
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8541–8610

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Substance Beats Style: Why Beginning Students Fail to Code with LLMs

Francesca Lucchetti
Northeastern University

Zixuan Wu
Wellesley College

Arjun Guha
Northeastern University

Molly Q Feldman
Oberlin College

Carolyn Jane Anderson
Wellesley College

Abstract

Although LLMs are increasing the productiv-
ity of professional programmers, existing work
shows that beginners struggle to prompt LLMs
to solve text-to-code tasks (Nguyen et al., 2024;
Prather et al., 2024; Mordechai et al., 2024).
Why is this the case? This paper explores
two competing hypotheses about the cause of
student-LLM miscommunication: (1) students
simply lack the technical vocabulary needed
to write good prompts, and (2) students do
not understand the extent of information that
LLMs need to solve code generation tasks. We
study (1) with a causal intervention experiment
on technical vocabulary and (2) by analyzing
graphs that abstract how students edit prompts
and the different failures that they encounter.
We find that substance beats style: a poor grasp
of technical vocabulary is merely correlated
with prompt failure; that the information con-
tent of prompts predicts success; that students
get stuck making trivial edits; and more. Our
findings have implications for the use of LLMs
in programming education, and for efforts to
make computing more accessible with LLMs.

1 Introduction

There is a growing body of evidence that large
language models (LLMs) are increasing the pro-
ductivity of professional programmers (Etsenake
and Nagappan, 2024). At the same time, previ-
ous work shows that students struggle to leverage
LLMs in programming across a variety of tasks and
models (Nguyen et al., 2024; Prather et al., 2024;
Mordechai et al., 2024). But why is this the case?

Prior work has reported on students’ and in-
structors’ perception of why student-LLM inter-
actions go wrong, positing many explanations
including unfamiliarity with technical vocabu-
lary (Nguyen et al., 2024; Feldman and Anderson,
2024; Mordechai et al., 2024; Prather et al., 2024),
model non-determinism (Lau and Guo, 2023; Vada-
party et al., 2024), and trouble understanding LLM

output (Nguyen et al., 2024; Vadaparty et al., 2024).
However, there is little quantitative evidence about
these potential sources of miscommunication.

In this paper, we test two competing hypothe-
ses about the cause of student-LLM miscommu-
nication. One possibility is that students pro-
vide all of the information that the model needs,
but use language that models cannot understand.
Non-expert programmers talk about code differ-
ently than experts, leading to problems for models
trained largely on expert code. A second possibility
is that students do not understand what information
a model needs to solve a given problem. Writing
prompts involves decisions about what information
the model may be able to infer from pretraining
versus what information must be stated directly in
the prompt. These decisions may be more challeng-
ing for students to make, since they do not yet have
a strong sense of what information code typically
contains.

This paper tests the impact of these potential er-
ror sources in two sets of experiments on a dataset
of 1,749 prompts authored by 80 students (Babe
et al., 2024). To isolate the effect of linguistic varia-
tion, we conduct a causal analysis of lexical choices
for technical terminology by replacing them with
near-synonyms used by students. To study infor-
mation selection, we annotate series of prompts
in student problem-solving attempts with problem-
specific “clues,” or information that describes the
intended behavior of generated code.

Overall, our findings reveal that student-LLM
coding difficulties spring from challenges in se-
lecting relevant information rather than challenges
with technical vocabulary. Our study of the infor-
mation content of prompts shows that prompts with
missing clues almost always fail. Moreover, stu-
dents typically get “stuck” in cycles because they
make trivial edits to prompts instead of changing
their information content. Our causal analysis of
prompt wording finds relatively weak effects of

8541

modifying technical terminology. Although certain
substitutions can hurt prompt success rates, cor-
recting non-standard terminology rarely improves
them. This suggests that the relationship between
technical vocabulary and prompt success is more
correlational than causal.

