Simiraly explored in
Chang et al. (2024), starting with summarizing the
first document, the model updates its output given
the current summary and the next document.

Calibration. Past studies have found that cali-
brating the model specifically for the positional
bias can reduce such bias. For both open-source
and propietary models, we generate summary from
all permutations of the input order, and then ask
the model to combine the generated summaries.3

5.2 Results
We present the results of running the different meth-
ods with GPT-4o in Figure 4. The top portion
of the figure shows the prompting-based methods.
Instructing the model to focus on either the top
or bottom documents proves effective for improv-
ing faithfulness at those specific positions. For
instance, the “focus top” prompt yields higher faith-
fulness scores for the last document than the orig-

3We also explore logit-level calibration similar to Tang
et al. (2024d), but this exceeds memory constraints.

inal prompt in 4 out of 5 datasets. The “focus
middle” prompt achieves higher faithfulness than
the original case for the middle document on ArXiv
and DiverseSumm. However, we observe that the
model often fails to follow the instructions ade-
quately to focus on the middle documents: “focus
top” achieves the best faithfulness for the middle
documents on PubMed, while “focus bottom” per-
forms best on DiverseSumm. This suggests that
prompting can partially alleviate positional bias.

Interestingly, the more sophisticated methods il-
lustrated at the bottom of Figure 4 perform worse
than the original prompt across all datasets. It is
noteworthy, as we generally observe a very differ-
ent trend for methods that change the summariza-
tion protocol. For example, on ArXiv, PubMed,
and DiverseSumm, incremental updating contains
gaps in the corresponding lines on the plot. This
issue arises because the method maintains only a
working summary cache and updates it solely based
on the next document, leading to a pronounced
recency bias: the model either retains its current
summary and thus remains faithful to the first doc-
ument or focuses on the last document. While this
approach may appear to improve faithfulness, it
ultimately replaces one positional bias, i.e., lost-in-
the-middle, with another, i.e., recency bias.

6 Related Work

Summarization. As the capabilities of LLMs
steadily improve, they exhibit strong performance
on traditional summarization tasks (Zhang et al.,
2024c), such as XSum (Narayan et al., 2018) and
CNN/Daily Mail (See et al., 2017). Consequently,
recent studies have focused on harder tasks to bet-
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ter understand the limitations of LLMs, such as
instruction-controllable summarization (Liu et al.,
2024b), query-focused summarization (Tang et al.,
2024c), summarization of diverse information
(Huang et al., 2024; Zhang et al., 2024d), and, more
recently, long-form summarization (Laban et al.,
2024; Kim et al., 2024a). Our work focuses on
long-form summarization because generating and
evaluating summaries with long context lengths is
particularly challenging. Therefore, to our knowl-
edge, we present the first study to analyze the faith-
fulness of generated summaries across a wide range
of long-form summarization datasets, employing
various generation techniques, and to examine the
effect of positional bias on them.

Faithfulness Evaluation Metrics. To improve
the benchmarking of summarization systems, many
studies collect human annotations of faithfulness
judgments to create meta-evaluation benchmarks
that measure the effectiveness of faithfulness met-
rics (Fabbri et al., 2021; Pu et al., 2023; Tang et al.,
2023; Goyal et al., 2023; Zhang et al., 2024c; Liu
et al., 2023b, 2024b). This effort has led to the
development of strong faithfulness metrics (Laban
et al., 2022; Fabbri et al., 2022; Zha et al., 2023).
More recently, LLM-based metrics, which prompt
powerful LLMs to perform evaluations (Liu et al.,
2023a; Wang et al., 2023; Fu et al., 2024), have
shown high correlations with human judgments.
Subsequently, MiniCheck (Tang et al., 2024b) has
focused on distilling such knowledge into smaller
NLI models, combining both strong performance
and efficiency. While most of these studies concen-
trate on standard summarization tasks, few address
long-form summarization (Krishna et al., 2023;
Zhang et al., 2024b; Huang et al., 2024). Specifi-
cally, Zhang et al. (2024b) collate a meta-evaluation
benchmark and develop an automatic metric. We
further extend their work by incorporating addi-
tional benchmarks, analyzing the performance of
the latest faithfulness metrics, and, more impor-
tantly, investigating sensitivity to positional bias.

