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Abstract

Although LLMs are increasing the productiv-
ity of professional programmers, existing work
shows that beginners struggle to prompt LLMs
to solve text-to-code tasks (Nguyen et al., 2024;
Prather et al., 2024; Mordechai et al., 2024).
Why is this the case? This paper explores
two competing hypotheses about the cause of
student-LLM miscommunication: (1) students
simply lack the technical vocabulary needed
to write good prompts, and (2) students do
not understand the extent of information that
LLMs need to solve code generation tasks. We
study (1) with a causal intervention experiment
on technical vocabulary and (2) by analyzing
graphs that abstract how students edit prompts
and the different failures that they encounter.
We find that substance beats style: a poor grasp
of technical vocabulary is merely correlated
with prompt failure; that the information con-
tent of prompts predicts success; that students
get stuck making trivial edits; and more. Our
findings have implications for the use of LLMs
in programming education, and for efforts to
make computing more accessible with LLMs.

1 Introduction

There is a growing body of evidence that large
language models (LLMs) are increasing the pro-
ductivity of professional programmers (Etsenake
and Nagappan, 2024). At the same time, previ-
ous work shows that students struggle to leverage
LLMs in programming across a variety of tasks and
models (Nguyen et al., 2024; Prather et al., 2024;
Mordechai et al., 2024). But why is this the case?

Prior work has reported on students’ and in-
structors’ perception of why student-LLM inter-
actions go wrong, positing many explanations
including unfamiliarity with technical vocabu-
lary (Nguyen et al., 2024; Feldman and Anderson,
2024; Mordechai et al., 2024; Prather et al., 2024),
model non-determinism (Lau and Guo, 2023; Vada-
party et al., 2024), and trouble understanding LLM

output (Nguyen et al., 2024; Vadaparty et al., 2024).
However, there is little quantitative evidence about
these potential sources of miscommunication.

In this paper, we test two competing hypothe-
ses about the cause of student-LLM miscommu-
nication. One possibility is that students pro-
vide all of the information that the model needs,
but use language that models cannot understand.
Non-expert programmers talk about code differ-
ently than experts, leading to problems for models
trained largely on expert code. A second possibility
is that students do not understand what information
a model needs to solve a given problem. Writing
prompts involves decisions about what information
the model may be able to infer from pretraining
versus what information must be stated directly in
the prompt. These decisions may be more challeng-
ing for students to make, since they do not yet have
a strong sense of what information code typically
contains.

This paper tests the impact of these potential er-
ror sources in two sets of experiments on a dataset
of 1,749 prompts authored by 80 students (Babe
et al., 2024). To isolate the effect of linguistic varia-
tion, we conduct a causal analysis of lexical choices
for technical terminology by replacing them with
near-synonyms used by students. To study infor-
mation selection, we annotate series of prompts
in student problem-solving attempts with problem-
specific “clues,” or information that describes the
intended behavior of generated code.

Overall, our findings reveal that student-LLM
coding difficulties spring from challenges in se-
lecting relevant information rather than challenges
with technical vocabulary. Our study of the infor-
mation content of prompts shows that prompts with
missing clues almost always fail. Moreover, stu-
dents typically get “stuck” in cycles because they
make trivial edits to prompts instead of changing
their information content. Our causal analysis of
prompt wording finds relatively weak effects of
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modifying technical terminology. Although certain
substitutions can hurt prompt success rates, cor-
recting non-standard terminology rarely improves
them. This suggests that the relationship between
technical vocabulary and prompt success is more
correlational than causal.

Taken together, our results provide empirical
evidence that the information content of student
prompts is what matters, rather than their (mis)use
of technical vocabulary. These findings have strong
implications for the use of LLMs in programming
education and, more broadly, for efforts to broaden
the accessibility of computing with LLMs.1

2 Related Work

As the use of LLMs for programming has become
widespread, the question of prompt wording has
become increasingly important. Early work re-
vealed high sensitivity to prompt wording on pro-
grams (White et al., 2023; Döderlein et al., 2023),
which has efficiency implications (Mozannar et al.,
2024). Several techniques that address prompt
wording (Strobelt et al., 2022; Oppenlaender, 2023;
Zamfirescu-Pereira et al., 2023; Ma et al., 2024).
Liu et al. (2023) take a user-centered approach to
teaching strategies for prompting. Döderlein et al.
(2023) study keyword removal and replacement.
Zhu-Tian et al. (2024) generate program sketches
from Python keywords in prompts. Xia et al. (2024)
automatically reword existing task descriptions for
more robust code generation benchmarks.

Novice Programmers and LLMs. LLMs have
have sparked much discussion in computing ed-
ucation (Finnie-Ansley et al., 2022). There is a
growing body of work studying how students use
LLMs in computing classes (Zamfirescu-Pereira
et al., 2023; Prather et al., 2023; Kazemitabaar
et al., 2023a; Denny et al., 2023; Mordechai et al.,
2024; Vadaparty et al., 2024). A convergent finding
is that students struggle to leverage LLMs. Many
potential explanations have been advanced: Lau
and Guo (2023)’s study of CS educators discusses
model non-determinism as a barrier; Prather et al.
(2024) explores the cognitive load imposed by code
suggestions; and Kazemitabaar et al. (2023b) de-
scribe over-reliance on the model. Finally, multiple
studies posit that technical language is a barrier
between students and LLMs (Nguyen et al., 2024;

1We make the code and data for our experiments available
at https://github.com/nuprl/substance-vs-style.

Feldman and Anderson, 2024; Mordechai et al.,
2024; Prather et al., 2024).

This paper uses the dataset by Babe et al. (2024),
which contains 1,749 prompts from students who
have completed one college programming course.
Babe et al. (2024) turn their dataset into a bench-
mark to measure LLM performance on novice-
written prompts. They report some correlations be-
tween technical terms and prompt success. Nguyen
et al. (2024) study student experiences during the
experiment, including students’ self-perceptions of
why the task is challenging: they highlight prompt
wording as a key student-perceived barrier. This is
reaffirmed in Feldman and Anderson (2024)’s repli-
cation with students with no coding experience.

Prompting Effects in Generative Models.
There is a large set of existing work exploring the
effect of different prompting techniques for LLMs
more broadly. Prior work has shown that models
are surprisingly robust to misleading, corrupted, or
irrelevant prompts (Webson and Pavlick, 2022; Min
et al., 2022; Madaan et al., 2023; Ye and Durrett,
2022; Khashabi et al., 2022; Wang et al., 2023). In
this light, the documented issues that novice pro-
grammers experience when working with LLMs for
programming are surprising. Our work may help
to reconcile these two bodies of work by exploring
the cause of student-LLM miscommunications.

Terminology in Other Generative Domains.
The impact of prompt terminology has been studied
in non-code domains. For text generation, previous
work has studied prompting techniques to control
style (Yeh et al., 2024; Raheja et al., 2023). Text-
to-image models are very sensitive to choices in
keywords (Liu and Chilton, 2022), limiting their
usability for some applications (Tseng et al., 2024)
and users (Chang et al., 2024).

3 Dataset

Our goal is to understand what it is about student-
written prompts that makes them less effective for
LLM code generation. We use the STUDENTE-
VAL dataset released by Babe et al. (2024), who
use a subset of their data to benchmark LLMs for
code generation. Unlike many datasets of program-
ming prompts, it contains many different prompts
per task, including multiple submissions by the
same author, allowing us to explore both word-
ing choices and how the information content of
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Function signature
def total_bill(grocery_list , sales_tax):
Tests
total_bill ([['eggs', 6, 0.99], ['milk', 1, 1.49], ['bread ', 2, 3.5]], 0.07) # 15.44
total_bill ([['eggs', 6, 0.99], ['milk', 1, 1.49], ['bread ', 2, 3.50]] , 0.0) # 14.43
total_bill ([['bread ', 2, 3.50]] , 0.5) # 10.5
Docstring Attempt 1 (generated code fails some tests)
you will have two inputs a list of lists and the tax rate. for every list in the list of lists multiply the second and third item
and add all of them and then multiply that by the sales tax plus 1
Docstring Attempt 2 (generated code passes all tests)
you will have two inputs a list of lists and the tax rate. for every list in the list of lists multiply the second and third item
and add all of them and then multiply that by the sales tax plus 1. if the resulting number has more than two decimal
places shorten it to two decimal places.