Taken together, our results provide empirical
evidence that the information content of student
prompts is what matters, rather than their (mis)use
of technical vocabulary. These findings have strong
implications for the use of LLMs in programming
education and, more broadly, for efforts to broaden
the accessibility of computing with LLMs.1

2 Related Work

As the use of LLMs for programming has become
widespread, the question of prompt wording has
become increasingly important. Early work re-
vealed high sensitivity to prompt wording on pro-
grams (White et al., 2023; Döderlein et al., 2023),
which has efficiency implications (Mozannar et al.,
2024). Several techniques that address prompt
wording (Strobelt et al., 2022; Oppenlaender, 2023;
Zamfirescu-Pereira et al., 2023; Ma et al., 2024).
Liu et al. (2023) take a user-centered approach to
teaching strategies for prompting. Döderlein et al.
(2023) study keyword removal and replacement.
Zhu-Tian et al. (2024) generate program sketches
from Python keywords in prompts. Xia et al. (2024)
automatically reword existing task descriptions for
more robust code generation benchmarks.

Novice Programmers and LLMs. LLMs have
have sparked much discussion in computing ed-
ucation (Finnie-Ansley et al., 2022). There is a
growing body of work studying how students use
LLMs in computing classes (Zamfirescu-Pereira
et al., 2023; Prather et al., 2023; Kazemitabaar
et al., 2023a; Denny et al., 2023; Mordechai et al.,
2024; Vadaparty et al., 2024). A convergent finding
is that students struggle to leverage LLMs. Many
potential explanations have been advanced: Lau
and Guo (2023)’s study of CS educators discusses
model non-determinism as a barrier; Prather et al.
(2024) explores the cognitive load imposed by code
suggestions; and Kazemitabaar et al. (2023b) de-
scribe over-reliance on the model. Finally, multiple
studies posit that technical language is a barrier
between students and LLMs (Nguyen et al., 2024;

1We make the code and data for our experiments available
at https://github.com/nuprl/substance-vs-style.

Feldman and Anderson, 2024; Mordechai et al.,
2024; Prather et al., 2024).

This paper uses the dataset by Babe et al. (2024),
which contains 1,749 prompts from students who
have completed one college programming course.
Babe et al. (2024) turn their dataset into a bench-
mark to measure LLM performance on novice-
written prompts. They report some correlations be-
tween technical terms and prompt success. Nguyen
et al. (2024) study student experiences during the
experiment, including students’ self-perceptions of
why the task is challenging: they highlight prompt
wording as a key student-perceived barrier. This is
reaffirmed in Feldman and Anderson (2024)’s repli-
cation with students with no coding experience.

Prompting Effects in Generative Models.
There is a large set of existing work exploring the
effect of different prompting techniques for LLMs
more broadly. Prior work has shown that models
are surprisingly robust to misleading, corrupted, or
irrelevant prompts (Webson and Pavlick, 2022; Min
et al., 2022; Madaan et al., 2023; Ye and Durrett,
2022; Khashabi et al., 2022; Wang et al., 2023). In
this light, the documented issues that novice pro-
grammers experience when working with LLMs for
programming are surprising. Our work may help
to reconcile these two bodies of work by exploring
the cause of student-LLM miscommunications.

Terminology in Other Generative Domains.
The impact of prompt terminology has been studied
in non-code domains. For text generation, previous
work has studied prompting techniques to control
style (Yeh et al., 2024; Raheja et al., 2023). Text-
to-image models are very sensitive to choices in
keywords (Liu and Chilton, 2022), limiting their
usability for some applications (Tseng et al., 2024)
and users (Chang et al., 2024).