Positional Bias. Many works have found that cur-
rent LLMs exhibit different positional biases. For
example, Sun et al. (2021) find that models exhibit
a recency bias, where the most recent tokens play
a stronger role, and that the order of in-context
examples significantly affects performance (Liu
et al., 2022; Lu et al., 2022; Li et al., 2024). Sim-
ilarly, such biases also affect LLM performance
in arithmetic tasks (Shen et al., 2023), multiple-

choice questions (Zheng et al., 2024; Pezeshkpour
and Hruschka, 2023), ranking (Alzahrani et al.,
2024; Tang et al., 2024d), and evaluation (Wang
et al., 2024). Specifically in summarization, Huang
et al. (2024) find that evaluators of faithfulness and
coverage highly prefer one choice over another in
pairwise settings, and that generated summaries
tend to focus on the first and last sections of docu-
ments. Additionally, Laban et al. (2024) find that
different LLMs exhibit different positional pref-
erences. To analyze this effect more rigorously,
Ravaut et al. (2024) systematically analyze how po-
sitional bias affects context utilization. Our work
instead focuses on faithfulness, another crucial as-
pect of summarization. As discussed in Section 4.2,
faithfulness is harder to evaluate as it is confounded
by coverage and thus requires attributions.

7 Conclusion

In this work, we present an extensive analysis of
the relationship between positional bias and faith-
fulness for long-context summarization from three
perspectives. We first evaluate the best strategy
for assessing faithfulness in long-context summa-
rization tasks, as well as the metrics’ sensitivity to
positional changes. We find that, although current
LLM-based metrics achieve the highest correlation
when using the full context, they are sensitive to
changes in the order of the input documents.

We then analyze faithfulness of model genera-
tions with the best faithfulness metrics. We gener-
ate summaries using both open-source and propri-
etary models and find that the faithfulness of the
middle documents tends to dip compared to those
at the beginning and end, and the summaries also
exhibit high sensitivity when the order of inputs is
perturbed. One of the possible explanations, as we
find, is that the models change behavior after a cer-
tain context length and focus on documents toward
the end, improving faithfulness for the documents
at the back after the initial dip.

Finally, we investigate several generation meth-
ods to test whether they can alleviate positional
bias. We find that prompting methods can partially
alleviate the middle curse, while more extensive
methods provide overall less faithful summaries.

Limitations

This work extensively studies the relationship be-
tween position and faithfulness in long-context
summarization. We acknowledge that there are
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additional LLMs, such as Claude or CommandR+,
and more datasets that could be included in our
evaluation. However, due to practical limitations,
we have chosen to evaluate a representative and di-
verse set of LLMs and datasets. Although different
models may exhibit varying trends, our analysis
reveals that all models exhibit a similar trend re-
garding positional bias.

Furthermore, although our analysis relies on au-
tomatic metrics – and despite our extensive efforts
in Section 3.1 to identify the most effective ones –
it may not accurately reflect the trends that would
emerge if human annotators evaluated all generated
summaries. We do note, however, that human an-
notations for long-form summarization are both ex-
pensive and unreliable due to the extensive context
involved (Krishna et al., 2023). Nevertheless, we
hope that our work provides some initial insights
into this problem.

In our experiments, we limit the number of docu-
ments to five for all datasets (except DiverseSumm)
to control for the effect of varying context lengths.
Exploring settings with different numbers of docu-
ments would be an interesting direction for future
work. Nevertheless, we hope that our analysis of
faithfulness with different input context lengths
sheds light on what we would expect to observe
with varying input lengths.

Lastly, we did not rigorously tune all the prompts
in Section 5, which may lead to further improve-
ments in mitigating the middle curse.

We do not forsee any particular risks beyond
those inherent to any text generation task. In fact,
our work actually focuses on understanding and im-
proving faithfulness for long-form summarization.
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Method MN QM GR AX CS DS Avg.