Figure 1: An example problem that a student solves in two attempts. Given the function signature and tests, they
write the first docstring. The platform prompts the model to generate the function body from the function signature
and docstring (not the tests), and then tests the generated code. From the failed tests, the student realizes that the
model needs to be told to round to two decimal places. They add this clue in the second prompt, which succeeds.

prompts is edited during a prompting session.2

The dataset contains 1,749 prompts written by
80 students who had completed exactly one pro-
gramming course. They were asked to complete
problems drawn from a set of 48 CS1 programming
tasks exercising a range of programming concepts.
The dataset was collected in a prompting experi-
ment that worked as follows (Figure 1): (1) the
student was shown 3-5 test cases and asked to write
a Python docstring for the function; (2) the experi-
mental platform prompted an LLM (code-davinci-
002) to generate a Python function, conditioned on
the function signature and the student-written doc-
string; (3) the experimental platform tested the gen-
erated function on the provided tests; and (4) the
student could try again or give up and move on to
the next problem. Each student did 8 problems.

We use different subsets of the STUDENTEVAL

dataset to explore our research questions. To study
the effect of information content on prompt success,
we consider problems where at least five students
submitted multiple times (33 tasks). We exclude
tasks that were trivial (all students succeeded at
first try) or that were attempted by few students,
since these are uninformative. To study the effect of
prompt wording, we select a lexically diverse sub-
set by taking each student’s first and last prompts
per problem (953 prompts). We study only the first
and last prompts because there is often little lexi-
cal variation in intermediate prompts (as shown in
our information content experiment), which would
skew the results of our lexical analysis.

2The dataset contains sequences of prompt-edits, but their
benchmark uses only the first/last prompt by each student.

4 Methods

Our work explores the impact of two potential
causes of student-LLM miscommunication: how
students word their prompts, and how students se-
lect information to include in their prompts.

4.1 Measuring the Impact of Prompt Wording

To understand how students’ wording of prompts
affects model performance, we use a counterfac-
tual causal inference approach. We systematically
measure the impact of wording related to what
Mordechai et al. (2024) refer to as the “structured
language” that experts use “to describe the logi-
cal control flows within the desired program.” We
define a set of key programming concepts and sys-
tematically substitute alternative terms used by stu-
dents to measure how the success of their prompt
would have been impacted by alternative wording.

4.1.1 Tagging Concept References
We select 12 key technical concepts that occur fre-
quently in the STUDENTEVAL dataset, including
references to data types (e.g., list, string, dictio-
nary), operations on data (e.g., concatenate, ap-
pend, typecast), and terms related to data flow and
control flow (e.g., input, loop, return).

For each concept, two expert annotators identi-
fied every lexical variation used to refer to these
concepts in the prompts. The tag set includes tags
for all morphological variants of a given lemma,
to ensure that the substitutions match the capital-
ization and tense of the original terms. In addition,
three sets of tags were used for terms referring to
function input, to capture different syntactic struc-
tures. The full tag set contains 78 tags for 14 cate-
gory lemmas. See Appendix E for the annotation
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Original: Convert the input into integers and check if it is a
prime number.
Tagged: $Typecast:Convert$ the $parameter:input$ into

$integers:integers$ and check if it is a prime number.

Substitution: Convert the input into whole numbers and
check if it is a prime number.

Figure 2: An example of tagging and then substituting
“integer” with “whole number”.

procedure and all lemmas.
Overall, references to these concepts appear

4,262 times across the dataset. Collapsing vari-
ations of the same lemma within a prompt (e.g.,
“string”,“strings”), we find that the median number
of technical terms per prompt is three and the max-
imum is ten. Figure 2 shows an example of how
three concept references in a prompt get tagged.

4.1.2 Replacement Sets
We identify the most common terms that students
use to refer to to each concept category. An initial
list was developed by reading through all prompts
in the Nguyen et al. (2024) and Feldman and Ander-
son (2024) datasets, to get the widest possible set of
variations. We computed frequencies for terms in
this initial list and selected terms used at least twice
in STUDENTEVAL. This led to a final set of 65 sub-
stitution terms, with at least two substitutions for
each of the 14 concept lemmas.

4.1.3 Causal Analysis
We conducted term-by-term substitution experi-
ments across 65 category-replacement pairs. For
each category-replacement pair, we replaced all
expressions tagged with the category using the re-
placement lemma. Terms tagged with other cate-
gories were left unchanged, with the category tags
removed and the original terms restored.

Figure 2 shows an example of the term-by-term
substitution on a tagged prompt, where we replace
all terms tagged with category integer with the re-
placement term whole number. Our tagging retains
information about the tenses, plurals, and capital-
ization of the original words. In this example, in-
tegers tagged with integers is replaced with whole
numbers. Terms Convert and input tagged with
other categories are unchanged by the substitution.

Using Gpt-4o mini (OpenAI, 2024), Llama 3.1
8B and 70B (Llama Team, 2024), we generate com-
pletions for all prompts before and after substitu-
tion. A completion is considered correct if it passes
all tests for the problem. We compute a pass rate

per problem by sampling 200 completions using
common hyperparameters for code generation.3

4.1.4 Significance Testing
We measure the statistical reliability of observed
differences in pass rates using mixed-effects binary
logistic regression models that include random ef-
fects for prompt ID and problem. The outcome
variable is the pass@1 rate.

4.2 Measuring the Impact of Information
Content

Another possible source of error is the information
content of student prompts. Like other forms of
communication, prompting involves a trade-off be-
tween communicative efficiency and likelihood of
success. An effective prompter seeks to obtain cor-
rect results from the LLM while minimizing their
own descriptive effort.

A key part of effective prompting, therefore, is
understanding the level of detail that is necessary
to guide the model. An expert prompter may be
able to quickly describe a task in a concise prompt.
Novices, on the other hand, may struggle to dis-
tinguish cases that need to be specified (e.g., both
branches of a conditional) from cases that pattern
together, or atypical coding patterns from typical
ones. This may be the case even when students
fully understand the programming task, since effi-
cient prompt-writing involves guessing what infor-
mation models can infer without explicit direction.

We seek to understand how the information con-
tent of prompts changes over the course of a prompt
trajectory. When a prompt fails, are students able
to identify what information is missing? Prior
work shows that students tend to write successively
longer prompts (Babe et al., 2024); in this analy-
sis, we seek to understand whether this additional
verbiage contains useful information.

4.2.1 Grouping LLM Outputs by Test Results
When a prompt fails to generate correct code, a
prompter must decide how to edit their prompt to
improve their chances of success. An edit may add
information about the intended behavior, remove
information that is distracting or wrong, or simply
change how the information is described. By study-
ing how and when students edit the information in
their prompts, we gain insight into the relationship
between information content and prompt success.

3Following Chen et al. (2021), we use top-p sampling
(0.95) and temperature (0.2) to calculate pass@1.

8544



Clues:
1. First input is a list
2. List structure explained
3. Second input is sales tax
4. Multiply item price by quantity
5. Sum results
6. Apply sales tax
7. Round to two decimal places
8. Return total

1 This function takes in a list of the item purchased, the price, the tax,
and the overall sales tax. All of the prices and tax within the lists are
added together. The sales tax is then multiplied by the outcome of the
added prices, and then the result of the multiplication is added onto the
total price. The total price is then returned as the output.

2 prices and tax taxes within the lists

3 the prices and taxes tax
within the lists, which is the
last two components of the
list

4 All of the prices and tax
within the lists are added
together. The amount purchased
is multiplied with price for each
item.
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Figure 3: The graph of prompt trajectories for TOTAL_BILL (Figure 1). We highlight the trajectory of S23 who
ultimately fails: their first prompts 1 has most clues, but omits Clue #7 (bottom right of figure). Their next prompt
2 is a trivial change. 3 adds detail about the list structure (Clue #2), but it was already described well so they

cycle back to a previous state. Finally, 4 adds the missing Clue #4 (and deletes Clue #5, but it isn’t necessary to
solve the problem). Here they give up and fail, but many others succeed from this state after adding Clue #7.

To do this, we study a set of 290 prompt trajec-
tories: sequences of prompts entered by a student
for a particular task, starting from their first prompt
and ending with a final prompt that may or may not
succeed on the task.

Although prompts vary significantly in wording,
we can group them based on their effect: when
used to prompt a model, what is the behavior of
the generated code? Every problem has a single
group of prompts where the tests produce the ex-
pected output (successes). In addition, there are
multiple states where tests produce incorrect an-
swers or throw exceptions. The ◦-nodes in Figure
3 represent the ten states that students encounter
on the TOTAL_BILL problem: the green node is the
success state and the others are different failures.

4.2.2 Information in Prompt Edits
We use the notion of a prompt clue to study the
information content of prompts. A clue is a piece
of information about the function’s intended be-
havior. For each problem, we identify a set of
clues by examining the information that success-
ful prompts tend to contain, as well as the expert-
written prompts from the STUDENTEVAL dataset.
We strive for sets of 3-6 clues per problem.

