
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 951–972

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction

Siyu Yuan1∗, Kaitao Song2∗†,
Jiangjie Chen1 , Xu Tan2 , Yongliang Shen3 , Kan Ren2 , Dongsheng Li2 , Deqing Yang1†

Fudan University1 , Microsoft Research Asia2 , Zhejiang University3

syyuan21@m.fudan.edu.cn, {kaitaosong, xuta, dongsli}@microsoft.com
syl@zju.edu.cn, {jjchen19,yangdeqing}@fudan.edu.cn

Abstract

There has been a rising interest in utilizing tools
in applications of autonomous agents based
on large language models (LLMs) to address
intricate real-world tasks. To develop LLM-
based agents, it usually requires LLMs to un-
derstand many tool functions from different
tool documentations. However, these documen-
tations could be diverse, redundant, or incom-
plete, which immensely affects the capability
of LLMs in using tools. Current LLMs ex-
hibit satisfactory instruction-following capabil-
ities based on instruction-following fine-tuning
process. Motivated by this, in this paper, we
introduce EASYTOOL, a framework transform-
ing diverse and lengthy tool documentation
into a unified and concise tool instruction to
fully leverage instruction-following capabili-
ties of LLMs for easier tool usage. EASY-
TOOL purifies essential information from ex-
tensive tool documentation of different sources,
and elaborates a unified interface (i.e., tool in-
struction) to offer standardized tool descrip-
tions and functionalities for LLM-based agents.
Extensive experiments on multiple different
tasks demonstrate that EASYTOOL can signifi-
cantly reduce token consumption and improve
the performance of LLM-based agents on tool
utilization in real-world scenarios. Our code
is available in supplemental materials. Our
code is available at https://github.com/
microsoft/JARVIS/tree/main/easytool.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023a,b; Team and Google, 2023)
have recently ignited the spark of LLM-based au-
tonomous agents (Shen et al., 2023a; Gravitas,
2023), which aim to interact with the real-world
scenarios and address complex user requests. A

∗ The first two authors have equal contributions. This
work was done when the first author was an intern at Microsoft
Research Asia.

†Corresponding authors.

Tool Description Tool Functionality Guideline
with Example

List Movies is a tool
used to list and search
through all the
available movies. This
tool has 9 APIs:
1. 'With RT Ratings'
returns the list with
the Rotten Tomatoes
rating included...

{
 "name": "With RT Ratings",
 "description": "Returns the list
with the Rotten Tomatoes rating
included",
 "required_parameters": [
 {
 "name":
"with_rt_ratings",
 "type": "BOOLEAN",
 "description": "",
 "default": "false"
 }
],
 "optional_parameters": [],
 "Example": {
 "Scenario": "if you want to
get the list of movies with Rotten
Tomatoes ratings included",
 "Parameters": {
 "with_rt_ratings": true
 }
 }
}

Scenario:
if you want to get the
list of movies with
Rotten Tomatoes
ratings included.
Parameters:
with_rt_ratings: true

Web Service

"paths": {
"/movie/{movie_id}/
keywords": {
"parameters": [
{"name": "movie_id",
"in": "path",
"required": true,

Tool Instruction: Concise, Unified and Effective

ExampleRapidAPI

Tool Documentation

So much redundant
information!

Without examples, I do not know
when I should use these tools...

Why the formats of these tool
documents are so different! I can not
deal with them consistently!HFModel

{
 "downloads":1677372,
 "id":"ProsusAI/finbert",
 "likes":186,
 "pipeline_tag":"text-classification",
 "task":"text-classification",
 "meta":{
 "language":"en",
 "tags":[
 "financial-sentiment-analysis",
 "sentiment-analysis"
],
 "widget":[
 {
 "text":"Stocks rallied and
the British pound gained."
 }
]
 },
 "description":"\n\nFinBERT is a pre-
trained NLP model to analyze sentiment
of financial text. It is built by
further training the BERT language model
in the finance domain, using a large
financial corpus and thereby fine-tuning
it for financial sentiment
classification. [Financial PhraseBank]
(https://www.researchgate.net/
publication/
251231107_Good_Debt_or_Bad_Debt_Detectin
g_Semantic_Orientations_in_Economic_Text
s) by Malo et al. (2014) is used for
fine-tuning. For more details, please
see the paper [FinBERT: Financial
Sentiment Analysis with Pre-trained
Language Models](https://arxiv.org/abs/
1908.10063) and our related [blog post]
(https://medium.com/prosus-ai-tech-blog/
finbert-financial-sentiment-analysis-
with-bert-b277a3607101) on Medium.
\n\nThe model will give softmax outputs
for three labels: positive, negative or
neutral.\n\n"

RapidAPI

{
 "product_id":
"api_20295783-1e06-4cf8-98a2-4b09b829ae7
c",
 "home_url": "https://rapidapi.com/
jpbermoy/api/list-movies/",
 "pricing": "FREEMIUM",
 "host": "list-
movies.p.rapidapi.com",
 "tool_description": "An API used to
list and search through out all the
available movies. Can sort, filter,
search and order the results",
 "name": "List Movies",
 "title": "List Movies",
 "tool_name": "List Movies",
 "api_list": [
 {
 "name": "With RT Ratings",
 "url": "https://list-
movies.p.rapidapi.com/list_movies.json/
false",
 "description": "Returns the
list with the Rotten Tomatoes rating
included",
 "method": "GET",
 "required_parameters": [
 {
 "name":
"with_rt_ratings",
 "type": "BOOLEAN",
 "description": "",
 "default": "false"
 }
],
 "optional_parameters": [],
 }
]
}

pricing: FREEMIUM
host: list-movies.p.rapidapi.com
home_url:https://rapidapi.com/jpbermoy/
api/list-movies/

Figure 1: An illustration of the proposed EASYTOOL,
and some issues in tool documentation, e.g., Inconsis-
tency, Redundancy, Incompleteness. The documenta-
tions can be polished and refined by EASYTOOL into
more concise and effective tool instructions for better
tool usage.

rising trend in enhancing their effectiveness is to
endow them with the capability of using external
tools (Schick et al., 2023; Shen et al., 2023a; Qu
et al., 2024). To bridge the gap between LLMs
and tool usage, agents usually first analyze a user
request, conduct planning or reasoning to decom-
pose it into sub-tasks, and then select the most
suitable tools for execution to obtain the final an-
swer. Therefore, improving LLMs’ capability to
use tools precisely has been critical to developing
an autonomous agent.

Previously, some researchers (Schick et al.,
2023; Qin et al., 2023; Patil et al., 2023; Parisi
et al., 2022; Hao et al., 2023) fine-tune open-source
LLMs to generate calling functions to use tools.
However, these methods usually require additional
datasets with tool use for training, cannot be ex-

951

https://github.com/microsoft/JARVIS/tree/main/easytool
https://github.com/microsoft/JARVIS/tree/main/easytool

tended to widely deployed black-box LLMs, and
lack flexibility in integrating external tools in a
plug-and-play way. Another line of work (Song
et al., 2023; Lu et al., 2023; Xu et al., 2023; Chen
et al., 2023; Wang et al., 2024) retrieves and calls
external tools by providing tool documentation
and few-shot demonstrations of tool functional-
ity. However, these methods struggle with limited
context length and face difficulties when handling
unusual tools, and thus hinder the development
of an omnipotent LLM-based agent. Therefore,
extensive effort is still required to efficiently and
effectively improve the quality of tool utilization.