3 Dataset

Our goal is to understand what it is about student-
written prompts that makes them less effective for
LLM code generation. We use the STUDENTE-
VAL dataset released by Babe et al. (2024), who
use a subset of their data to benchmark LLMs for
code generation. Unlike many datasets of program-
ming prompts, it contains many different prompts
per task, including multiple submissions by the
same author, allowing us to explore both word-
ing choices and how the information content of

8542

https://github.com/nuprl/substance-vs-style

Function signature
def total_bill(grocery_list , sales_tax):
Tests
total_bill ([['eggs', 6, 0.99], ['milk', 1, 1.49], ['bread ', 2, 3.5]], 0.07) # 15.44
total_bill ([['eggs', 6, 0.99], ['milk', 1, 1.49], ['bread ', 2, 3.50]] , 0.0) # 14.43
total_bill ([['bread ', 2, 3.50]] , 0.5) # 10.5
Docstring Attempt 1 (generated code fails some tests)
you will have two inputs a list of lists and the tax rate. for every list in the list of lists multiply the second and third item
and add all of them and then multiply that by the sales tax plus 1
Docstring Attempt 2 (generated code passes all tests)
you will have two inputs a list of lists and the tax rate. for every list in the list of lists multiply the second and third item
and add all of them and then multiply that by the sales tax plus 1. if the resulting number has more than two decimal
places shorten it to two decimal places.

Figure 1: An example problem that a student solves in two attempts. Given the function signature and tests, they
write the first docstring. The platform prompts the model to generate the function body from the function signature
and docstring (not the tests), and then tests the generated code. From the failed tests, the student realizes that the
model needs to be told to round to two decimal places. They add this clue in the second prompt, which succeeds.

prompts is edited during a prompting session.2

The dataset contains 1,749 prompts written by
80 students who had completed exactly one pro-
gramming course. They were asked to complete
problems drawn from a set of 48 CS1 programming
tasks exercising a range of programming concepts.
The dataset was collected in a prompting experi-
ment that worked as follows (Figure 1): (1) the
student was shown 3-5 test cases and asked to write
a Python docstring for the function; (2) the experi-
mental platform prompted an LLM (code-davinci-
002) to generate a Python function, conditioned on
the function signature and the student-written doc-
string; (3) the experimental platform tested the gen-
erated function on the provided tests; and (4) the
student could try again or give up and move on to
the next problem. Each student did 8 problems.

We use different subsets of the STUDENTEVAL

dataset to explore our research questions. To study
the effect of information content on prompt success,
we consider problems where at least five students
submitted multiple times (33 tasks). We exclude
tasks that were trivial (all students succeeded at
first try) or that were attempted by few students,
since these are uninformative. To study the effect of
prompt wording, we select a lexically diverse sub-
set by taking each student’s first and last prompts
per problem (953 prompts). We study only the first
and last prompts because there is often little lexi-
cal variation in intermediate prompts (as shown in
our information content experiment), which would
skew the results of our lexical analysis.

2The dataset contains sequences of prompt-edits, but their
benchmark uses only the first/last prompt by each student.

4 Methods

Our work explores the impact of two potential
causes of student-LLM miscommunication: how
students word their prompts, and how students se-
lect information to include in their prompts.

4.1 Measuring the Impact of Prompt Wording

To understand how students’ wording of prompts
affects model performance, we use a counterfac-
tual causal inference approach. We systematically
measure the impact of wording related to what
Mordechai et al. (2024) refer to as the “structured
language” that experts use “to describe the logi-
cal control flows within the desired program.” We
define a set of key programming concepts and sys-
tematically substitute alternative terms used by stu-
dents to measure how the success of their prompt
would have been impacted by alternative wording.

4.1.1 Tagging Concept References
We select 12 key technical concepts that occur fre-
quently in the STUDENTEVAL dataset, including
references to data types (e.g., list, string, dictio-
nary), operations on data (e.g., concatenate, ap-
pend, typecast), and terms related to data flow and
control flow (e.g., input, loop, return).