Expert annotators (experienced CS1 educators)

developed the set of clues for each problem and
used it to annotate each prompt trajectory. We tag
the first prompt in each trajectory with the set of
clues present. Subsequently, we tag each prompt
edit in terms of its information change: adding a
clue (a), deleting a clue (d), removing detail from
a clue (l), or rewording a clue without removing
detail (m). A null tag (0) is used to mark edits that
do not change the information content of a prompt.

Figure 3 (bottom right) lists the eight clues for
the TOTAL_BILL problem (Figure 1). Some of
these clues describe the input and output types
(Clues #1, #3, and #8). The remaining clues de-
scribe the computation. The edge labels in the
graph show how students modify the clues present
in their prompts.

4.2.3 Prompt Trajectory Graphs
We define a graph with alternating states of all
prompt trajectories for a problem from the se-
quence of prompts, execution outputs, and expert
annotations discussed above. For a given problem,
let s ∈ S be the set of students and ps,i ∈ PS,N be
the set of prompts indexed by student and attempt
number. Let ps,imax be the final prompt by s. Let
EXEC : PS,N → O be the mapping from a prompt
to its test output, where there is a distinguished
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output oOK ∈ O where all tests pass.
We construct a directed graph G = (V,E)

where V = O ∪ PS,N. The graph edges are:
• ⟨ps,i, o⟩ ∈ E where EXEC(ps,i) = o
• ⟨o, ps,i+1⟩ ∈ E if there exists p′s,i ∈ P and
⟨p′s,i, o⟩ ∈ E

A node ps,imax is a success node if ⟨ps,imax , oOK⟩ ∈
E, and is otherwise a failure node. We label edges
⟨ps,0, o⟩ ∈ E with the initial clues for student s.
For ⟨ps,i−1, o⟩, ⟨o, ps,i⟩ ∈ E, we label the edge
⟨ps,i, o⟩ with the edits to the clues made from
prompt ps,i−1 to ps,i.

In Figure 3, the ◦-nodes are test result nodes and
the ⋄-nodes are prompt edit nodes ps,i. We label
each ⋄-node with the student’s identifier s.4 The
⋄-nodes with dashed edges represent a student’s
first prompt and the ⋄-nodes colored green or red
represent their final prompt (success or failure, re-
spectively). We label edges with clue edits. For
convenience, we color each student’s last edit edge
green (success) or red (failure).

The caption of Figure 3 describes the prompt
and clue edits by a student who ultimately fails
the task. Other patterns can also be read from
the graph. For instance, most students succeed in
two attempts after adding a clue about rounding
(Clue #7). The three students who never solve the
problem get stuck in cycles. The graph also shows
a disconnected failure state visited only by student
s69, who struggled to describe the input list: the
generated code assumes a triply-nested list.

We see the kinds of patterns described above in
almost all problems, including longer loops and far
more failures in the harder problems. We analyze
the structure of these graphs in §6 to understand
prompt trajectories in more depth.

5 Results: Style Rarely Matters

We measure the effect of prompt wording through a
causal intervention experiment in which we explore
a range of lexical substitutions for terms referring
to 12 key programming concepts. If what hinders
students is their lack of fluency with technical vo-
cabulary, we should be able to improve the pass
rate of their prompts by substituting more precise
technical vocabulary for their unconventional ways
of referring to these concepts. We also measure
the effect of word choice on high-quality prompts:
by including substitution terms that are commonly

4The index i can be inferred, unless the student sees the
same output 3+ times.

Lemma Substitution 8B 70B GPT
String character ↓ ↓ -

phrase ↓ - -
set of characters ↓ ↓ ↓
word ↓ - -

List brackets ↓ ↓ -
set of brackets ↓ ↓ -
set ↓ ↓ ↓

Key attribute ↓ ↓ -
entry ↓ - -
item ↓ - -
part ↓ - -
variable ↓ - -

Parameter argument - ↑ -
Provide provide - ↓ -
Return display ↓ ↓ ↓

print ↓ ↓ ↓
Loop go through ↓ - -

execute a for loop with ↓ ↓ -
run a for loop through ↓ ↓ -
iterate - ↓ -
loop through - ↓ -

Concatenate splice ↓ - -
Skip remove ↓ - -

avoid ↓ - -
ignore - ↓ -
neglect - ↓ -

Typecast cast ↓ - -
change - ↑ -

Table 1: Statistically reliable differences in pass@1 after
lexical substitutions: Llama 3.1 8B, Llama 70B and Gpt-
4o-mini. ↓ denotes a reliably lower post-substitution
pass@1; ↑ denotes a reliable increase; and - indicates
no significant difference. All statistically reliable dif-
ferences involve substituting a standard term with an
unconventional term, with p < 0.05. Full significance
values are reported in Appendix E.4.

used by students but less technically precise, we
can test whether they decrease pass rates.

5.1 How Much Does Style Matter?

We perform lexical substitutions for the 12 con-
cept categories, comparing the original and post-
substitution prompt pass@1 rates using Gpt-4o
mini, Llama 3.1 8B and 70B. We test each con-
cept category separately, holding the rest of the
prompt constant.

Figure 4 summarizes the results of the 65 lexical
substitution experiments. Full model tables with
significance values can be found in Appendix E.4.
In general, we observe only weak effects of lexi-
cal substitution across all categories. For 4 out of
14 concept lemmas, there are no statistically reli-
able differences between the pass rates for the re-
worded prompts and the originals (Table 1); more-
over, when there are statistically reliable differ-
ences, they tend to be small. Contrary to the percep-
tions of students reported in Nguyen et al. (2024),
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Figure 4: Differences between pass@1 rates before and after lexical substitutions. A negative mean difference
represents a decrease in performance after substitution.

technical vocabulary does not seem to have a strong
impact on how well models are able to generate
code from student prompts.

5.2 Can Rewording Help Failing Prompts?

The overall results show little effect of lexical sub-
stitution. Since our substitution sets consist of
terms commonly used by students, they include
both standard and unconventional ways of refer-
ring to the target concepts. For example, students
may refer to a string input as “string” (standard)
or “word” (unconventional). This means that some
substitutions make a prompt less technically pre-
cise, while others make it more technically precise.

It is particularly important to understand how
prompt wording impacts unsuccessful student
prompts. If student word choice is a driving factor
in the failure of their prompts, it would be rela-
tively simple to intervene. There are two possible
outcomes for low-quality prompts. If the student’s
vocabulary is causing the low pass rate, then sub-
stituting a more precise term should improve its
pass rate. On the other hand, the use of unconven-
tional terminology may simply be correlated with
poor quality prompts; if this is the case, improving
terminology may not lead to higher success rates.

Unlike the analysis in Babe et al. (2024), the
lexical substitution experiment enables us to dis-
tinguish these two scenarios. We find no evidence
of significant gains from fixing unconventional ter-
minology: across all categories, there are no sta-
tistically reliable gains from substituting standard
terminology (see Appendix E.4).

5.3 When Does Wording Matter?

Our lexical substitution experiments reveal that cor-
recting word choice does not significantly improve
pass rates for prompts that use unconventional ways
of referring to the target concepts. However, we
do observe some statistically significant changes in
pass rates: there are reliable negative effects from
substituting certain unconventional terms.

We find particularly robust negative effects of
diverse unconventional ways of referring to strings:
substituting “character” and “set of characters”
lower pass rates for string-referring prompts for
all models (Table 1). We also find negative effects
of unconventional list terms (“brackets”, “set”, “set
of brackets”). The largest magnitude effects are
from “set,” likely because set is a distinct data type.

For concepts related to control flow, there are in-
teresting differences between input and output con-
cepts. All models are robust to a range of ways of
referring to a function’s input. However, for return,
substituting either “print” and “display” brings pass
rates down. This is not surprising: since all of the
tasks involve functions that return values, prompt-
ing the model to print or display instead is actively
misleading. This finding also aligns with the corre-
lational findings of Babe et al. (2024).

Overall, the lexical substitution experiments re-
veal only weak causal effects of prompt wording.
Although substituting unconventional terminology
can decrease success rates, correcting unconven-
tional terminology does not seem to help weak
prompts. This suggests that the interactions be-
tween word choice and prompt success reported
in Babe et al. (2024) were correlative, rather than
causal: prompts that use unconventional terminol-
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ogy are weak for independent reasons.
We view this finding as both surprising, given

the body of prior work in which both students and
educators identify technical vocabulary as a barrier
to working with LLMs, and disappointing, since it
would be easier to intervene into student terminol-
ogy than other aspects of their prompting process.