For tool utilization, tool documentation plays
an indispensable component, which could include
multiple meta information like tool descriptions,
tool parameters, demonstrations and so on. How-
ever, as shown in Figure 1, we summarize the issues
from existing documentation that could hinder the
tool utilization of LLM-based agents:

• Inconsistency: Massive tools from different
sources often have inconsistent and diverse doc-
umentation formats, posing new challenges for
LLMs to understand;

• Redundancy: Tool documentation could encom-
pass massive redundant and useless informa-
tion, making it harder to grasp tool functionality
and resulting in excessive token consumption in
prompts;

• Incompleteness: We expect the tool documen-
tation to provide useful information to describe
its functions, parameters and demonstrations for
instructions. However, the absence of critical in-
formation in some tool documentations impedes
effective tool utilization.

Overall, we regard the information provided by
tool documentation as a critical element in instruct-
ing LLMs to use tools. However, the above issues
in tool documentation bring some challenges to
LLM-based agents to understand, especially con-
sidering the increasing of massive and diverse tools
from different domains. Therefore, how to parse
the documentation, extract the most essential infor-
mation and provide a unified format has become a
necessary topic to effectively use tools.

Recent LLMs, such as GPT-4 (OpenAI, 2023),
ChatGPT (OpenAI, 2022), Vicuna (Chiang et al.,
2023), and Mistral (Jiang et al., 2023a), demon-
strate strong instruction-following capabilities due

to their fine-tuning for this skill (Wang et al., 2023;
Ren et al., 2024). Inspired by this, in this paper,
we introduce EASYTOOL, an easy and effective
method to create clear, structured, and unified in-
structions from tool documentations for improving
LLM-based agents in using tools. High-quality tool
instructions should follow two criteria: easy to 1)
understand its functionality for selection and 2) pre-
dict its parameters for usage. To this end, we first
collect massive tool documentations from different
sources (e.g., RestBench (Song et al., 2023) and
ToolBench (Qin et al., 2023)). Instead of directly
using these various tool documentations with dif-
ferent complicated structures, we transform these
documentations into a more concise and unified
tool instruction, which includes standard tool de-
scriptions and guidelines for tool functionality. The
converted tool descriptions can eliminate irrelevant
content and only keep the core functionality of
each tool for LLMs to attend to. Moreover, EASY-
TOOL provides detailed information for tool usage
(e.g., its parameters with demonstrations generated
by ChatGPT (OpenAI, 2022)) in tool functionality
guidelines to instruct LLMs with tool usage.

Extensive experiments on multiple tool-usage
benchmarks demonstrate these concise tool instruc-
tions generated by EASYTOOL can significantly
reduce incorrect tool usage. Furthermore, we also
prove that the capability of EASYTOOL can be gen-
eralized to open-source LLMs in a plug-and-play
way and greatly improve their performance on tool
utilization in different real-world tool-usage scenar-
ios. Our contributions can be summarized as:

• We analyze and explore the limitations of current
tool utilization in LLM-based agents and first
point out the deficiencies of tool documentation
that hinder LLMs in using tools.

• To address these issues, we propose EASYTOOL,
which creates high-quality tool instructions from
documentation to facilitate tool usage in LLM-
based agents.

• Experimental results on three datasets from dis-
tinct domains show that our EASYTOOL effec-
tively and efficiently improves the capability of
LLMs in tool utilization.

2 Related Work

With the emergence of powerful LLMs (OpenAI,
2023; Touvron et al., 2023a,b), using tools has been

952

user request

Subtask 1 Subtask 2 Subtask n

Tool Retrieval

Tool Selection

Tool Execution

......

Based on Tool Description

Pass the required parameters

Based on Tool Functionality

Incorrect Output Answer

Task Planning

Tool 1 Tool 2 Tool 3

...

Based on Tool Description

Figure 2: The four-stage framework of LLM-based
agents in tool-usage applications.

considered a new trend to enhance the capabilities
of LLMs A conventional strategy is to build syn-
thetic data (Schick et al., 2023; Qin et al., 2023; Li
et al., 2023; Patil et al., 2023; Shen et al., 2023b)
involved tool use and then fine-tune LLMs to gener-
ate text with tool invocation. However, these meth-
ods cannot be extended to some powerful closed
LLMs, and lack the capability to use new tools. Al-
though some methods (Hao et al., 2023) attempted
to fine-tune LLMs to obtain tool embeddings for
plug-and-play usage, they still require additional
data for training to get tool embeddings.

Therefore, there has arisen another branch (Shen
et al., 2023a; Song et al., 2023; Gravitas, 2023)
that directly used LLMs as the controller and feed
tool descriptions into prompts to instruct LLMs to
understand and call tools. These methods do not
need extra training and can use external tools in
a plug-and-play paradigm, but they are limited to
context sizes and the quality of tool documenta-
tion. As a result, these methods will lead to some
failed or incorrect tool invocation (Zhang et al.,
2023a). Some work (Hsieh et al., 2023; Xu et al.,
2023) attempts to revise tool documentation to sup-
port a zero-shot tool utilization, but some inherent
issues of tool documentation in real-world scenar-
ios still hinder the effective and efficient usage of
many tools. Besides, different from naive prompt
compression (Mu et al., 2023; Jiang et al., 2023b),
which is only suitable to compress plain prompt,
the streamlined information from tool documen-
tation should satisfy specific format and need to
confirm the accuracy of tool invocation when pro-
cessing user requests.

Dataset TokenDesc. TokenDoc. Exp.

RestBench (Song et al., 2023) 58 3,881 ✗
Gorilla (Patil et al., 2023) 88 284 ✗
ToolAlpaca (Tang et al., 2023) 567 7,661 ✗
ToolBench (Qin et al., 2023) 744 2,530 ✗
HFmodels (Shen et al., 2023a) 777 1,196 ✓

Table 1: The statistics of tool documentations in tool
benchmarks. We report the average length of the
tool description with parameters (TokenDesc.), the aver-
age length of the tool documentations (TokenDoc.) and
whether the benchmarks have tool usage scenarios and
example (Exp.).

3 Preliminary

3.1 Task Formulation

Motivated by previous works (Shen et al., 2023a;
Song et al., 2023), just as shown in Figure 2, the
pipeline of LLM-based agents for tool utilization
can be summarized as a four-stage framework as:

• Task Planning: Agents analyze a user re-
quest T and decompose it into subtasks T =
{t1, t2, ..., tn} with specific dependencies and ex-
ecution orders, each optimized for execution with
a single tool.

• Tool Retrieval: Here, the focus is on matching
these subtasks with suitable tools from the tool
inventory based on the similarity between the
subtasks and tools. The aim is to select the top-K
tools {a1, a2, ..., aK}, that have the highest simi-
larity to each subtask, forming a set of candidate
tools for each.

• Tool Selection: In this stage, the most ap-
propriate tool for each subtask from the set
{a1, a2, ..., aK} is chosen based on its descrip-
tion. This stage also includes preparing the pa-
rameters for tool execution, as specified in its
document.

• Tool Execution: After tool selection and param-
eter setup, the tool is executed. If a tool fails
during execution, the process reverts to the tool
selection stage for an alternative choice. This
retry mechanism continues until successful exe-
cution or until the maximum trial R is reached.

After these stages, agents can orchestrate different
tools and use their powers to generate the final
answer for each user request.