Full 52.2 64.3 61.6 57.6 63.4 57.4 59.4
Natural 51.9 62.5 51.5 50.0 50.0 50.6 52.8

Chunk 1024 58.1 57.1 68.5 54.7 64.8 54.3 59.6
Chunk 2048 50.0 50.3 47.0 53.2 66.7 55.1 53.7
Chunk 4096 50.0 50.3 47.3 43.7 53.7 52.8 49.6
Chunk 8192 50.0 50.0 50.0 50.7 53.2 52.3 51.0

Table 7: BACC of different chunking methods with GPT-
4o. We use the best strategy of taking the maximum over
documents and average over the summary sentences. As
baselines, we report the full input setting and running
the same metric with natural document boundaries.

A Additional Experimental Setup Details

A.1 Dataset Details
The licenses for the datasets are as follows. QM-
SUM and MultiNews are under MIT License. Di-
versesumm, SummHay, ArXiv, and Pubmed are
released under the Appache 2.0 license. SQuality
is under the CC BY 4.0 license. GovReport and
ChemSumm do not specify any license. We use
the authors’ original repository and instructions to
prepare and process the dataset. The authors of the
respective datasets have filtered any harmful con-
tent. For annotations, we similarly follow author’s
instructions to download and process the data.

A.2 Model Details
For all models, we use the default generation meth-
ods. For open-source models, we use the avail-
able Huggingface repository for Llama-3.1-8B4

and 70B5, and also for Mixtral6 and Mixtral Large.7

For GPT-4o, we use gpt-4o as of October 13th,
2024. We run with bfloat16 and use 8 A100s to run
all generations and evaluations. The approximate
costs for GPT-4o are as follows: metric full setting
costs $37.1, metric splitting the document setting
costs $79.9, generation costs $ 15.2, and generation
with different methods costs $97.2.

B Additional Metric Results

B.1 Results on Chunking
Instead of using natural document boundaries, we
explore chunking the full input into fixed num-

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

5https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct

6https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

7https://huggingface.co/mistralai/
Mixtral-8x22B-Instruct-v0.1

bers of tokens. Using the same setup as in the
meta-evaluation but excluding PubMed and SQual-
ity, we split the input documents into chunks of
1,024, 2,048, 4,096, and 8,192 tokens. We em-
ploy the GPT-4-based metric and the best merging
strategy (i.e., maximum over documents and av-
erage over the summary sentences). The result is
shown in Table 7. We observe that chunking into
smaller chunks (1,024 tokens) leads to stronger per-
formance than using the full context, while other
chunk sizes result in worse correlations compared
to the full context. This may indicate that smaller
context windows help the models, since LLMs still
prefer shorter contexts. The fact that natural bound-
aries are only better than chunking with 4,096 to-
kens suggests that limiting based on size may be
preferable to keeping the original documents as
they are, since there is no control over how long
each document is.

B.2 Full Metric Results

We present the full results, including an exploration
of summary sentence-level merging strategies, in
Table 8. For MiniCheck, the original chunking
method using the minimum function over summary
sentences yields the highest correlation—though
this is largely driven by high accuracy on ArXiv.
Meanwhile, the maximum strategy with mean ag-
gregation, which previous studies have identified
as most effective, falls short by only 0.2 points.
For GPT-4o, we observe that, across all document
merging strategies, averaging over the summary
sentences achieves the highest correlations overall.
This finding is consistent with prior work.

We also run the meta-evaluation with Llama-
3.1-8B model in the bottom of Table 8. Similar
to running with GPT-4o, we observe that using
the full context achieves the highest correlation on
average. Nevertheless, the best summary sentence
merging strategy is taking the minimum, and the
second-best document merging strategy is mean.

C Additional Faithfulness Analysis
Results

C.1 Content Overlap Analysis

Taking the maximum faithfulness implicitly as-
sumes that the conent do not overlap. To verify
the variability in similarity, we calculate ROUGE-
1/2/L between all document pairs and aggregate
the results to show the variablity for each task .
We exclude SummHay as it is prohibitively expen-
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Metric Doc Merge Summ Merge MN QM GR PB AX SQ CS DS Avg.