For each concept, two expert annotators identi-
fied every lexical variation used to refer to these
concepts in the prompts. The tag set includes tags
for all morphological variants of a given lemma,
to ensure that the substitutions match the capital-
ization and tense of the original terms. In addition,
three sets of tags were used for terms referring to
function input, to capture different syntactic struc-
tures. The full tag set contains 78 tags for 14 cate-
gory lemmas. See Appendix E for the annotation

8543

Original: Convert the input into integers and check if it is a
prime number.
Tagged: $Typecast:Convert$ the $parameter:input$ into

$integers:integers$ and check if it is a prime number.

Substitution: Convert the input into whole numbers and
check if it is a prime number.

Figure 2: An example of tagging and then substituting
“integer” with “whole number”.

procedure and all lemmas.
Overall, references to these concepts appear

4,262 times across the dataset. Collapsing vari-
ations of the same lemma within a prompt (e.g.,
“string”,“strings”), we find that the median number
of technical terms per prompt is three and the max-
imum is ten. Figure 2 shows an example of how
three concept references in a prompt get tagged.

4.1.2 Replacement Sets
We identify the most common terms that students
use to refer to to each concept category. An initial
list was developed by reading through all prompts
in the Nguyen et al. (2024) and Feldman and Ander-
son (2024) datasets, to get the widest possible set of
variations. We computed frequencies for terms in
this initial list and selected terms used at least twice
in STUDENTEVAL. This led to a final set of 65 sub-
stitution terms, with at least two substitutions for
each of the 14 concept lemmas.

4.1.3 Causal Analysis
We conducted term-by-term substitution experi-
ments across 65 category-replacement pairs. For
each category-replacement pair, we replaced all
expressions tagged with the category using the re-
placement lemma. Terms tagged with other cate-
gories were left unchanged, with the category tags
removed and the original terms restored.

Figure 2 shows an example of the term-by-term
substitution on a tagged prompt, where we replace
all terms tagged with category integer with the re-
placement term whole number. Our tagging retains
information about the tenses, plurals, and capital-
ization of the original words. In this example, in-
tegers tagged with integers is replaced with whole
numbers. Terms Convert and input tagged with
other categories are unchanged by the substitution.

Using Gpt-4o mini (OpenAI, 2024), Llama 3.1
8B and 70B (Llama Team, 2024), we generate com-
pletions for all prompts before and after substitu-
tion. A completion is considered correct if it passes
all tests for the problem. We compute a pass rate

per problem by sampling 200 completions using
common hyperparameters for code generation.3

4.1.4 Significance Testing
We measure the statistical reliability of observed
differences in pass rates using mixed-effects binary
logistic regression models that include random ef-
fects for prompt ID and problem. The outcome
variable is the pass@1 rate.

4.2 Measuring the Impact of Information
Content

Another possible source of error is the information
content of student prompts. Like other forms of
communication, prompting involves a trade-off be-
tween communicative efficiency and likelihood of
success. An effective prompter seeks to obtain cor-
rect results from the LLM while minimizing their
own descriptive effort.

A key part of effective prompting, therefore, is
understanding the level of detail that is necessary
to guide the model. An expert prompter may be
able to quickly describe a task in a concise prompt.
Novices, on the other hand, may struggle to dis-
tinguish cases that need to be specified (e.g., both
branches of a conditional) from cases that pattern
together, or atypical coding patterns from typical
ones. This may be the case even when students
fully understand the programming task, since effi-
cient prompt-writing involves guessing what infor-
mation models can infer without explicit direction.

We seek to understand how the information con-
tent of prompts changes over the course of a prompt
trajectory. When a prompt fails, are students able
to identify what information is missing? Prior
work shows that students tend to write successively
longer prompts (Babe et al., 2024); in this analy-
sis, we seek to understand whether this additional
verbiage contains useful information.

4.2.1 Grouping LLM Outputs by Test Results
When a prompt fails to generate correct code, a
prompter must decide how to edit their prompt to
improve their chances of success. An edit may add
information about the intended behavior, remove
information that is distracting or wrong, or simply
change how the information is described. By study-
ing how and when students edit the information in
their prompts, we gain insight into the relationship
between information content and prompt success.