953

3.2 Analysis

Previous studies typically adhere to the established
paradigm, instructing LLMs with the tool docu-
mentation to use tools. However, relying on the
tool documentation can hinder the performance of
LLM-based agents due to its inherent limitations.

Inconsistency In the real world, a wide variety
of tools from different sources results in substantial
diversity in terms of format, style, and guidelines.
As a result, this diversity contributes to a mess of
tool documentations without a cohesive and stan-
dardized structure, posing a significant challenge
for LLMs to effectively use these tools.

Redundancy Generally, the tool documents from
different communities usually contain redundant
information (e.g., URLs, IDs, etc.). In practical ap-
plication, we just require LLMs to understand the
core function of the tool and then decide whether
to use and how to use this tool. As shown in Ta-
ble 1, we analyze multiple tool-based benchmarks
and the results reveal a high proportion of redun-
dant information in many tool documentations. For
example, the average length of tool documenta-
tions used in ToolBench is approximately 2,530
tokens in Table 1.1 This useless information can
severely hinder LLMs from retrieving and selecting
tools, leading to an incorrect tool invocation. More-
over, LLMs are constrained by a maximum context
length, yet tool documentation is typically lengthy.
This excessive length can limit the range of tool
options available for LLMs to consider, posing a
challenge for efficient tool selection.

Incompleteness Previous work has demonstrated
that LLMs may pass invalid parameters, leading
to tool execution failure (Song et al., 2023; Qin
et al., 2023; Zhang et al., 2023a). As shown in
Table 1, unlike human-oriented instruction manuals
that provide usage scenarios and examples, existing
tool documentation typically lacks such context,
only offering example codes for tool invocation or
results. This leads to LLMs struggling to know
when and how to refer to the examples to pass the
correct parameters, resulting in invalid parameters.

4 Method

As aforementioned, polishing, streamlining, and
enhancing the tool documentation is important

1We adopt cl100k_base encoding. The code is in https:
//github.com/openai/tiktoken.

to improve tool utilization in LLM-based agents.
Currently, most of LLMs (OpenAI, 2022, 2023;
Jiang et al., 2023a; Chiang et al., 2023) exhibit
satisfactory instrution-following capability due to
instruction-following fine-tuning process (Wang
et al., 2023; Ren et al., 2024). Motivated by this,
we introduce EASYTOOL, a simple method to con-
dense tool documentation into more concise and
effective tool instructions to improve LLM-based
agents in tool utilization. The overall workflow is
illustrated in Figure 1. EASYTOOL comprises two
stages: the first stage is to re-organize the original
tool documentation by eliminating the irrelevant in-
formation and only summarizing the multiple built-
in function description of each tool (§ 4.1). For
each tool, we further design a functional guideline
instruction for LLMs and enable LLMs to further
refine the tool documentation by providing param-
eters of each tool and simultaneously the examples
to instruct LLMs for usage (§ 4.2).

4.1 Tool Description Generation
As described above, tool documentation usually
includes plenty of irrelevant information, making
it difficult to understand practical usage for LLMs.
Moreover, some tools that enable multiple built-
in functions for different scenarios are not always
comprehensively described. For example, Google
Maps offers both distance calculations and coordi-
nate provision, but its description might not cover
all functionalities. To address this, we expect to
use LLMs to polish and streamline these tool docu-
mentations and decode them into more concise and
effective tool descriptions. Here, just as shown in
Table 2 (I), we design an instruction and require
LLMs (i.e., ChatGPT) to convert tool documenta-
tion to summarize its general purpose by following
the designed instruction. Then, for each function
in tool documentation, we ask the LLM to generate
the functionality of it. We also add extra demon-
strations to enhance the instruction-following of
LLMs in parsing tool documentation.

4.2 Tool Functionality Guidelines
Construction

The tool descriptions generated in the previous step
aid LLMs in tool retrieval and selection. How-
ever, we still need to predict the correct parameters
of each tool for a successful execution. Previous
work (Qin et al., 2023; Zhang et al., 2023a; Xu
et al., 2023) also confirms that many open-source
LLMs are still inadequate in executing tools, re-

954

https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

I: Tool Description Generation

/* I: Task prompt */
Your task is to create a concise and effective tool usage
description based on the tool documentation. You should
ensure the description only contains the purposes of the
tool without irrelevant information. Here is an example:
/* Examples */
{Tool Documentation}
Tool usage description:
{Tool_name} is a tool that can {General_Purposes}.
This tool has {Number} multiple built-in functions:
1. {Function_1} is to {Functionality_of_Function_1}
2. {Function_2} is to ...
/* Auto generation of tool description */
{Tool Documentation of ‘Aviation Weather Center’}
Tool usage description:
‘Aviation Weather Center’ is a tool which can provide official
aviation weather data...

II: Tool Function Guidelines Construction

/* Task prompt */
Your task is to create the scenario that will use the tool.
1. You are given a tool with its purpose and its parameters
list. The scenario should adopt the parameters in the list.
2. If the parameters are null, you
should set: {"Scenario": XX, "Parameters":{}}.
Here is an example:
/* Examples */
{Tool_name} is a tool that can {General_Purposes}.
{Function_i} is to {Functionality_of_Function_i}
{Parameter List of Function_i}
One scenario for {Function_i} of {Tool_name} is:
{"Scenario": XX, "Parameters":{XX:XX}}
/* Auto-construction for Tool Function Guidelines */
‘Ebay’ can get products from Ebay in a specific country.
‘Product Details’ in ‘Ebay’ can get the product details for a
given product id and a specific country.
{Parameter List of ‘Product Details’}
One scenario for ‘Product Details’ of ‘Ebay’ is:
{"Scenario": "if you want to know the details of the product
with product ID 1954 in Germany from Ebay",
"Parameters":{"product_id": 1954, "country": "Germany"}}.

Table 2: Examples of prompt for ChatGPT for tool
description generation and tool function guidelines con-
struction. Green texts are generated by ChatGPT.

sulting in parameter errors. Therefore, we further
polish our tool descriptions in the first stage to
supplement the parameters in the tool instructions.
Here, we design another instruction that requires
LLMs to extract parameters from tool documenta-
tion and then organize it into a structured output,
thus facilitating LLMs to invoke tools. As shown
in Table 2 (II), we use ChatGPT to create exam-
ples, including scenarios and parameter names with
values to demonstrate how to input parameters for
different scenarios and enhance LLMs to precisely
use tools. To verify the quality of generated exam-
ples for the tool functionality guidelines, we input
the parameters to execute the tools to confirm the

Dataset TokenDoc. TokenIns. Reduce (%)

ToolBench 2,530 748 70.43%
RestBench 3,881 103 97.35%

Table 3: The average number of tokens in each tool doc-
umentation (TokenDoc.) and tool instruction generated
by EASYTOOL (TokenIns.). We also report the reduced
ratio (i.e. Reduce (%)) for reference.

correct input of parameters and the accuracy of
results.

4.3 Evaluation

To assess the quality of tool descriptions, we select
100 examples from ToolBench and employ three
annotators to evaluate their accuracy. To assess the
plausibility of the scenarios, we also sample 100
tool functionality guidelines from ToolBench and
employ three annotators to evaluate the plausibility
of the scenarios. To process conflicting annota-
tions, we adopt a voting majority principle to de-
termine the results. Finally, the evaluation results
demonstrate that the correctness of tool descrip-
tion and tool functionality guidelines can reach a
value of 100% accuracy, with Fleiss’s κ = 0.97.
This demonstrates that LLMs can summarize high-
quality tool descriptions and generate plausible sce-
narios based on tool documentation, thereby high-
lighting the simplicity and effectiveness of EASY-
TOOL. The annotation details for tool instruction
are shown in Appendix A. The evaluation on the
robustness of the prompts is shown in Appendix D.
The hallucination evaluation for tool instruction
is shown in Appendix E. We also compare with
prompt compression methods in Appendix F.