6 Results: Substance Matters

An alternative hypothesis about student-LLM mis-
communication is that students struggle to select
the right information for models. We explore this
using prompt trajectory graphs (§4.2) for code-
davinci-002 to understand prompt editing. What
kinds of edits to information content do students
make, and how do they effect the success of their
prompts? We focus our discussion on high-level
trends; Appendix F contains graphs for each stud-
ied task.

6.1 Successful Prompts Have All Clues

We first examine the last prompt in every trajectory.
We find that when all clues for the problem are
present in the final prompt, the likelihood of success
is 90%. Conversely, when even one clue is missing
from the final prompt, the likelihood of success falls
to 29%. While these results are drawn from code-
davinci-002 generations, we were able to replicate
this finding on current models. For each student’s fi-
nal prompt, we compare the pass@1 score between
prompts with all clues versus those with missing
clues. We find that Llama3.1 8B achieves a pass@1
score of 50% on prompts with all clues, versus just
14% when there are missing clues; for Llama3.1
70B, the pass@1 scores are respectively 57% and
16%; for Gpt-4o, 86% and 46%. In all models,
results indicate that information content is a main
factor in the success of student prompts.

There are a few exceptions where students suc-
ceed even though their prompts omit clues. We
manually inspect these exceptions, which we iden-
tify using the prompt trajectory graphs, and find
that most fall into one of three cases: (1) the prompt
contains hardcoded answers that do not generalize
beyond test cases; (2) the function signature has
informative names that subsume some clues; or (3)
a clue may be technically missing, but duck typ-
ing allows the LLM to generate correct code (e.g.,
the student describes adding strings instead of lists,
which uses the same operator in Python).

Considering this, the number of success prompts

that are missing one or more clues represents an
upper bound on prompt success with partial infor-
mation. This supports the conclusion that providing
all the necessary clues about function behavior is
typically what determines prompt success.

6.2 Rewording Existing Clues Hardly Helps
Prompt trajectory graphs illuminate the impact of
edits that merely add/remove detail from existing
clues, or make trivial edits (edges labelled m, l, or
0 in the graphs). Out of all edges incident to nodes
where all tests pass (oOK), we find (1) 28% add
detail to an existing clue (m), (2) 11% are trivial
rewrites (0) and (3) just 4% remove detail from
an existing clue (l). Rephrasing a prompt without
adding a new clue leads to success less than half
the time. Moreover, of these edits, 65% add detail
to an existing clue.

Finally, when a prompt contains less than half
the clues for a problem, we find that adding/remov-
ing detail leads to success only 10% of the time.
In other words, the fewer clues a prompt has, the
harder it is to succeed by tweaking wording alone.
Together, these findings show the impact of infor-
mation content on prompt success.

6.3 Cycles Involve Uninformative Edits
Prior work shows that students often give up in
frustration when their prompt edits do not produce
different output (Nguyen et al., 2024). We iden-
tify these cycles and measure how hard it is for
students to escape them: when a prompt trajectory
has a cycle, its likelihood of eventual success is
30%, compared to 72% without a cycle. When
the cycle exceeds three edges, the likelihood of
success drops to 14%. We find a moderate nega-
tive correlation between success and cycle length
(r(290) = −0.42, ρ =< 0.0001).

Examining the edits in cycles, we find the ma-
jority (90%) involve missing clues. Furthermore,
most cycles edits (66%) are exclusively rewrites (l,
m, or 0); of these, 43% do not change the level of
detail in any clues (0). This shows that students get
stuck in a cycle of failing prompts when they are
missing important information.

How do students escape? Of the 44 prompt tra-
jectories that manage to break out of a cycle, only 7
have trivial edits. Most escape by adding a new clue
(13) or adding detail to existing clues (20). Taken
together, our results show that the most successful
strategy is adding information, but that most stu-
dents in cycles simply try trivial wording changes.
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Prompt: This function takes the input of a dictio-
nary. If the key is a planet, it takes the entry and
adds it to the total mass. The function outputs the
total mass of all planets in the dictionary.
def planets_mass(planets):

total_mass = 0
for key in planets:

if key in planets:
total_mass += planets[key]["mass"]

return total_mass

Figure 5: Variable/concept confusion.

6.4 When Does Style Matter, Revisited

Overall, our findings support the view that the infor-
mation content of prompts is more important that
wording. However, there are a handful of cases
where prompts fail even with all clues.

Figure 5 shows a prompt that succinctly states
all clues for the problem. However, the model
cannot disambiguate between “planets” as a pa-
rameter name and as a general concept, and ends
up translating the instruction if the key is a planet
into if key in planets. In other cases, the model
interprets language in a surprising way. Three stu-
dents experienced the same model error in a task to
capitalize every other letter in a string: the model
produced code that followed their instructions, but
also rearranged the string so that all the uppercase
letters came first (Figure 15 in the Appendix).

The remaining exceptions can be found in Ap-
pendix F.2. Overall, we observe that these failures
stem from ambiguity in natural language or model
limitations rather than technical vocabulary issues.

7 Conclusion

By investigating two commonly espoused concrete
hypotheses about why students struggle to effec-
tively prompt LLMs for code, our work sheds
light on what it means for students to write “good
prompts.” Our results suggest that it is the (lack
of) information in prompts, rather than how the
information is communicated, that causes student-
LLM miscommunication. Although these findings
imply that attempts to help student prompters by
suggesting alternative wording are unlikely to be
very useful, by providing the first empirical evi-
dence of the source of student struggles, we hope
our findings will guide future work on teaching
prompting towards more impactful interventions.

Limitations

This work builds on the existing STUDENTEVAL

dataset, which was collected from 80 students in
early 2023. These students were selected from
three institutions and all had taken only one pro-
gramming course. Babe et al. (2024) argue that
they are representative of beginning students, but
they are not representative of students with more
programming experience. Our findings may not
generalize to more advanced programmers.

The prompts we study were written by students
using code-davinci-002, which was state-of-the-art
at the time, but is now an older model. A newer
model, such as a chat model, would lead to differ-
ent interactions. However, Babe et al. (2024) show
that their benchmark remains challenging for sev-
eral newer models. We re-evaluate STUDENTEVAL

using Gpt-4o mini, Llama 3.1 8B and 70B and also
find that the prompts remain challenging.

The set of categories and terms we explore in
our causal inference experiments are specific to
the Babe et al. (2024) and Feldman and Anderson
(2024) user populations. These students attend se-
lect US institutions, therefore their wording choices
represent a certain level of English proficiency. The
set of substitutions would differ with speakers of
other natural languages, as might their effect.

The clues used to tag prompt trajectories repre-
sent an expert annotator’s perception of the infor-
mation that successful prompts typically contain.
There may be other ways to formulate the same
problem. However, we studied all exceptions to
our finding and did not find cases where students
appeared to use a different set of clues than what
the expert annotator found (§6.4).

Ethics Statement

The main ethical concerns surrounding this work
lie in its study of student interactions with LLMs.
This work uses the public, fully anonymized ver-
sion of the STUDENTEVAL dataset. Therefore, this
work has no additional ethical considerations be-
yond those described in the ethics statement of
Babe et al. (2024). The secondary analysis of exist-
ing data that we do is consistent with the intended
use of the dataset, which is to study how students
write prompts.
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A Dataset and Code Availability

The code and dataset for this submission is publicly available and licensed under the terms of the BSD 3
Clause license. The STUDENTEVAL dataset is licensed under under the terms of the OpenRAIL license.

The code and data for this paper are available at https://github.com/nuprl/substance-vs-style.

B Use of AI Assistants

Some authors used AI assistants while writing code for this paper.

C Computing Resources

The computational experiments for this paper were conducted with less than 1,000 hours of A100 GPU
time. The models evaluated were Meta Llama 3.1 8B and 70B (Llama Team, 2024).

D Software Configuration

We use vLLM 0.6.2 for LLM inference (Kwon et al., 2023). We use spaCy 3.8.0 for lemmatization with
the en_core_web_trf pipeline.

E Causal Analysis of Lexical Choices

This section describes the procedure we used to perform the causal analysis of lexical choices and presents
detailed results.

E.1 Data Annotation Procedure
The overall approach to data annotation is described in §4.1. We provide some additional detail below.

The process for tagging concept references proceeded as follows. First, we developed an automated
script to perform tagging automatically. This approximated the set of necessary tags, but a manual
pass was necessary for numerous reasons. For instance, some student terms (e.g., convert) occurred in
numerous problems, but were either function names or parameters in some. In other cases grammatical
features, such as prepositions, led the automated approach to be insufficient (e.g., $takes:brings$ should
be tagged as $takes:brings in$).