3Following Chen et al. (2021), we use top-p sampling
(0.95) and temperature (0.2) to calculate pass@1.

8544

Clues:
1. First input is a list
2. List structure explained
3. Second input is sales tax
4. Multiply item price by quantity
5. Sum results
6. Apply sales tax
7. Round to two decimal places
8. Return total

1 This function takes in a list of the item purchased, the price, the tax,
and the overall sales tax. All of the prices and tax within the lists are
added together. The sales tax is then multiplied by the outcome of the
added prices, and then the result of the multiplication is added onto the
total price. The total price is then returned as the output.

2 prices and tax taxes within the lists

3 the prices and taxes tax
within the lists, which is the
last two components of the
list

4 All of the prices and tax
within the lists are added
together. The amount purchased
is multiplied with price for each
item.

s59

s23

s23s23

s69 s69

s40 s59s63 s64s64

s33s40 s44s75 s35 s50 s60 s63 s64 s79

s59s23

a1,a2,a3,a5,a6,a8

m2a4,d5

s33

a1,a2,a3,a4,a5,a6,a8

a7

s35

a1,a2,a3,a4,a5,a6,a8

a7

s40

a2,a4,a6,a8

a5,m6,m8

a7

s44

a2,a4,a5

a7

s50

a1,a2,a4,a5,a6

a7

s59

a1,a2,a3,a4,a5,a6,a8

m6 m6

s60

a1,a2,a3,a6,a8

a7

s63

a1,a2,a3,a4,a5,a6,a8

m6

a7

s64

a2,a4,a5,a6

m4

a7

s69

a1,a2,a4,a5,a6

l2 m4

s75

a1,a5,a8

a7

s79

a1,a3,a4,a5,a6

a7

Figure 3: The graph of prompt trajectories for TOTAL_BILL (Figure 1). We highlight the trajectory of S23 who
ultimately fails: their first prompts 1 has most clues, but omits Clue #7 (bottom right of figure). Their next prompt
2 is a trivial change. 3 adds detail about the list structure (Clue #2), but it was already described well so they

cycle back to a previous state. Finally, 4 adds the missing Clue #4 (and deletes Clue #5, but it isn’t necessary to
solve the problem). Here they give up and fail, but many others succeed from this state after adding Clue #7.

To do this, we study a set of 290 prompt trajec-
tories: sequences of prompts entered by a student
for a particular task, starting from their first prompt
and ending with a final prompt that may or may not
succeed on the task.

Although prompts vary significantly in wording,
we can group them based on their effect: when
used to prompt a model, what is the behavior of
the generated code? Every problem has a single
group of prompts where the tests produce the ex-
pected output (successes). In addition, there are
multiple states where tests produce incorrect an-
swers or throw exceptions. The ◦-nodes in Figure
3 represent the ten states that students encounter
on the TOTAL_BILL problem: the green node is the
success state and the others are different failures.

4.2.2 Information in Prompt Edits
We use the notion of a prompt clue to study the
information content of prompts. A clue is a piece
of information about the function’s intended be-
havior. For each problem, we identify a set of
clues by examining the information that success-
ful prompts tend to contain, as well as the expert-
written prompts from the STUDENTEVAL dataset.
We strive for sets of 3-6 clues per problem.

Expert annotators (experienced CS1 educators)

developed the set of clues for each problem and
used it to annotate each prompt trajectory. We tag
the first prompt in each trajectory with the set of
clues present. Subsequently, we tag each prompt
edit in terms of its information change: adding a
clue (a), deleting a clue (d), removing detail from
a clue (l), or rewording a clue without removing
detail (m). A null tag (0) is used to mark edits that
do not change the information content of a prompt.

Figure 3 (bottom right) lists the eight clues for
the TOTAL_BILL problem (Figure 1). Some of
these clues describe the input and output types
(Clues #1, #3, and #8). The remaining clues de-
scribe the computation. The edge labels in the
graph show how students modify the clues present
in their prompts.