MiniCheck

Original Min 47.8 56.6 64.7 79.7 76.0 83.0 46.8 53.5 63.5
Original Mean 56.1 55.7 55.1 79.7 57.0 83.0 57.9 54.1 62.3
Original Max 53.8 53.9 50.0 79.7 50.0 83.0 50.9 55.2 59.6

Min Min 49.4 56.6 64.7 50.0 50.0 83.0 51.4 49.8 56.9
Min Mean 54.7 55.7 55.1 50.0 50.0 83.0 54.2 49.6 56.5
Min Max 60.3 53.9 50.0 50.0 50.8 83.0 54.2 53.8 57.0

Mean Min 49.4 56.6 64.7 52.6 50.0 83.0 51.4 49.3 57.1
Mean Mean 64.5 55.7 55.1 52.6 53.4 83.0 54.2 46.0 58.1
Mean Max 60.4 53.9 50.0 52.6 46.2 83.0 66.7 51.2 58.0

Max Min 39.4 56.6 64.7 84.8 69.7 83.0 53.2 47.1 62.3
Max Mean 56.6 55.7 55.1 84.8 62.3 83.0 59.7 49.3 63.3
Max Max 53.2 53.9 50.0 84.8 50.0 83.0 50.9 54.2 60.0

GPT-4o

Full Min 38.1 60.5 64.7 80.1 73.1 76.7 51.4 60.6 63.1
Full Mean 52.2 64.3 61.6 80.1 57.6 76.7 63.4 57.4 64.1
Full Max 52.2 64.3 61.6 80.1 57.6 76.7 63.4 57.4 64.1

Min Min 50.0 65.4 58.8 54.4 50.4 80.6 50.0 50.2 57.5
Min Mean 50.0 60.7 60.0 54.4 52.1 80.6 54.2 50.3 57.8
Min Max 50.0 60.7 60.0 54.4 52.1 80.6 54.2 50.3 57.8

Mean Min 46.8 65.4 58.8 64.3 51.7 80.6 50.0 52.8 58.8
Mean Mean 46.3 60.7 60.0 64.3 56.2 80.6 54.2 56.6 59.9
Mean Max 55.2 59.2 50.0 64.3 49.8 80.6 70.8 54.4 60.5

Max Min 44.6 65.4 58.8 76.0 68.8 80.6 47.7 58.2 62.5
Max Mean 60.0 60.7 60.0 76.0 55.6 80.6 60.6 53.0 63.3
Max Max 51.3 59.2 50.0 76.0 50.0 80.6 50.0 51.5 58.6

Llama-3.1-8B

Full Min 52.0 56.8 64.9 69.9 56.3 73.4 67.6 52.6 61.7
Full Mean 53.8 55.0 51.2 69.9 50.0 73.4 50.9 52.1 57.0
Full Max 53.8 55.0 51.2 69.9 50.0 73.4 50.9 52.1 57.0

Min Min 49.4 63.9 63.4 63.7 59.5 69.9 53.2 49.1 59.0
Min Mean 50.1 62.5 51.5 63.7 59.0 69.9 55.6 50.8 57.9
Min Max 50.1 62.5 51.5 63.7 59.0 69.9 55.6 50.8 57.9

Mean Min 56.7 63.9 63.4 63.5 51.3 69.9 61.6 51.4 60.2
Mean Mean 59.3 62.5 51.5 63.5 50.0 69.9 61.6 50.9 58.7
Mean Max 49.3 52.6 50.0 63.5 50.0 69.9 50.0 49.7 54.4

Max Min 50.9 63.9 63.4 53.7 51.4 69.9 48.6 53.3 56.9
Max Mean 51.9 62.5 51.5 53.7 50.0 69.9 50.0 50.6 55.0
Max Max 50.0 52.6 50.0 53.7 50.0 69.9 50.0 50.0 53.3