5 Experiment

In this section, we adopt EASYTOOL to three dis-
tinct tool-use applications to show that EASYTOOL

can help LLM-based agents better answer real-
world user requests through tool usage (§ 5.1), find
correct tool solution paths (§ 5.2), and improve
their tool utilization capabilities on complex math
problems (§ 5.3).

5.1 Real-World Question Answering

Since LLMs are still limited in their training data, it
is essential for them to use external tools to access
up-to-date information in response to user requests.

Benchmark We choose ToolBench (Qin et al.,
2023), a dataset containing diverse user requests

955

Model Method I2-Category I3-Instruction Average

Pass Win Success Pass Win Success Pass Win Success

ChatGPT

ReACT 39.0 - 18.0 23.0 - 1.0 31.0 - 9.5
DFSDT 64.5 63.0 24.0 60.0 70.0 6.0 62.3 66.5 15.0

+EASYTOOL 74.5 76.5 68.5 65.0 88.0 37.0 69.8 82.3 52.8
+EASYTOOL +Re. 69.0 71.0 60.5 66.0 89.0 42.0 67.5 80.0 51.3

ToolLLaMA-7B

ReACT 30.0 45.5 9.5 22.0 49.0 3.0 26.0 47.3 6.3
DFSDT 66.0 55.0 24.0 56.0 56.0 6.0 61.0 55.5 15.0

+Re. 57.0 60.0 11.5 54.0 69.0 2.0 55.5 64.5 6.8

Llama-3.1-8B-Instruct

ReACT 3.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0
DFSDT 12.0 32.0 10.0 8.0 3.0 1.0 10.0 17.5 5.5

+EASYTOOL 75.0 75.0 60.0 69.0 88.0 37.0 72.0 81.5 48.5
+EASYTOOL +Re. 69.0 69.0 57.5 68.0 89.0 42.0 68.5 79.0 49.8

Llama-3.1-70B-Instruct

ReACT 24.0 10.0 11.0 20.0 13.0 10.0 22.0 11.5 10.5
DFSDT 45.0 40.0 27.0 35.0 56.0 21.0 40.0 48.0 24.0

+EASYTOOL 71.5 79.0 70.0 70.0 89.0 60.0 70.8 84.0 65.0
+EASYTOOL +Re. 70.0 71.0 65.0 71.0 89.0 54.0 70.5 80.0 59.5

GPT-4

ReACT 67.5 53.5 27.0 40.0 71.0 4.0 53.8 62.3 15.5
DFSDT 69.5 57.0 42.0 59.0 73.0 50.0 64.3 65.0 46.0

+EASYTOOL 76.5 78.5 76.0 69.0 89.0 64.0 72.8 83.8 70.0
+EASYTOOL +Re. 72.5 72.0 73.5 69.0 90.0 53.0 70.8 81.0 63.3

GPT-4o

ReACT 66.0 56.5 30.0 42.0 71.0 5.0 54.0 63.8 17.5
DFSDT 72.5 63.5 54.5 60.0 80.0 63.0 66.3 71.8 63.8

+EASYTOOL 80.5 81.5 83.0 73.0 90.0 71.0 76.8 85.8 77.0
+EASYTOOL +Re. 76.5 79.0 81.0 69.0 90.0 67.0 72.8 84.5 74.0

Table 4: Results of LLMs on ToolBench. Win rate (denoted as Win) is calculated by comparing each model with
ChatGPT-ReACT. The win rate higher than 50% means the model performs better than ChatGPT-ReACT. Following
(Qin et al., 2023), apart from adopting retriever (i.e., +Re.), all methods use the ground truth toolset to select tools.
The best results are bolded, and the second best ones are underlined.

with a massive set of publicly available REST API
tools. The API tools in ToolBench are collected
from RapidAPI, which requires additional individ-
ual subscriptions with payments. Therefore, we
follow the strategy of many previous works to
only select the subsets for evaluation (Zhang et al.,
2023a; Du et al., 2024; Liu et al., 2024). Other sub-
sets of ToolBench only contain a single tool from
the same category. Compared with other subsets
of ToolBench, I2-Category and I3-Instruction con-
tain complex user requests that need multiple tools
from different categories to solve, which are more
aligned with real-world user requests. Therefore,
we only select I2-Category and I3-Instruction and
conduct experiments on these 300 data samples.
Each data of ToolBench consists of a user request
with a ground truth toolset, and thus models only
need to select and execute the tools from the ground
truth toolset to complete the user request.

For evaluation, ToolBench designs two evalu-
ation metrics based on ChatGPT: (1) Pass Rate,
calculated by the proportion of instructions success-
fully completed within a limited budget; (2) Win
Rate, measured by asking a ChatGPT evaluator to

select its preference for two solution paths. Fol-
lowing (Qin et al., 2023), we also measure Success
Rate, which asks GPT-4 to check whether the re-
sponses can reasonably and accurately answer the
user requests.2

Baselines Following (Qin et al., 2023), we select
ChatGPT (OpenAI, 2022), GPT-4, GPT-4o (Ope-
nAI, 2023), Llama-3.1-8B-Instruct, Llama-3.1-
70B-Instruct (Dubey et al., 2024), and ToolLLaMA-
7B as backbone models. ToolLLaMA-7B is fine-
tuned from a 7B LLaMA model (Touvron et al.,
2023a) on ToolBench. Both ReACT (Yao et al.,
2023) and DFSDT (Qin et al., 2023) are common
baselines in tool learning and have been imple-
mented in the ToolBench as well. To make a fair
comparison, we apply them as our baseline. We
do not adopt ToolLLaMA-7B on EASYTOOL due
to its poor instruction-following capability.3 For
the baselines, we follow the settings in (Qin et al.,
2023), which provides tool documentation for them

2The prompt template for evaluating success rate is shown
in Appendix B.1

3Detailed information of baselines is shown in Ap-
pendix B.2

956

Method I2-Category I3-Instruction Average

@1 @5 @1 @5 @1 @5

BERT Retriever 68.2 77.9 81.7 87.1 75.0 82.5
Ada 36.8 30.7 54.6 46.8 45.7 38.8

+ EASYTOOL 73.4 82.7 80.1 88.5 76.7 85.6

Table 5: The performance of different retrievers for
two subsets in ToolBench. We report NDCG@1 and
NDCG@5.

5 10 20 50
The Number of Candidate Tools

30
40
50
60
70
80

S
el

ec
tio

n
A
cc

ur
ac

y
(%

) ChatGPT
GPT-4

ChatGPT w/ EASYTOOL
GPT-4 w/ EASYTOOL

Figure 3: The selection accuracy of LLMs on I1-
instruciton of ToolBench.

to use tools.