4.2.3 Prompt Trajectory Graphs
We define a graph with alternating states of all
prompt trajectories for a problem from the se-
quence of prompts, execution outputs, and expert
annotations discussed above. For a given problem,
let s ∈ S be the set of students and ps,i ∈ PS,N be
the set of prompts indexed by student and attempt
number. Let ps,imax be the final prompt by s. Let
EXEC : PS,N → O be the mapping from a prompt
to its test output, where there is a distinguished

8545

output oOK ∈ O where all tests pass.
We construct a directed graph G = (V,E)

where V = O ∪ PS,N. The graph edges are:
• ⟨ps,i, o⟩ ∈ E where EXEC(ps,i) = o
• ⟨o, ps,i+1⟩ ∈ E if there exists p′s,i ∈ P and
⟨p′s,i, o⟩ ∈ E

A node ps,imax is a success node if ⟨ps,imax , oOK⟩ ∈
E, and is otherwise a failure node. We label edges
⟨ps,0, o⟩ ∈ E with the initial clues for student s.
For ⟨ps,i−1, o⟩, ⟨o, ps,i⟩ ∈ E, we label the edge
⟨ps,i, o⟩ with the edits to the clues made from
prompt ps,i−1 to ps,i.

In Figure 3, the ◦-nodes are test result nodes and
the ⋄-nodes are prompt edit nodes ps,i. We label
each ⋄-node with the student’s identifier s.4 The
⋄-nodes with dashed edges represent a student’s
first prompt and the ⋄-nodes colored green or red
represent their final prompt (success or failure, re-
spectively). We label edges with clue edits. For
convenience, we color each student’s last edit edge
green (success) or red (failure).

The caption of Figure 3 describes the prompt
and clue edits by a student who ultimately fails
the task. Other patterns can also be read from
the graph. For instance, most students succeed in
two attempts after adding a clue about rounding
(Clue #7). The three students who never solve the
problem get stuck in cycles. The graph also shows
a disconnected failure state visited only by student
s69, who struggled to describe the input list: the
generated code assumes a triply-nested list.

We see the kinds of patterns described above in
almost all problems, including longer loops and far
more failures in the harder problems. We analyze
the structure of these graphs in §6 to understand
prompt trajectories in more depth.

5 Results: Style Rarely Matters

We measure the effect of prompt wording through a
causal intervention experiment in which we explore
a range of lexical substitutions for terms referring
to 12 key programming concepts. If what hinders
students is their lack of fluency with technical vo-
cabulary, we should be able to improve the pass
rate of their prompts by substituting more precise
technical vocabulary for their unconventional ways
of referring to these concepts. We also measure
the effect of word choice on high-quality prompts:
by including substitution terms that are commonly

4The index i can be inferred, unless the student sees the
same output 3+ times.

Lemma Substitution 8B 70B GPT
String character ↓ ↓ -

phrase ↓ - -
set of characters ↓ ↓ ↓
word ↓ - -

List brackets ↓ ↓ -
set of brackets ↓ ↓ -
set ↓ ↓ ↓

Key attribute ↓ ↓ -
entry ↓ - -
item ↓ - -
part ↓ - -
variable ↓ - -

Parameter argument - ↑ -
Provide provide - ↓ -
Return display ↓ ↓ ↓

print ↓ ↓ ↓
Loop go through ↓ - -

execute a for loop with ↓ ↓ -
run a for loop through ↓ ↓ -
iterate - ↓ -
loop through - ↓ -

Concatenate splice ↓ - -
Skip remove ↓ - -

avoid ↓ - -
ignore - ↓ -
neglect - ↓ -

Typecast cast ↓ - -
change - ↑ -

Table 1: Statistically reliable differences in pass@1 after
lexical substitutions: Llama 3.1 8B, Llama 70B and Gpt-
4o-mini. ↓ denotes a reliably lower post-substitution
pass@1; ↑ denotes a reliable increase; and - indicates
no significant difference. All statistically reliable dif-
ferences involve substituting a standard term with an
unconventional term, with p < 0.05. Full significance
values are reported in Appendix E.4.

used by students but less technically precise, we
can test whether they decrease pass rates.