The two expert annotators, who are both CS1 instructors, then proceeded to perform a manual review.
During this review, care was taken to tag idiosyncratic references; for instance, when a participant
mistakenly referred to an input dictionary as a list, this was tagged under the dictionary category, so that
we could explore substitutions of a more accurate term. The goal of this process was a consistent tag set,
thus the annotators ultimately came to consensus on all tags for all prompts. Inter-annotator reliability
was not calculated due to the emphasis on consensus and the number/precision of tags per prompt.

To gain insight into the range of terms used over problems, the annotators independently assessed two
distinct prompts for each of the 48 problems, for a total of 96 problems. They then met to discuss their
tagging edits. Out of this discussion, we made three main changes: (1) “given” was removed as a possible
term, as it has too many possible use cases; (2) the Input concept was divided into the three lemmas of
“parameters”, “take”, and “provide;” and (3) specific disambiguation for “concatenate” and “insert” was
developed. The annotators then came to consensus on all tags for the 96 problems.

After this process, the above changes were made to the automatic tagging script and then the two
annotators independently tagged the remainder of the problems in the dataset. They then met to discuss
the tagging edits and determine the consensus decision. Most disagreements were easily resolved (e.g.,
missed tags, typos). The main substantive disagreement was regarding tags relevant to the String concept.
Specifically, determining student meaning of character versus string was too challenging to tag consistently.
Therefore, most mentions of character/s were removed from the String tag set. This was done retroactively
to the original 96 problems as well.

E.2 Concepts, Expressions, and Interventions
Table 2 shows the lemmas for each concept category used in the lexical substitution experiments, along
with the set of replacement terms and example expressions that students use to refer to them.
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Concept Lemma Substitution Lemmas Example Student Terms
String string word, phrase, string, character, string, word, string of text,

set of characters word or sentence, string of characters
List list brackets, set of brackets, set, list, list, array, set, arrangement,series,

array list, array collection, sequence
Dictionary dictionary map, dictionary dictionary, dict, object, array
Integer integer integer, whole number, int int, integer numbers, whole number
Key key key, item, entry, attribute, part, key, key value, category

element, variable element, variable, parameter
Input parameter parameter, argument, value provided, input, parameter, value, component,

input input value, value inputted
take take, bring in, accept, get, input take, take in, take input of, get
provide provide, enter, input input

Loop loop through go through, run through, iterate through, loop, loop through, go through, parse,
loop through, run a for loop through, iterate through, run through
look through, execute a for loop with

Output return return, output, print, produce, display return, output, print, provide, out put
Concatenate concatenate concatenate, combine, splice, add concatenate, append, add, combine
Insert insert insert, add, append, attach put, insert, input, add, give
Skip skip skip, avoid, neglect, ignore, remove skip, ignore, avoid, neglect
Typecast typecast typecast, type cast, cast, convert, typecast, convert, turn, change

change

Table 2: Concepts, Lemmas, and Substitution Terms for Causal Analysis Experiments

Fixed effects β̂ SE z p

(Intercept) -4.4 0.69 -6.3 <0.0001
character -1.1 0.32 -3.6 0.0004
phrase -0.69 0.2 -3.4 0.0006
set of characters -1.4 0.36 -4.1 <0.0001
string 0.048 0.054 0.87 0.38
word -0.62 0.19 -3.3 0.0009

Table 3: Llama 8B mixed-effects model for String concept.

E.3 Experimental Method
For generations, we generated 200 completions for each model with temperature (0.2), top-p sampling
(0.95), and a 512 token limit.

E.4 Statistical Analysis
Statistical significance results are from mixed-effects binary logistic regression models that include
random effects for prompt ID and problem. The random effects structure for problem contains both
random slopes and intercepts; due to issues with convergence, the random effects for prompt ID contain
only random intercepts.

The outcome variable is the pass@1 rate calculated with 200 samples. All models were fit in R using
the lme4 library (Bates et al., 2015) with sample weights of 200 (the number of observations from which
the proportion was computed).

E.4.1 Type Concepts
Tables 3-16 provide the full mixed-effects results for datatype concepts.

E.4.2 Control Flow Concepts
Tables 18-31 provide the full mixed-effects results for control flow concepts.
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Fixed effects β̂ SE z p

(Intercept) -3.4 0.62 -5.5 <0.0001
character -0.59 0.19 -3 0.002
phrase -0.29 0.18 -1.6 0.1
set of characters -1.1 0.22 -4.8 <0.0001
string 0.11 0.075 1.5 0.14

word -0.098 0.12 -0.79 0.43

Table 4: Llama 70B mixed-effects model for String concept.

Fixed effects β̂ SE z p

(Intercept) -0.14 1.4 -0.1 0.92
character -1.7 0.54 -3.2 0.0013
phrase -0.92 0.53 -1.7 0.083
set of characters -4.3 0.79 -5.4 <0.0001
string 0.21 0.23 0.91 0.36

word -0.18 0.35 -0.5 0.62

Table 5: Gpt-4o mini mixed-effects model for String concept.

Fixed effects β̂ SE z p

(Intercept) -5.5 0.75 -7.4 <0.0001
array 0.1 0.087 1.2 0.24
array list 0.11 0.11 1 0.31
brackets -1 0.23 -4.4 <0.0001
list -0.0032 0.041 -0.078 0.94
set -2.4 0.51 -4.7 <0.0001
set of brackets -1.9 0.37 -5.2 <0.0001

Table 6: Llama 8B mixed-effects model for List concept.

Fixed effects β̂ SE z p

(Intercept) -5.1 0.74 -6.9 <0.0001
array -0.057 0.083 -0.69 0.49
array list 0.11 0.098 1.1 0.28
brackets -0.55 0.16 -3.3 0.0009
list -0.074 0.057 -1.3 0.19

set -2.3 0.55 -4.1 <0.0001
set of brackets -1.6 0.41 -3.9 0.0001

Table 7: Llama 70B mixed-effects model for List concept.
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Fixed effects β̂ SE z p

(Intercept) -4 1.4 -2.9 0.004
array 0.2 0.26 0.76 0.45
array list 0.25 0.23 1.1 0.29
brackets -1.9 0.71 -2.7 0.006
list 0.24 0.082 2.9 0.0043

set -4 0.89 -4.5 <0.0001
set of brackets -2.9 1 -2.9 0.0036

Table 8: Gpt-4o mini mixed-effects model for List concept.

Fixed effects β̂ SE z p

(Intercept) -5.9 0.9 -6.6 <0.0001
int -0.1 0.091 -1.2 0.25
integer 0.057 0.038 1.5 0.13
whole number -0.45 0.23 -1.9 0.052

Table 9: Llama 8B mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -5.6 1.1 -5.3 <0.0001
int -0.096 0.14 -0.71 0.48
integer 0.14 0.18 0.77 0.44
whole number -0.1 0.21 -0.5 0.62

Table 10: Llama 70B mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -3.8 4.1 -0.92 0.36
int -0.18 0.42 -0.42 0.68
integer -0.11 0.47 -0.22 0.82
whole number -1.4 0.54 -2.7 0.0078

Table 11: Gpt-4o mini mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -13 1.3 -9.9 <0.0001
dictionary -0.099 0.056 -1.8 0.075
map -0.066 0.41 -0.16 0.87

Table 12: Llama 8B mixed-effects model for Dictionary concept.

Fixed effects β̂ SE z p

(Intercept) -12 1.4 -9 <0.0001
dictionary -0.1 0.14 -0.73 0.46
map -0.33 0.27 -1.2 0.23

Table 13: Llama 70B mixed-effects model for Dictionary concept.
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Fixed effects β̂ SE z p

(Intercept) -17 5.4 -3.2 0.0015
dictionary 1 0.54 1.9 0.063
map 1.1 0.9 1.3 0.21

Table 14: Gpt-4o mini mixed-effects model for Dictionary concept.

Fixed effects β̂ SE z p

(Intercept) -9.8 1.3 -7.8 <0.0001
attribute -0.7 0.32 -2.2 0.028
element -0.25 0.15 -1.7 0.087
entry -0.39 0.14 -2.8 0.0048
item -0.28 0.14 -2 0.047

key 0.046 0.15 0.3 0.77
part -0.59 0.21 -2.8 0.005
variable -0.56 0.14 -3.9 <0.0001

Table 15: Llama 8B mixed-effects model for Key concept.