Main Result We simplify the tool documenta-
tion from ToolBench into concise tool instructions
with EASYTOOL.4 Each tool instruction consists
of a tool description and functionality guidelines.
As shown in Table 3, with EASYTOOL, replac-
ing tool documentation with our tool instruction
can greatly reduce the token cost of each tool.
Especially in ToolBench, the token cost was re-
duced by 70.43%. Furthermore, results in Table 4
show that: 1) EASYTOOL can help LLMs achieve
state-of-the-art performance, indicating the superi-
ority of tool Instructions over tool documentation
in facilitating tool usage for LLM-based agents;
2) Tool instructions generated by EASYTOOL can
help small models (e.g., Llama3.1-8B-Instruct) to
better understand the usage of tools, even making
them outperform the fine-tuned method, i.e., Tool-
LLaMA. 3) Llama3.1-70B-Instruct outperforms
Llama3.1-8B-Instruct with EASYTOOL, indicating
that models with better instruction-following ca-
pabilities can achieve greater improvements with
high-quality tool instructions.

EASYTOOL for Tool Retrieval In real-world
scenarios, asking users to manually recommend
tools from a large pool for LLMs to select may
not be practical. Therefore, ToolBench also pro-

4The data examples of ToolBench are provided in Ap-
pendix G.1.

ChatGPT ChatGPT
+ EASYTOOL

GPT-4 GPT-4
+ EASYTOOL

0
5

10
15
20
25
30

Pr
op

or
tio

n
of

 T
oo

l C
al

ls
 (

%
)

8%

0%

5%

0%

25%

6%

17%

1%

Name Error Parameter Error

Figure 4: Error rates of tool calls in different LLMs.
The error rate is the number of two tool-related errors
relative to the total number of tool calls. The results are
evaluated by human annotators.

vides a dense retriever based on BERT-base (De-
vlin et al., 2019) to retrieve relevant tools for
solving user requests, and claims that it out-
performs text-embedding-ada-002, i.e. GPT
Ada (Ouyang et al., 2022), which retrieves tools
based on the cosine embedding similarity between
the subtasks decomposed by user requests and tool
descriptions from original tool documentation in
ToolBench. We argue that the poor performance
of Ada may be due to low-quality tool descrip-
tions, which often contain irrelevant details and
lack clear functionality guidelines. Thus, we re-
place the original tool descriptions with the ones
generated by EASYTOOL. Following (Qin et al.,
2023), we compare the performance of these re-
trieval methods using NDCG (Järvelin and Kekäläi-
nen, 2002). NDCG is a ranking quality metric that
compares rankings to an ideal order in which all
relevant items are at the top of the list. Results in
Table 5 show EASYTOOL can greatly improve the
tool retrieval performance.

EASYTOOL for Tool Selection We utilize the
I1-Instruciton of ToolBench, which comprises 100
user requests solvable by a single tool. We first
obtain the golden tool from I1-Instruction and then
retrieve other different tools based on cosine em-
bedding similarity between the user request and
tool descriptions as candidate tools. Then, we eval-
uate the selection accuracy of LLMs with vary-
ing numbers of candidate tools, using either origi-
nal ToolBench descriptions or those generated by
EASYTOOL. Figure 3 illustrates that EASYTOOL

enhanced descriptions enable LLMs to select the
correct tool more effectively from a larger pool.

EASYTOOL for Tool Execution For each sub-
task in I2-Category and I3-Instruction, we retrieve
the top 10 most similar tools using our tool descrip-
tions and ask models to select and execute them.

957

RestGPT +ToolDec +EASYTOOL14
16
18
20
22
24
26

C
P%

Vicuna (13B) based model

ReAct RestGPT +EASYTOOL55
60
65
70
75
80

C
P%

ChatGPT based model

Figure 5: The correct path rate (CP%) on two versions
of RestBench with different methods.

As shown in Table 4, using these retrieved tools
proves comparable, and sometimes even superior,
to the ground truth tool set. The rationale is that
EASYTOOL with retriever can retrieve similar tools
with better functionalities to replace some tools in
the ground truth tool set.

Error Analysis We follow (Zhang et al., 2023a)
and define two types of error: Tool name error
means models call non-existent tool functions that
are not in the tool inventory, and parameter error
means models pass invalid parameters. Both er-
rors lead to unsuccessful tool execution. We sam-
ple 100 data from I2-Category and I3-Instruction
and employ three annotators to manually examine
the output of LLMs with tool documentation and
tool instruction generated by EASYTOOL (Fleiss’s
κ = 0.91). The results in Figure 4 show that LLMs
may generate non-existent tool names and pass
invalid parameters to the right tool functions. How-
ever, EASYTOOL can significantly reduce these
incorrect behaviors, leading to successful tool exe-
cution.5

5.2 Real-World Web Services

Real-world web services often need to execute
tools following a specific order. We aim to ex-
plore the capability of LLMs to find correct tool
solution paths.

Benchmark and Baselines We select Rest-
Bench (Song et al., 2023), comprising tasks in
real-world web service scenarios. We evaluate
our method on a subset of RestBench, i.e., TMDB.
TMDB is a movie information website that offers
55 official RESTful APIs as tools. Following the
evaluation metric in RestBench, we use the correct

5Annotation details are shown in Appendix A and fur-
ther analysis about the number of examples is shown in Ap-
pendix B.3.

path rate (CP%) to measure accuracy, which is the
proportion of the tool path containing the gold tool
path as a subsequence. We choose RestGPT (Song
et al., 2023) as our backbone model. The Rest-
GPT has two versions, i.e., Vicuna-13B-based Rest-
GPT and ChatGPT-based RestGPT. For Vicuna-
13B-based RestGPT, we compare our method with
ToolDec, a decoding algorithm to help LLMs in-
voke tools properly. For ChatGPT-based RestGPT,
we compare our method with ReAct since ToolDec
cannot be applied to close-sourced models.

Result We simplify the long tool documentation
into concise tool instructions with EASYTOOL for
LLMs to use.6 For comparison, we use the prompt
from (Song et al., 2023) containing original tool
descriptions and four examples. Table 3 demon-
strates that EASYTOOL significantly reduces the
token cost. Figure 5 highlights the considerable
improvement in the correct path rate, signifying
EASYTOOL’s effectiveness in aiding LLMs to find
the correct tool solution paths.

5.3 Numerical Reasoning
We also explore whether EASYTOOL can endow
LLM-based agents with better tool-utilization abil-
ity in complex math problems with incomplete tool
documentation.

Benchmark and Baselines We adopt
FuncQA (Hao et al., 2023), which tests the
numerical reasoning ability of LLMs on complex
math problems involving 13 arithmetic operations
tools. FuncQA has two subsets, i.e., one-hop
and multi-hop. The 68 one-hop questions can be
solvable with one tool. The 60 multi-hop questions
average 2.78 tool uses per question. Apart from
accuracy, we also measure tool error rate (i.e.,
Error), the proportion of tasks with at least one
tool-related error. Following (Hao et al., 2023), we
select Vicuna-30B and ChatGPT and compare our
method with 0-shot learning, Chain-of-thought
(CoT) prompting and ReAct.

Result Unlike the other datasets, FuncQA only
provides the name and calling function of a tool as
documentation, without any other tool descriptions
for further usage demonstration. Therefore, by
only leveraging the provided tool name and calling
function, we can also apply EASYTOOL to generate
tool descriptions with usage scenarios to construct

6The data examples of RestBench are provided in Ap-
pendix G.2.