Table 8: Full BACC on meta-evaluation benchmarks. CS=ChemSumm, AX=ArXiv, GR=GovReport,
QM=QMSumm, MN=MultiNews, DS=Diversesumm. For each metric, best and second-best are bolded and
underlined, respectively.BACC on meta-evaluation benchmarks, where MN refers to MultiNews, QM to QMSumm,
PB to PubMed, GR to GovReport, AX to ArXiv, SQ to SQuALITY, CS to ChemSumm, and DS to Diversesumm.
We bold the best merging strategy for each metric and underline the second-best.

sive to calculate this for 100 documents. Table 9
shows the results. Examining unigrams (R1), we
observe a high degree of overlap, particularly for
DiverseSumm. This is expected, as all 10 docu-
ments focus on the same news event. We note that
while such overlap may not be covered by only

considering the highest faithfulness for one of the
documents, we evaluate faithfulness relative to a
single document to minimize the influence of cov-
erage, as mentioned in Section 4.2. Determining
how many documents a summary can be attributed
to is complex and would require defining a thresh-
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Figure 5: Faithfulness analysis across different positions of documents with chunking.

Task R1 R2 RL

MultiXScience 24 24 12
PubMed 26 26 13
MultiNews 18 28 13
ArXiv 32 32 13
DiverseSumm 41 41 21

Table 9: Similarity of the documents using ROUGE.

old, which we leave for future work. Nevertheless,
the coverage analysis shown in Figure 7 can be
considered the case where the summary is related
to all documents.

C.2 Faithfulness Analysis with Chunking
We perform the analysis with calculating the faith-
fulness with chunking, instead of natural bound-
aries. We show it in Figure 5.

C.3 Discussions on Variance Across Tasks
In Figure 2, we observe a large variance across
the different tasks. We provide a discussion on
possible reasons.

Context Length. Based on the dataset statistics
provided earlier, we analyzed the tasks from those
with the shortest document lengths to those with
the longest. This reveals an intriguing trend: Multi-
XScience, shown in Figure 2, exhibits primarily a
lead bias due to its short input length. As we move
to datasets with longer input lengths, the U-shaped
trend becomes more apparent. MultiXScience can

thus be interpreted as representing the early stage
of this trend, which evolves as context length in-
creases. We demonstrate this similar progression
in Section 4.4, where increasing contexts shift the
observed behavior. The downward trend of Multi-
XScience in Figure 3 can similarly be attributed to
insufficient context length, leaving it in the early
lead bias phase.

Task Type. Another observable trend is the
variation across different types of summarization
tasks. For example, ArXiv and PubMed involve
single long-document summarization, whereas
MultiNews, MultiXScience, DiverseSumm, and
SummHay are classified as MDS. Our findings in-
dicate that single-document summarization tasks
exhibit more consistent model behavior and lower
variance, while MDS tasks show much higher vari-
ance. We hypothesize that this increased variability
stems from the need for synthesis across multiple
documents, which impacts the faithfulness of gen-
erated summaries.

C.4 Faithfulness Metric as Alignment and
Attribution

We evaluate whether the faithfulness score can
be used for alignment. Specifically, we use Su-
perPal (Ernst et al., 2021), the state-of-the-art
document-summary sentence alignment model, to
test whether it reaches similar conclusions in terms
of faithfulness. SuperPal operates at the sentence
level, aligning summary sentences to document sen-
tences. We use the indices of the aligned document
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Figure 6: Faithfulness analysis across different positions with SuperPal as alignment.
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1st 2nd 3rd 4th 5th
Document Index

80

85

90

95

Fa
ith

fu
ln

es
s (

%
)

ArXiv

1st 2nd 3rd 4th 5th
Document Index

92

94

96

98
PubMed

1st 2nd 3rd 4th 5th
Document Index

85.0

87.5

90.0

92.5

MultiNews

1st 2nd 3rd 4th 5th
Document Index

50

60

70

80

MultiXScience

ChatGPT GPT-4o Mixtral Mixtral-Large

Figure 8: Faithfulness analysis across different positions using GPT-4o faithfulness metric.

sentences to compare alignment positions. The cor-
relation between the two metrics is high, with a
Spearman correlation of 0.74. We also verify the
alignment visually, as shown in Figure 6. We ob-
serve the same trends as shown in Figure 2 and dis-
cussed in Section 4.2: A dominant U-shaped curve
for ArXiv, PubMed, and MultiNews, and a strong
lead bias for MultiXScience. This demonstrates
that using the maximum faithfulness score as an
attribution method provides similar conclusions to
those obtained from a trained document-summary
sentence alignment model.