Fixed effects β̂ SE z p

(Intercept) -6.5 1.4 -4.7 <0.0001
attribute -0.87 0.43 -2 0.04
element -0.29 0.16 -1.8 0.065
entry -0.28 0.19 -1.5 0.14
item -0.28 0.22 -1.3 0.21

key -0.16 0.11 -1.5 0.15
part -0.48 0.36 -1.3 0.18
variable -0.85 0.5 -1.7 0.092

Table 16: Llama 70B mixed-effects model for Key concept.

Fixed effects β̂ SE z p

(Intercept) -0.91 3.3 -0.27 0.78
attribute -4.1 1.7 -2.4 0.019
element -2.9 1.7 -1.7 0.087
entry -2.2 1 -2.2 0.031
item -2.8 1.6 -1.8 0.077

key 0.35 0.39 0.89 0.37
part -2.8 1.7 -1.6 0.11
variable -2.8 1.3 -2.1 0.039

Table 17: Gpt-4o mini mixed-effects model for Key concept.
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Fixed effects β̂ SE z p

(Intercept) -5 0.62 -8.1 <0.0001
display -1.3 0.25 -5.1 <0.0001
output -0.14 0.13 -1.1 0.27
print -2.9 0.37 -7.8 <0.0001
produce -0.16 0.12 -1.3 0.2

return 0.11 0.061 1.8 0.068

Table 18: Llama 8B mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -4.9 0.56 -8.7 <0.0001
display -0.87 0.28 -3 0.002
output -0.071 0.17 -0.42 0.67
print -2.8 0.41 -6.8 <0.0001
produce 0.21 0.16 1.3 0.18

return 0.0061 0.096 0.063 0.95

Table 19: Llama 70B mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -2.6 1 -2.6 0.01
display -6.1 1.1 -5.5 <0.0001
output 0.34 0.53 0.64 0.52
print -19 2.1 -9.1 <0.0001
produce 0.78 0.34 2.3 0.023

return 0.68 0.28 2.4 0.014

Table 20: Gpt-4o mini mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -11 2.1 -5 <0.0001
execute a for loop with -3.5 0.59 -6 <0.0001
go through -0.56 0.15 -3.8 0.0001
iterate through 0.0045 0.14 0.032 0.97
look through -0.41 0.27 -1.6 0.12
loop through -0.38 0.27 -1.4 0.16
run a for loop through -2.9 0.48 -6 <0.0001
run through -0.37 0.2 -1.8 0.067

Table 21: Llama 8B mixed-effects model for Loop concept.
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Fixed effects β̂ SE z p

(Intercept) -10 1.8 -5.8 <0.0001
execute a for loop with -4.7 1.3 -3.5 0.0005
go through -0.92 0.56 -1.6 0.1
iterate through -1.3 0.33 -4.1 <0.0001
look through -0.62 0.45 -1.4 0.16
loop through -1.4 0.34 -4.2 <0.0001
run a for loop through -1.7 0.52 -3.3 0.001
run through -0.34 0.48 -0.71 0.48

Table 22: Llama 70B mixed-effects model for Loop concept.

Fixed effects β̂ SE z p

(Intercept) -3 4.7 -0.65 0.52
execute a for loop with 0.22 1.1 0.2 0.84
go through -0.99 1.1 -0.94 0.35
iterate through -0.36 0.74 -0.48 0.63
look through 0.15 0.74 0.2 0.84

loop through 0.33 1 0.32 0.75
run a for loop through -0.19 0.96 -0.19 0.85
run through -0.017 0.75 -0.022 0.98

Table 23: Gpt-4o mini mixed-effects model for Loop concept.

Fixed effects β̂ SE z p

(Intercept) -15 4.1 -3.6 0.0004
enter 0.31 0.36 0.87 0.38
input 0.079 0.24 0.33 0.74
provide 1.8 1.2 1.5 0.13

Table 24: Llama 8B mixed-effects model for Input - Provide lemma.

Fixed effects β̂ SE z p

(Intercept) -15 6.5 -2.2 0.03
enter -0.27 0.43 -0.63 0.53
input 0.29 0.49 0.6 0.55
provide -1.1 0.42 -2.6 0.008

Table 25: Llama 70B mixed-effects model for Input - Provide lemma.

Fixed effects β̂ SE z p

(Intercept) -19 18 -1.1 0.28
enter 1 1.5 0.68 0.49
input 0.61 2.6 0.23 0.82
provide -0.31 2.2 -0.14 0.89

Table 26: Gpt-4o mini mixed-effects model for Input - Provide lemma.
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Fixed effects β̂ SE z p

(Intercept) -5.6 0.83 -6.7 <0.0001
argument -0.045 0.1 -0.43 0.67
input 0.088 0.06 1.5 0.14
parameter -0.095 0.11 -0.86 0.39
value provided -0.17 0.13 -1.3 0.19

Table 27: Llama 8B mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -5.4 0.98 -5.5 <0.0001
argument 0.28 0.13 2.2 0.03
input -0.031 0.094 -0.33 0.74
parameter 0.23 0.14 1.6 0.1
value provided 0.27 0.16 1.7 0.086

Table 28: Llama 70B mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -4.2 3.4 -1.2 0.22
argument -0.26 0.69 -0.37 0.71
input 0.34 0.35 0.96 0.34
parameter -0.62 0.64 -0.97 0.33
value provided -0.47 0.81 -0.58 0.56

Table 29: Gpt-4o mini mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -5.7 0.97 -5.9 <0.0001
accept -0.061 0.078 -0.79 0.43
bring in -0.051 0.14 -0.38 0.71
get 0.0086 0.11 0.081 0.94
input -0.15 0.1 -1.4 0.15
take 0.029 0.056 0.51 0.61

Table 30: Llama 8B mixed-effects model for Input - Take lemma.

Fixed effects β̂ SE z p

(Intercept) -5.2 1.1 -4.6 <0.0001
accept -0.024 0.14 -0.17 0.87
bring in -0.22 0.22 -1 0.31
get 0.14 0.14 0.96 0.34
input 0.054 0.14 0.39 0.7

take -0.066 0.12 -0.53 0.6

Table 31: Llama 70B mixed-effects model for Input - Take lemma.
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Fixed effects β̂ SE z p

(Intercept) 0.89 4.9 0.18 0.85
accept 0.17 0.3 0.58 0.56
bring in -1.6 0.94 -1.7 0.088
get -0.79 0.6 -1.3 0.19
input -0.34 0.66 -0.52 0.6

take 0.2 0.51 0.39 0.7

Table 32: Gpt-4o mini mixed-effects model for Input - Take lemma.
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Fixed effects β̂ SE z p

(Intercept) -4.4 1.5 -2.8 0.005
add 0.11 0.27 0.39 0.7
combine -0.14 0.13 -1.1 0.29
concatenate 0.24 0.14 1.7 0.081
splice -0.56 0.19 -3 0.003

Table 33: Llama 8B mixed-effects model for Concatenate concept.

Fixed effects β̂ SE z p

(Intercept) -1.5 1.5 -0.97 0.33
add -0.024 0.21 -0.12 0.91
combine 0.37 0.43 0.87 0.38
concatenate 0.28 0.35 0.82 0.41
splice -0.31 0.51 -0.61 0.55

Table 34: Llama 70B mixed-effects model for Concatenate concept.

E.4.3 Operation Concepts
Tables 33-43 provide the full mixed-effects results for control flow concepts.

Fixed effects β̂ SE z p

(Intercept) 17 5.3 3.3 0.0011
add 9.8 5.8 1.7 0.089
combine -4.2 1.9 -2.2 0.025
concatenate -2.2 1 -2.2 0.03
splice -2.6 1.2 -2.2 0.031

Table 35: Gpt-4o mini mixed-effects model for Concatenate concept.
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Fixed effects β̂ SE z p

(Intercept) -5.5 1.8 -3 0.003
add -0.091 0.12 -0.73 0.47
append -0.38 0.46 -0.82 0.41
attach -0.53 0.45 -1.2 0.24
insert -1.4 1.1 -1.3 0.18

Table 36: Llama 8B mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -9.9 1.9 -5.3 <0.0001
add -0.4 0.22 -1.8 0.067
append -0.51 0.33 -1.5 0.12
attach -0.11 0.34 -0.32 0.75
insert -0.76 0.45 -1.7 0.089

Table 37: Llama 70B mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -3.6 4.3 -0.85 0.4
add 0.62 1 0.6 0.55
append -0.88 0.84 -1 0.3
attach 0.071 0.8 0.088 0.93
insert -0.063 1.3 -0.048 0.96

Table 38: Gpt-4o mini mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -13 3.8 -3.3 0.001
avoid -0.76 0.28 -2.7 0.006
ignore 0.014 0.17 0.083 0.93
neglect -0.18 0.28 -0.62 0.54
remove -4.2 2.1 -2 0.046
skip -0.21 0.46 -0.46 0.65

Table 39: Llama 8B mixed-effects model for Skip concept.