5.1 How Much Does Style Matter?

We perform lexical substitutions for the 12 con-
cept categories, comparing the original and post-
substitution prompt pass@1 rates using Gpt-4o
mini, Llama 3.1 8B and 70B. We test each con-
cept category separately, holding the rest of the
prompt constant.

Figure 4 summarizes the results of the 65 lexical
substitution experiments. Full model tables with
significance values can be found in Appendix E.4.
In general, we observe only weak effects of lexi-
cal substitution across all categories. For 4 out of
14 concept lemmas, there are no statistically reli-
able differences between the pass rates for the re-
worded prompts and the originals (Table 1); more-
over, when there are statistically reliable differ-
ences, they tend to be small. Contrary to the percep-
tions of students reported in Nguyen et al. (2024),

8546

−0.15

−0.10

−0.05

0.00

0.05

Dict
ion

ar
y

Key

In
te

ge
r

Lis
t

Stri
ng

Par
am

et
er

Pro
vid

e
Ta

ke

Lo
op

 T
hr

ou
gh

Ret
ur

n

App
en

d

Con
ca

te
na

te
Skip

Ty
pe

ca
st

Lemma

m
ea

nD
iff

er
en

ce

Llama3.1 8B
Standard
Llama3.1 8B
Unconventional
Llama3.1 70B
Standard
Llama3.1 70B
Unconventional
Gpt4o−mini
Standard
Gpt4o−mini
Unconventional

Figure 4: Differences between pass@1 rates before and after lexical substitutions. A negative mean difference
represents a decrease in performance after substitution.

technical vocabulary does not seem to have a strong
impact on how well models are able to generate
code from student prompts.

5.2 Can Rewording Help Failing Prompts?

The overall results show little effect of lexical sub-
stitution. Since our substitution sets consist of
terms commonly used by students, they include
both standard and unconventional ways of refer-
ring to the target concepts. For example, students
may refer to a string input as “string” (standard)
or “word” (unconventional). This means that some
substitutions make a prompt less technically pre-
cise, while others make it more technically precise.

It is particularly important to understand how
prompt wording impacts unsuccessful student
prompts. If student word choice is a driving factor
in the failure of their prompts, it would be rela-
tively simple to intervene. There are two possible
outcomes for low-quality prompts. If the student’s
vocabulary is causing the low pass rate, then sub-
stituting a more precise term should improve its
pass rate. On the other hand, the use of unconven-
tional terminology may simply be correlated with
poor quality prompts; if this is the case, improving
terminology may not lead to higher success rates.

Unlike the analysis in Babe et al. (2024), the
lexical substitution experiment enables us to dis-
tinguish these two scenarios. We find no evidence
of significant gains from fixing unconventional ter-
minology: across all categories, there are no sta-
tistically reliable gains from substituting standard
terminology (see Appendix E.4).

5.3 When Does Wording Matter?

Our lexical substitution experiments reveal that cor-
recting word choice does not significantly improve
pass rates for prompts that use unconventional ways
of referring to the target concepts. However, we
do observe some statistically significant changes in
pass rates: there are reliable negative effects from
substituting certain unconventional terms.

We find particularly robust negative effects of
diverse unconventional ways of referring to strings:
substituting “character” and “set of characters”
lower pass rates for string-referring prompts for
all models (Table 1). We also find negative effects
of unconventional list terms (“brackets”, “set”, “set
of brackets”). The largest magnitude effects are
from “set,” likely because set is a distinct data type.