958

Model One-hop (↑) Multi-hop (↑) Error (↓)

Vicuna-30B 15.00 1.00 -
+ CoT 13.33 4.00 -
+ ReAct 45.00 7.35 20.31
+ EASYTOOL 65.00 11.76 10.15

ChatGPT 55.00 9.00 -
+ CoT 48.33 17.64 -
+ ReAct 85.00 41.17 9.38
+ EASYTOOL 91.66 48.53 2.34

Table 6: The accuracy of Vicuna-30B and ChatGPT on
the FuncQA.

tool instruction for FuncQA.7 Results in Table 6
show that tool instructions generated based on our
method (+ EASYTOOL) significantly improve the
tool utilization ability of LLMs on complex math
problems. Furthermore, a lower tool error rate of
models with EASYTOOL indicates that concise and
effective tool instructions can better guide models
to select correct tools and pass valid parameters.

6 Conclusion

In this paper, we introduce EASYTOOL, an easy
but effective method to enhance the tool utilization
capabilities of LLM-based agents through the sim-
plification and refinement of tool documentation
into a clear, structured and practical tool instruction.
Our comprehensive experiments demonstrate that
EASYTOOL can effectively enhance performance
in different real-world applications. We also expect
EASYTOOL can facilitate the community to better
develop efficient tool utilization.

Limitations

First, this paper only focuses on tool documenta-
tion whose token length does not exceed the Chat-
GPT input limit. Documentation with token counts
surpassing this limit cannot be processed by EASY-
TOOL without additional preprocessing. Second,
our method is limited to single documentation, ne-
glecting the dependencies among tools. Consider-
ing these dependencies in tool descriptions could
significantly enhance the model’s effectiveness in
certain scenarios. Finally, EASYTOOL only works
on models with instruction-following ability. Fu-
ture work can focus on training specialized models
using tool instructions generated by EASYTOOL,
thereby improving their capability in tool utiliza-
tion.

7The data examples of FuncQA are provided in Ap-
pendix G.3.

Ethics Statement

We acknowledge that all authors are informed
about and adhere to the ACL Code of Ethics and
the Code of Conduct.

Use of Human Annotations Our institution re-
cruited annotators to implement the annotations
of tool descriptions and functionality guidelines.
We ensure the privacy rights of the annotators are
respected during the annotation process. The an-
notators receive compensation exceeding the lo-
cal minimum wage and have consented to the use
of tool instructions generated by EASYTOOL for
research purposes. Appendix A provides further
details on the annotations.

Risks The tool benchmarks in our experiment are
sourced from publicly available sources. However,
we cannot guarantee that they are devoid of socially
harmful or toxic language. Furthermore, evaluating
the data quality of tool instructions is based on
common sense, which can vary among individuals
from diverse backgrounds. We use ChatGPT to
correct grammatical errors in this paper.

Acknowledgement

We thank the anonymous reviewers for their valu-
able comments. This work is partially sup-
ported by the Chinese NSF Major Research Plan
(No.92270121).

References
Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun

Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.
T-eval: Evaluating the tool utilization capability step
by step. arXiv preprint arXiv:2312.14033.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

959

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any-
tool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Significant Gravitas. 2023. Auto-gpt: An au-
tonomous gpt-4 experiment. https://github.com/
Significant-Gravitas/Auto-GPT.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. vol-
ume abs/2305.11554.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. LLMLingua: Compress-
ing prompts for accelerated inference of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358–13376, Singapore. Association
for Computational Linguistics.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 3102–3116.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie,
Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
2024. Toolnet: Connecting large language models
with massive tools via tool graph. arXiv preprint
arXiv:2403.00839.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models. vol-
ume abs/2304.09842.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100, Singa-
pore. Association for Computational Linguistics.

Jesse Mu, Xiang Lisa Li, and Noah D. Goodman.
2023. Learning to compress prompts with gist to-
kens. CoRR, abs/2304.08467.

Niels Mundler, Jingxuan He, Slobodan Jenko, and Mar-
tin Vechev. 2024. Self-contradictory hallucinations
of large language models: Evaluation, detection and
mitigation. In The Twelfth International Conference
on Learning Representations.

OpenAI. 2022. Chatgpt.

OpenAI. 2023. GPT-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
TALM: tool augmented language models. CoRR,
abs/2205.12255.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. CoRR,
abs/2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
CoRR, abs/2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. arXiv preprint arXiv:2405.17935.

Mengjie Ren, Boxi Cao, Hongyu Lin, Liu Cao, Xi-
anpei Han, Ke Zeng, Guanglu Wan, Xunliang Cai,
and Le Sun. 2024. Learning or self-aligning? re-
thinking instruction fine-tuning. arXiv preprint
arXiv:2402.18243.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
CoRR, abs/2302.04761.

960

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://doi.org/10.48550/arXiv.2305.11554
https://doi.org/10.48550/arXiv.2305.11554
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://openreview.net/forum?id=EmQSOi1X2f
https://openreview.net/forum?id=EmQSOi1X2f
https://openreview.net/forum?id=EmQSOi1X2f
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023a. Hugging-
gpt: Solving AI tasks with chatgpt and its friends in
huggingface. volume abs/2303.17580.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023b. Taskbench: Benchmark-
ing large language models for task automation. arXiv
preprint arXiv:2311.18760.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.
2023. Restgpt: Connecting large language models
with real-world restful apis.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases.

Gemini Team and Google. 2023. Gemini: A family of
highly capable multimodal models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin
Van Durme, and Yu Su. 2024. Llms in the imag-
inarium: tool learning through simulated trial and
error. arXiv preprint arXiv:2403.04746.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language

models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Kexun Zhang, Hongqiao Chen, Lei Li, and William
Wang. 2023a. Syntax error-free and generalizable
tool use for llms via finite-state decoding.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023b. Siren’s song in the ai
ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

961

https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2310.07075
http://arxiv.org/abs/2310.07075

A Crowd-sourcing Details for Tool
Instruction Evaluation and Error
Analysis

For tool instruction evaluation, we have recruited a
team of three undergraduates. We pay each annota-
tor $8/h, exceeding the local minimum wage. The
screenshots of the instructions and interface for tool
description and functionality guideline annotation
are shown in Figure 7 and Figure 8.

For error analysis, we have recruited a team of
three undergraduates as annotators. We pay each
annotator $8/h, exceeding the local minimum wage.
We randomly sampled 100 data from I2-Category
and I3-Instruction and asked them to manually ex-
amine the output of LLMs using tool documenta-
tion and tool instructions generated by EASYTOOL.
Each sample is examined by these three annotators
with Fleiss’s κ = 0.91. In cases of disagreement
among them, the decision of the majority was ac-
cepted. The screenshots of the instructions and
interface for error annotation are shown in Figure 9.

B Details of ToolBench

B.1 Success Rate Evaluation
The prompt of the success rate evaluation is given
in List 1.

Listing 1: Instruction templates for GPT-4 to evaluate
the success rate of the results on ToolBench
Please check whether the response can
reasonably and accurately answer the
question. If it can , please output 'YES
'; If not , please output 'NO '

You need to give reasons first and then
decide whether the response can
reasonably and accurately answer the
question. You must only output in a
parsible JSON format. Two example
outputs look like:

Example 1: {" Reason ": "The reason why
you think the response can reasonably
and accurately answer the question", "
Choice ": "Yes"}
"Example 2: {" Reason ": "The reason why
you think the response cannot reasonably
and accurately answer the question", "

Choice ": "No"}

This is the user 's question: {question}
This is the response: {answer}
Output:

B.2 The Details about Baselines of ToolBench
LLama-3.1-8B-Instruct and LLama-3.1-70B-
Instruct (Dubey et al., 2024) is the LLama-3.1 vari-

ant fine-tuned on instructions, which exhibits great
instruction-following and reasoning capability. For
OpenAI models, we use gpt-3.5-turbo-0613
and gpt-4-0613, and gpt-4o-2024-08-06. We
set the temperature to 0 for all models.