Fixed effects β̂ SE z p

(Intercept) -14 6.4 -2.2 0.03
avoid 0.041 0.81 0.051 0.96
ignore -0.98 0.22 -4.4 <0.0001
neglect -1.2 0.43 -2.7 0.007
remove -6.6 3.6 -1.8 0.068
skip -0.66 0.47 -1.4 0.16

Table 40: Llama 70B mixed-effects model for Skip concept.
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Fixed effects β̂ SE z p

(Intercept) -17 12 -1.4 0.15
avoid 0.42 0.68 0.62 0.54
ignore -3.3 1.6 -2 0.044
neglect -3.5 1.8 -1.9 0.052
remove 1 2.8 0.36 0.72

skip -7.1 3.7 -1.9 0.053

Table 41: Gpt-4o mini mixed-effects model for Skip concept.

Fixed effects β̂ SE z p

(Intercept) -5 1.5 -3.3 0.001
cast -0.86 0.39 -2.2 0.028
change -1.5 0.85 -1.7 0.087
convert -0.048 0.27 -0.18 0.86
type cast -0.73 0.54 -1.4 0.17
typecast -1.4 0.86 -1.6 0.1

Table 42: Llama 8B mixed-effects model for Typecast concept.

Fixed effects β̂ SE z p

(Intercept) -7.6 4.3 -1.8 0.074
cast -0.89 0.74 -1.2 0.23
change 0.27 0.13 2 0.045
convert 0.31 0.23 1.3 0.19
type cast -0.61 0.72 -0.85 0.4
typecast -1 0.97 -1.1 0.28

Table 43: Llama 70B mixed-effects model for Typecast concept.

Fixed effects β̂ SE z p

(Intercept) 0.59 11 0.055 0.96
cast 3.3 1.1 3.1 0.0022
change -1.6 1.4 -1.1 0.26
convert 1.9 0.72 2.6 0.0082
type cast 4.9 2 2.4 0.017

typecast 5.4 1.5 3.6 0.00028

Table 44: Gpt-4o mini mixed-effects model for Typecast concept.
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Figure 6: This heatmap shows the difference in pass rates (pass@1) using Meta Llama 3.1 8B after replacing the
original expression of a concept in a prompt (x-axis) with a the expression chosen for the intervention (y-axis). We
present one heatmap per concept. We report differences on the subset of prompts that have the original expression.
We group rare expressions into a single Other class for each concept. See figures 9 and 10 for more categories.
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Figure 7: For Meta Llama 3.1 70B. See the caption for Figure 6 for more information.

E.5 Substitution Visualizations
Figures 6, 9 and 10 presents the results of causal interventions using Meta Llama 3.1 8B (Llama Team,
2024). Figures 7, 11 and 12 presents the results of causal interventions using Meta Llama 3.1 70B.
Figures 8, 13 and 14 presents the results of causal interventions using OpenAI Gpt-4o mini.
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Figure 8: For Gpt-4o mini. See the caption for Figure 6 for more information.
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Figure 9: Continuation of Figure 6. See the caption of that figure for more information.
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Figure 10: Continuation of Figure 6. See the caption of that figure for more information.
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Figure 11: Continuation of Figure 7. See the caption of that figure for more information.
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Figure 12: Continuation of Figure 7. See the caption of that figure for more information.
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Figure 13: Continuation of Figure 8. See the caption of that figure for more information.
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Figure 14: Continuation of Figure 8. See the caption of that figure for more information.
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def altText(s):
if len(s) == 1:

return s.upper()
else:

return s[::2]. upper() + s[1::2]

Figure 15: Reordering letters unexpectedly.

F Analyzing Prompt Trajectories

F.1 Tagging Prompt Clues

Four expert annotators tagged the information content of the 290 prompt trajectories. All annotators have
experience teaching courses in Python programming and are therefore familiar with how students talk
about programming concepts.

Annotators developed the sets of clues associated with problems by reading the successful prompts,
the expert-written prompts from the original STUDENTEVAL dataset, and reflecting on the common
information. Although information can be annotated at different levels of granularity, we strove for 3-8
clues per problem.

After annotation, a consistency check was performed on each prompt. Any inconsistencies in tagging
(e.g., tagging an “add” operation for an existing clue; tagging a “modify” operation for a clue that had not
previously been tagged) were corrected at this stage.

F.2 Additional Style Matters Examples

We examine additional examples where students include all necessary clues in their prompt, but the
model’s generated function still fails tests.

A common model error observed across two problems (topScores in Figure 16 and sort_physicists
in Figure 17 and Figure 18) consists of a sorting error. Both problems receive as input a nested list, with
the inner lists containing fixed elements: [[x0, ..., xn], ..., [x0, ..., xn]]. The problems stipulate that the
generated function must return one of the elements xi, sorted by another elements xk, where k ̸= x.
The error the model consistently makes is filtering out the key required for sorting, then subsequently
attempting to sort. This however cannot be done without the sorting key. Thus, the model often simply
calls sort, eluding the key. One plausible explanation to why this happens is that human programmers
are unlikely to delete the sorting key first, then try to sort. For this reason, training data may not include
many examples of how to sort in this way. Note that in all students’ subsequent successful attempts, the
model deletes the sorting key after sorting.

In a prompt from student46 for the planets_mass problem (Figure 19), the model conflates an extra
piece of information (“first letter capitalized”) with the definition of a planet. Removing this single line
leads the student to success. These examples serve to illustrate the kind of ambiguity in the wording of a
prompt which can make the difference between success and fail.

F.3 Clue Sets

Here we provide the clue sets for all 33 problems.
Problem: add_int

Signature: def add_int(lst, num):

Clues:
1. edge case of list in list
2. concatenate num to strings
3. add num to integers
4. return list

Problem: add_up

Signature: def add_up(arr):

Clues:
1. 2D array
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2. sum integer
3. sum float
4. return the sum of all elements
5. mention 0 base case
6. misdirection - add number within string

Problem: altText

Signature: def altText(s):

Clues:
1. input string
2. alternating uppercase
3. return all letters, including spaces
4. first letter upper

Problem: assessVowels

Signature: def assessVowels(s):

Clues:
1. argument s is a string
2. result is a list of strings
3. result is the vowels present in the argument
4. result has both upper and lower case vowels

Problem: changeSection

Signature: def changeSection(s,i):

Clues:
1. result is a string
2. result reverses a part of the argument ’s’
3. the result reverses the first ’i’ characters of the argument
4. the result also includes the remaining characters of ’s’, but not reversed

Problem: check_prime

Signature: def check_prime(num):

Clues:
1. convert input string to int
2. output bool
3. check prime
4. correct description of a procedure to check prime number

Problem: combine

Signature: def combine(l1,l2):

Clues:
1. input 2 lists
2. row correspondence
3. output 1 2d array

Problem: convert

Signature: def convert(lst):

Clues:
1. takes a list of numbers
2. maps numbers to letters
3. joins letters
4. -1 means split
5. return list of strings

Problem: create_list

Signature: def create_list(dt, lst):

Clues:
1. takes a dict and a list
2. looks up list items in dict
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3. construct list with matching values
4. use None for items that aren’t in dict
5. return list

Problem: fib

Signature: def fib(n):

Clues:
1. check if a Fib number
2. returns a Boolean
3. explanation of Fib
4. construct set of Fib numbers
5. hardcodes numbers
6. bound set

Problem: findHorizontals

Signature: def findHorizontals(puzzle,wordList):

Clues:
1. input is two lists
2. find words in second list within strings in first list
3. return dictionary
4. keys are words
5. values are indices of strings where words are found
6. words can be backwards or forwards

Problem: find_multiples

Signature: def find_multiples(start,stop,factor):

Clues:
1. return multiples
2. inclusive start and stop

Problem: generateCardDeck

Signature: def generateCardDeck(suits, vals):

Clues:
1. takes two lists
2. creates all pairs from the lists
3. sort alphabetically
4. first list item comes before second list item in pairs
5. return list

Problem: getSeason

Signature: def getSeason(month):

Clues:
1. input is string
2. month to season
3. return lowercase
4. explain which are which

Problem: increaseScore

Signature: def increaseScore(score):

Clues:
1. input integer
2. if less than 10, make 10
3. if 10 or more, add 1
4. if negative, turn positive
5. if single digit, add 0
6. return

Problem: laugh

Signature: def laugh(size):
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Clues:
1. prefix h
2. reverse order
3. number of a’s is based on size
4. space separation
5. down to 1
6. repetition
7. misdirection-print instead of return