C.5 Coverage Analysis

We also provide the coverage analysis, by using
the faithfulness score of all documents. We show
the figure in Figure 7. The trend generally follows
the observation of Ravaut et al. (2024), who uses
bigram matching between the summary and docu-
ments, observing either a U-shape or a lead bias.

C.6 Faithfulness Analysis using GPT-4o

Here, we now evaluate faithfulness using our
best faithfulness metrics on a subset that excludes
Llama-based models and includes only ArXiv,
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PubMed, MultiNews, and MultiXScience. Com-
pared to Figure 8, which uses MiniCheck, we ob-
serve a smoother graph, but the key findings re-
main the same. For example, we observe the same
U-shape occurring for ArXiv, PubMed, and Multi-
News, while MultiXScience exhibits a strong lead
bias. As mentioned in Section 4.1, since the com-
putation is expensive, we still use MiniCheck for
the remaining analyses.

D Prompts

We present the prompts used for evaluation and gen-
eration in Figure Table 10. The faithfulness metric
prompt is adapted from (Tang et al., 2024c). For
standard generation and focus prompt, we adapted
the prompt from (Ravaut et al., 2024). Finally, we
adapt the iterative update and hierarchical merging
prompts from (Chang et al., 2024).
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Method Prompt

Faithfulness
evaluation

Document:
[ARTICLE]

Sentence:
[SUMMARY]

Determine if the sentence is factually consistent with the document provided above. A sentence is
factually consistent if it can be entailed (either stated or implied) by the document. Please start your answer
with “Yes.” or “No.” Please briefly explain the reason within 50 words."""

ArXiv gen-
eration

Read the following scientific paper. Produce a summary in 6 sentences. You must give your in a structured
format: ”’Summary: [your summary]”’, where [your summary] is your generated summary.
==========
[ARTICLES]
==========

PubMed
generation

Read the following scientific paper. Produce a summary in 7 sentences. You must give your in a structured
format: ”’Summary: [your summary]”’, where [your summary] is your generated summary.
==========
[ARTICLES]
==========

MultiNews
generation

Read the following news articles. Produce a summary in 10 sentences. You must give your in a structured
format: ”’Summary: [your summary]”’, where [your summary] is your generated summary.
==========
[ARTICLES]
==========

MultiXScience
generation

Read the following abstracts. Produce a summary in 5 sentences. You must give your in a structured format:
”’Summary: [your summary]”’, where [your summary] is your generated summary.
==========
[ARTICLES]
==========

Focus
prompt

[Generation Prompt]
Pay special attention to the [top articles/articles in the middle/bottom articles].

Iterative
prompt

Read the following section of a scientific paper.
==========
[NEXT DOCUMENT]
==========

Below is a summary up until this point:
==========
[SUMMARY]
==========

We are going over the articles sequentially to gradually update one comprehensive summary. Pro-
duce an updated summary in 6 sentences. You must give your in a structured format: ”’Summary: [your
summary]”’, where [your summary] is your generated summary.

Hierarchical
merging

Below are several summaries:
—
[SUMMARIES]
—
Create one comprehensive summary by recursively merging summaries of its chunks. Despite this recursive
merging process, you need to create a summary that seems as though it is written in one go. The summary
must be within 6 sentences. You must give your in a structured format: ”’Summary: [your summary]”’, where
[your summary] is your generated summary.

Table 10: Prompts for evaluation (top), standard generations (middle), and advanced generation techniques (bottom).
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