For baselines, ReACT is a general paradigm
that combines reasoning and acting with language
models to solve diverse language reasoning and
decision-making tasks (Yao et al., 2023). DFSDT
is a depth-first search-based decision tree method,
which allows the model to assess different reason-
ing paths and choose to either (1) proceed along
a promising path or (2) abandon an existing node
(such as a node with a failed API call) by calling
the “Finish by Giving Up” function and expand a
new node.

Following the setting in (Qin et al., 2023), for
ChatGPT and GPT-4, we directly leverage the func-
tion call to use tools 8. For other models, we synthe-
size input in function call format to these models.

B.3 Error Analysis about Example Number
We further conduct the ablation study of GPT-
generated examples. Specifically, we sample 100
data from I2-Category and I3-Instruction and em-
ploy three annotators to manually examine the
output of LLMs with: 1) Tool documentation; 2)
EASYTOOL-generated tool instruction generated
without examples (EASYTOOL w/o example); 3)
EASYTOOL-generated tool instruction with one
example (EASYTOOL w/ 1 example); 4) EASY-
TOOL-generated tool instruction generated with
three examples (EASYTOOL w/ 3 examples). The
results in Table 7 show that: With concise and effec-
tive tool instruction, EASYTOOL can significantly
reduce these incorrect behaviors, leading to suc-
cessful tool execution. A clear tool description gen-
erated by EASYTOOL can help LLM-based agents
avoid calling non-existent tool functions. GPT-
generated examples can better help LLM-based
agents pass invalid parameters.

C Tool Instruction Generation

The prompt of the tool instruction generation is
given in List 2.

Listing 2: Instruction templates for GPT-4 to generate
the tool instruction for FuncQA
Your task is to generate a tool
instruction for the tool given the
function of the tool.

8https://openai.com/blog/
function-calling-and-other-api-updates

962

https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

Model Method Name Parameter

ChatGPT

Tool documentation 8 25
EASYTOOL w/o example 0 21
EASYTOOL w/1 example 0 6
EASYTOOL w/3 examples 0 5

GPT-4

Tool documentation 5 17
EASYTOOL w/o example 0 14
EASYTOOL w/1 example 0 1
EASYTOOL w/3 examples 0 1

Table 7: Error rates of tool calls in ChatGPT and GPT-4
with different examples generated by EASYTOOL.

The tool instruction consists of two
parts: tool description and tool
function guidelines.

The tool description only contains the
purposes of the tool without other
irrelevant information. Here is an
example:
'add_ ' returns the sum of all the
arguments passed to it, normalized to 2
decimal places.

The tool function guidelines introduce
the parameters with examples that
contain the scenario adopting the
parameters. Here is an example:
"Usage ":
{

"required_parameters ":[
{

"name ":" input",
"type ":" List"

}
],

"Example ":{
"Scenario ":"if you want to
add 2 to 1.",
"Parameters ":{

"input ":[2 ,1]
}

}
}

You should first generate the tool
description and then give the tool
function guidelines. You must only
output in a parsible JSON format. Two
example outputs look like:
{" tool_description ": XX, "Usage": XX}

This is the tool name: {tool_name}
This is the function of tool: {
tool_function}
Output:

D Robustness Evaluation

In this section, we aim to evaluate the robustness
of the task prompts in Table 2. We ask ChatGPT to
rewrite these task prompts three times and the new
task prompts are shown in List 3. We sample 100

tool documentations from ToolBench and ask Chat-
GPT to generate tool descriptions and tool func-
tionality guidelines based on the new task prompts.
Then we ask two annotators to evaluate the qual-
ity of four results (one from our task prompts, and
three from ChatGPT generated task prompts). The
results in Figure 6 show that the changes to the task
prompt, without altering the actual meaning, do not
affect the quality of the tool description and tool
functionality guidelines, thereby demonstrating the
robustness of our prompts.

Listing 3: The ChatGPT generated task prompts for
tool description generation and tool function guidelines
construction.
Prompt -1:
- Tool Description:
Your assignment involves developing a
succinct and practical description on
using a specific tool , as outlined in
its documentation. This description
should focus solely on the tool 's
functions , excluding any extraneous
details.
- Tool Function Guidelines:
Create a scenario that incorporates the
use of a specified tool , ensuring it
utilizes the provided parameters.
Receive a description of a tool ,
including its purpose and a list of
parameters. Design a scenario that
effectively employs these parameters.
If both "required_parameters" and "
optional_parameters" are absent , format
your response as:
{" Scenario ": XX, "Parameters ": {}}.

Prompt -2:
- Tool Description:
Your assignment involves crafting a
succinct and practical description of a
tool , using its documentation as a
reference. Focus on outlining the tool 's
functions , excluding any extraneous

details.
- Tool Function Guidelines:
Your assignment involves developing a
scenario that utilizes a specified tool.
Here are the guidelines:

You will receive information about a
tool , including its intended use and a
list of parameters. Your scenario should
incorporate these parameters.

In cases where both "required_parameters
" and "optional_parameters" are absent ,
format your response as follows:
{" Scenario ": XX, "Parameters ": {}}.

Prompt -3:
- Tool Description:
Your assignment involves writing a
succinct and clear description of a tool
's usage , guided by its documentation.
This description should exclusively
focus on the tool 's functions , omitting

963

0 50 100

Pr
om

pt
-1

Pr
om

pt
-2

Pr
om

pt
-3

1.0%

2.0%

0.0%

97.0%

95.0%

98.0%

2.0%

3.0%

2.0%

Win Tie Lose

Figure 6: Comparison of our task prompts with Chat-
GPT generated task prompts. Percentage of wins, ties
and losses are calculated.

Metrics Input Context Fact

Human Eval 1.2% 0.8% 1.0%
LLM Judge 0.6% 0.8% 0.8%

Table 8: The hallucination evaluation of tool instruc-
tions.

any extraneous details.
- Tool Function Guidelines:
Your assignment involves crafting a
scenario that utilizes a specific tool.
Here 's how to proceed:
First , familiarize yourself with the
tool 's intended use and its available
parameters. Then , design a scenario that
effectively incorporates these

parameters.
In cases where both "required_parameters
" and "optional_parameters" are absent ,
format your response as follows:
{" Scenario ": XX, "Parameters ": {}}.

E Hallucination Evaluation

Following Zhang et al. (2023b), we categorize hal-
lucination within the context of LLMs as follows:

• Input-conflicting hallucination, where
LLMs generate content that deviates from the
source input provided by users;

• Context-conflicting hallucination, where
LLMs generate content that conflicts with pre-
viously generated information by itself;

• Fact-conflicting hallucination, where LLMs
generate content that is not faithful to estab-
lished world knowledge.

To evaluate the occurrence of hallucinations in
tool description generation, we select 500 tool de-
scriptions generated by EASYTOOL from Tool-
Bench, and employ the two hallucination evalu-
ation methods:

• Human Eval (Min et al., 2023): we employ
three annotators for the hallucination evalua-
tion (Fleiss’s κ = 0.94).