Problem: pattern

Signature: def pattern(value):

Clues:
1. takes an int
2. produces a nested list
3. there are value n of inner lists
4. each inner list is from 1 to value
5. returns

Problem: percentWin

Signature: def percentWin(guess,answers):

Clues:
1. takes two lists
2. compares items from both lists and counts matches
3. computes percent match
4. rounds to whole percent
5. convert to string and add "
6. returns

Problem: planets_mass

Signature: def planets_mass(planets):

Clues:
1. takes a dictionary
2. skip Pluto
3. skip Sun
4. look up in dictionary
5. sum masses
6. return

Problem: print_time

Signature: def print_time(day,hour):

Clues:
1. input is a string and an int
2. how to distinguish sleeping
3. how to distinguish weekday versus weekend
4. short form of day
5. return not print

Problem: readingIceCream

Signature: def readingIceCream(lines):

Clues:
1. input is a list of strings
2. go through all strings
3. split on tab
4. extract last item from each string
5. convert to float
6. sum numbers
7. return total
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Problem: remove_odd

Signature: def remove_odd(lst):

Clues:
1. takes a (potentially mixed) list of numbers
2. removes only odd numbers
3. removes only integers
4. returns list

Problem: reverseWords

Signature: def reverseWords(words):

Clues:
1. takes a list of strings
2. reverses each word in list
3. sorts list
4. reverse before sort
5. returns list

Problem: set_chars

Signature: def set_chars(s,c,l):

Clues:
1. input is described correctly
2. second argument is used to replace certain characters
3. third argument contains list of indices to replace
4. return string
5. handle indices outside string length

Problem: sortBySuccessRate

Signature: def sortBySuccessRate(nominations):

Clues:
1. input is list of dictionaries
2. add a key success
3. success is wins/noms
4. round success
5. sort by success
6. return

Problem: sort_physicists

Signature: def sort_physicists(scientists):

Clues:
1. Input is a list of lists
2. specify inner list structure
3. filter list with the right key
4. sort list with the right key
5. specify return
6. sort

Problem: sortedBooks

Signature: def sortedBooks(books, writer):

Clues:
1. takes a list of dictionaries
2. takes an author
3. removes books not by that author
4. sorts list
5. sorts list by year
6. returns list

Problem: student_grades

Signature: def student_grades(students, grades):
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Clues:
1. input is two dictionaries
2. match keys to values between dictionaries
3. create a new dictionary with lists of grades
4. return

Problem: subtract_add

Signature: def subtract_add(lst):

Clues:
1. input is list
2. convert items to integers
3. alternate add and subtract
4. add is even indices and subtract is odd indices
5. return result

Problem: times_with

Signature: def times_with(meetings):

Clues:
1. input is nested list
2. describe nested list structure
3. make dictionary where keys are people and values are numbers
4. sum times
5. return dictionary

Problem: topScores

Signature: def topScores(lst):

Clues:
1. nested list with items in format [grade, name]
2. return only names with grade >80
3. return list of names
4. sort by grades descending
5. only top 5 scoring names
6. equal 80 edge case

Problem: total_bill

Signature: def total_bill(grocery_list, sales_tax):

Clues:
1. input is a list
2. list structure explained
3. input is sales tax
4. multiply item by its quantity
5. sum items
6. apply sales tax
7. round
8. return total

Problem: translate

Signature: def translate(lexicon,sentence):

Clues:
1. input 1 is a dictionary
2. input 2 is a string
3. extract words from string
4. look up words in dictionary
5. use UNK for words that are not in dictionary
6. function returns
7. join string
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def topScores(lst):
"""
taken lst , loop each list and if the zeroth index is more than or equal to 80,
add
the 1st index into a list and return this new list in the order of the highest
zeroth index. If the list is larger than 4 items , then return only 4 items with
the highest zeroth index.
"""

new_lst = []
for i in lst:

if i[0] >= 80:
new_lst.append(i[1])

new_lst.sort(reverse=True)
if len(new_lst) > 4:

return new_lst [:4]
else:

return new_lst

def topScores(lst):
"""
if 0th index of the nested list of lst is greater than or equal to 80, return a
list of the 1st index in the order from the largest 0th index integer. Return up
to a list of 5 items.
"""

return [x[1] for x in sorted(lst , key=lambda x: x[0], reverse=True) if x[0] >=
80][:5]

Figure 16: Student53 example prompt for topScores. The second prompt is the student’s final successful attempt.

def sort_physicists(scientists):
"""
The internal lists contain name , year graduated and subject. If the subject is
"Physics" return just the names in order of what year they graduated from lowest
to highest
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort()
return physicists

def sort_physicists(scientists):
"""
The internal lists contain name , year graduated and subject. If the subject is
"Physics" return just the names , in order of what year they graduated from
lowest
to highest
"""

return [name for name , year , subject in sorted(scientists , key=lambda x: x[1])
if subject == "Physics"]

Figure 17: Attempt by student36 at sort_physicists. The second prompt is the student’s final successful attempt.
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def sort_physicists(scientists):
"""
Given a set of lists with a scientist , number , and a subject , respectively , only
return the scientist if the subject is "Physics" in a list. Then sort the list
into ascending order based on the number , but don't return the number.
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort()
return physicists

def sort_physicists(scientists):
"""
Given a set of lists with a scientist , number , and a subject , respectively , only
return the scientist if the subject is "Physics" in a list. Then sort the
scientists based on the numbers given in the set of lists from smallest to
largest. For example , if the scientist has the smallest number attached to them
in
the set of lists , they should be placed first in the output list.
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort(key=lambda x: x[1])
return physicists

Figure 18: Student77’s attempt at sort_physicists. The second prompt is the student’s final successful attempt.

def planets_mass(planets):
"""
The function will take in a dictionary
where the keys are strings, with the first letter capitalized, and integers
are stored inside them. It will remove
any strings that are not associated
with planets , then it will take all
the integers stored inside and add
them together and output that.
"""

Completion 1
for key in planets:

if key [0]. isupper () == False:
del planets[key]

mass = 0
for key in planets:

mass += planets[key]
return mass

Completion 2
total = 0
for planet in planets:

if planet == "Mercury" or planet == \
"Venus" or planet == "Earth" or \
planet == "Mars" or planet == \
"Jupiter" or planet == "Saturn" or \
planet == "Uranus" or \
planet == "Neptune":

total += planets[planet]
return total

Figure 19: two attempts by student46 at planets_mass. Deleting the terms in blue results in the second completion
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Figure 21: Prompt trajectories for the “check prime” problem.

F.4 All Prompt Trajectory Graphs
The prompt trajectories for all remaining problems are in Figure 20—Figure 51.

8581



s19

s54

s36 s54

s54

s38 s77

s54

s42

s19

a3,a4

a2,m3

s36

a2,a3,a4

m2,m3

s38

a2,a3,a4

a1

s42

a2,a3,a4

a1

s54

a3,a4

a2,m3

m2,m3

m2

l3

s77

a2,a3,a4

a1

Figure 22: Prompt trajectories for the “add int” problem.

8582



s23 s44s63

s40s40 s40 s40 s40

s23 s23 s23s35

s35

s63

s75

s44

s59 s59s23

s44

s75

s23

s23

s23

a1,a2,a4

m2 l2,a3

m2

d2

a2

s35

a1,a2,a3,a4

m2

m2

s40

a1,a2,a3,a4

m2

l2

s44

a1,a2,a4

m2

m1,m2

s59

a1,a3

s63

a1,a2,a3,a4

m2

s75

a1,a2,a3

m2

m2

Figure 23: Prompt trajectories for the “altText” problem.
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Figure 27: Prompt trajectories for the “convert” problem.
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Figure 29: Prompt trajectories for the “fib” problem.
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Figure 30: Prompt trajectories for the “findHorizontals” problem.
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Figure 32: Prompt trajectories for the “generateCardDeck” problem.
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Figure 33: Prompt trajectories for the “getSeason” problem.
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Figure 35: Prompt trajectories for the “laugh” problem.
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Figure 36: Prompt trajectories for the “pattern” problem.
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Figure 37: Prompt trajectories for the “percentWin” problem.
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Figure 39: Prompt trajectories for the “print time” problem.
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Figure 41: Prompt trajectories for the “remove odd” problem.
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Figure 44: Prompt trajectories for the “sortBySuccessRate” problem.
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Figure 45: Prompt trajectories for the “sort physicists” problem.
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Figure 46: Prompt trajectories for the “sortedBooks” problem.
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Figure 47: Prompt trajectories for the “student grades” problem.
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Figure 48: Prompt trajectories for the “subtract add” problem.
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