Method Metrics Input Context Fact

GPT-4 w/ Doc. Human Eval 17.0% 6.0% 5.0%
LLM Judge 14.0% 8.0% 3.8%

GPT-4 w/ Inst. Human Eval 4.2% 1.6% 0.0%
LLM Judge 3.5% 0.0% 0.0%

Table 9: The hallucination evaluation results of GPT-4
with documentation (w/ Doc.) and tool instruction (w/
Inst.).

• LLM Judge (Mundler et al., 2024): we adopt
GPT-4o to automatically detect the above hal-
lucinations.

The results in Table 8 indicate that ChatGPT
occasionally produces minor hallucinations when
generating tool instructions, but such instances are
rare. This demonstrates that our method is both
simple and effective.

Moreover, we also evaluate the hallucinations
produced by LLMs when utilizing tool documenta-
tion and our tool instruction. We select 200 samples
from ToolBench and engage three annotators for
evaluation (Fleiss’s κ = 0.97). The findings in
Table 9 indicate that using tool instructions signifi-
cantly decreases the occurrence of hallucinations
compared to using tool documentation, demonstrat-
ing the advantages of EASYTOOL.

F Prompt Compression Method

We also adopt LLMLingua (Jiang et al., 2023b),
a prompt compression method, to identify and
remove non-essential tokens in tool documenta-
tion. As shown in Table 10, employing a common
prompt compression method like LLMLingua can
be detrimental. This method identifies and removes
non-essential tokens in tool documentation, poten-
tially including crucial tokens in parameters and
functions necessary for successful tool execution.
This compression harms the model’s understand-
ing of the tool. However, as shown in Appendix G,
using EASYTOOL to compress tool descriptions
can enhance the model’s comprehension of the tool.
This improvement significantly boosts tool retrieval
performance, enabling LLMs to more effectively
select the correct tool from a larger pool.

G Examples of Tool Instruction

G.1 Data Examples of ToolBench
Table 11 presents some examples of tool instruc-
tions generated by EASYTOOL in ToolBench for a
better understanding.

964

G.2 Data Examples of RestBench
Table 12 presents some examples of tool instruc-
tions generated by EASYTOOL in RestBench for a
better understanding.

G.3 Data Examples of FuncQA
Table 13 presents some examples of tool instruc-
tions generated by EASYTOOL in FuncQA for a
better understanding.

965

Tool Documentation:
{

"product_id ": "api_b04d269d -c7dd -4b84 -8e17 -6 fba24d64d3d",
"tool_description ": "Get Products from Ebay (Unofficial)",
"home_url ": "https :// rapidapi.com/felixeschmittfes/api/ebay32/",
"name": "Ebay",
"title": "Ebay",
"pricing ": "FREEMIUM",
"tool_name ": "Ebay",
"host": "ebay32.p.rapidapi.com",
"api_list ": [

{
"name": "Product Details",
"url": "https :// ebay32.p.rapidapi.com/product /195499451557" ,
"description ": "Get the product details for a given product id and a
specific country.",
"method ": "GET",
"required_parameters ": [

{
"name": "product_id",
"type": "NUMBER",
"description ": "ID of the product. Can be obtained from the url
of the product or by using the `/search ` endpoint.",
"default ": "195499451557"

}
],
"optional_parameters ": [

{
"name": "country",
"type": "STRING",
"description ": "Valid country to return offers for.\ nValid
values are in description of this endpoint .\ nDefault: `united
states `.",
"default ": "germany"

},
{

"name": "country_code",
"type": "STRING",
"description ": "Country code of the valid country to return
offers for.\ nValid values are in description of this endpoint .\
nDefault: `us `.",
"default ": "de"

}
]

}
]

}

Tool Instruction Compressed By LLMLingua:
{

"product "_b04d269d -c7be -fba24d64d",
"_ "Get fromay (Unofficial "://id./ fixeschmittfes/ay/ " " " " "FREEM " " ".p. "_ [

" "Product Details",
"url": "https :// ebay32.p.rapidapi.com/product /195499451557" ,
"description ": "Get the product details for a given product id and a
specific country.

Default country is `United States `.
Specify country with country name or country code.

Table 10: The original tool documentation and tool instruction compressed by LLMLingua.

966

Figure 7: The screenshots of the instructions and interface for tool description annotation.

967

Figure 8: The screenshots of the instructions and interface for tool functionality guidelines annotation.

968

Figure 9: The screenshots of the instructions and interface for error annotation.

969

Tool Description:
/* Example 1 */
'TokopediaApi ' can search and retrieve product details from Tokopedia. This tool has
2 APIs: 1. 'Search Product ' can search for products on Tokopedia based on a query

string and action type. 2. 'Get Product Detail ' can retrieve detailed information
about a product on Tokopedia based on its slug.
/* Example 2 */
'Tokopedia Super API ' can effortlessly retrieve shop and product information. This
tool has 1 API: 1. 'sortProductsMaster ' can provide the list of available sorting
methods.

Tool Function Guidelines:
/* Example 1 */
{

"name": "Search Product",
"description ": "Search The Product",
"required_parameters ": [

{
"name": "query",
"type": "STRING",
"description ": "",
"default ": "Celana Jeans"

},
{

"name": "act",
"type": "STRING",
"description ": "",
"default ": "search"

}
],
"optional_parameters ": [],
"Example ": {

"Scenario ": "if you want to search for a product with the query 'Celana
Jeans ' using the 'search ' action",
"Parameters ": {

"query": "Celana Jeans",
"act": "search"

}
}

}
/* Example 2 */
{

"name": "sortProductsMaster",
"description ": "the list of available sorting methods",
"required_parameters ": [],
"optional_parameters ": [],
"Example ": {

"Scenario ": "if you want to retrieve the list of available sorting methods
for products using Tokopedia Super API",
"Parameters ": {}

}
}

Table 11: The tool instruction of ToolBench generated by EASYTOOL.

970

Tool Description:
/* Example 1 */
'/tv/latest ' can get the most newly created TV show.
/* Example 2 */
'/search/collection ' can search for collections , which can obtain collection_id.

Tool Function Guidelines:
/* Example 1 */
{

"tool_usage ": "GET /person /{ person_id }/ tv_credits",
"Example ": {

"Scenario ": "If you want to get the TV show credits of a person with
person_id 456.",
"Parameters ": {

"input": "GET /person /456/ tv_credits"
}

}
}
/* Example 2 */
{

"tool_usage ": "GET /tv/latest",
"Example ": {

"Scenario ": "If you want to get the most newly created TV show.",
"Parameters ": {

"input": "GET /tv/latest"
}

}
}

Table 12: The tool instruction of RestBench generated by EASYTOOL.

971

Tool Description:
/* Example 1 */
'add_ ' returns the sum of all the arguments passed to it, normalized to 2 decimal
places.
/* Example 2 */
'subtract_ ' returns the difference of the arguments passed to it, starting with the
first argument and subtracting all subsequent arguments , normalized to 2 decimal
places.

Tool Function Guidelines:
/* Example 1 */
{

"required_parameters ":[
{

"name ":" input",
"type ":" List"

}
],
"Example ":{

"Scenario ":"if you want to add 2 to 1.",
"Parameters ":{
"input ":[2 ,1]
}

}
}
/* Example 2 */
{

"required_parameters ": [
{

"name": "input",
"type": "List"

}
],
"Example ": {

"Scenario ": "if you want to subtract 2 from 1.",
"Parameters ": {

"input": [1,2]
}

}
}

Table 13: The tool instruction of FuncQA generated by EASYTOOL.

972