For concepts related to control flow, there are in-
teresting differences between input and output con-
cepts. All models are robust to a range of ways of
referring to a function’s input. However, for return,
substituting either “print” and “display” brings pass
rates down. This is not surprising: since all of the
tasks involve functions that return values, prompt-
ing the model to print or display instead is actively
misleading. This finding also aligns with the corre-
lational findings of Babe et al. (2024).

Overall, the lexical substitution experiments re-
veal only weak causal effects of prompt wording.
Although substituting unconventional terminology
can decrease success rates, correcting unconven-
tional terminology does not seem to help weak
prompts. This suggests that the interactions be-
tween word choice and prompt success reported
in Babe et al. (2024) were correlative, rather than
causal: prompts that use unconventional terminol-

8547

ogy are weak for independent reasons.
We view this finding as both surprising, given

the body of prior work in which both students and
educators identify technical vocabulary as a barrier
to working with LLMs, and disappointing, since it
would be easier to intervene into student terminol-
ogy than other aspects of their prompting process.

6 Results: Substance Matters

An alternative hypothesis about student-LLM mis-
communication is that students struggle to select
the right information for models. We explore this
using prompt trajectory graphs (§4.2) for code-
davinci-002 to understand prompt editing. What
kinds of edits to information content do students
make, and how do they effect the success of their
prompts? We focus our discussion on high-level
trends; Appendix F contains graphs for each stud-
ied task.

6.1 Successful Prompts Have All Clues

We first examine the last prompt in every trajectory.
We find that when all clues for the problem are
present in the final prompt, the likelihood of success
is 90%. Conversely, when even one clue is missing
from the final prompt, the likelihood of success falls
to 29%. While these results are drawn from code-
davinci-002 generations, we were able to replicate
this finding on current models. For each student’s fi-
nal prompt, we compare the pass@1 score between
prompts with all clues versus those with missing
clues. We find that Llama3.1 8B achieves a pass@1
score of 50% on prompts with all clues, versus just
14% when there are missing clues; for Llama3.1
70B, the pass@1 scores are respectively 57% and
16%; for Gpt-4o, 86% and 46%. In all models,
results indicate that information content is a main
factor in the success of student prompts.

There are a few exceptions where students suc-
ceed even though their prompts omit clues. We
manually inspect these exceptions, which we iden-
tify using the prompt trajectory graphs, and find
that most fall into one of three cases: (1) the prompt
contains hardcoded answers that do not generalize
beyond test cases; (2) the function signature has
informative names that subsume some clues; or (3)
a clue may be technically missing, but duck typ-
ing allows the LLM to generate correct code (e.g.,
the student describes adding strings instead of lists,
which uses the same operator in Python).

Considering this, the number of success prompts

that are missing one or more clues represents an
upper bound on prompt success with partial infor-
mation. This supports the conclusion that providing
all the necessary clues about function behavior is
typically what determines prompt success.

6.2 Rewording Existing Clues Hardly Helps
Prompt trajectory graphs illuminate the impact of
edits that merely add/remove detail from existing
clues, or make trivial edits (edges labelled m, l, or
0 in the graphs). Out of all edges incident to nodes
where all tests pass (oOK), we find (1) 28% add
detail to an existing clue (m), (2) 11% are trivial
rewrites (0) and (3) just 4% remove detail from
an existing clue (l). Rephrasing a prompt without
adding a new clue leads to success less than half
the time. Moreover, of these edits, 65% add detail
to an existing clue.

Finally, when a prompt contains less than half
the clues for a problem, we find that adding/remov-
ing detail leads to success only 10% of the time.
In other words, the fewer clues a prompt has, the
harder it is to succeed by tweaking wording alone.
Together, these findings show the impact of infor-
mation content on prompt success.

6.3 Cycles Involve Uninformative Edits
Prior work shows that students often give up in
frustration when their prompt edits do not produce
different output (Nguyen et al., 2024). We iden-
tify these cycles and measure how hard it is for
students to escape them: when a prompt trajectory
has a cycle, its likelihood of eventual success is
30%, compared to 72% without a cycle. When
the cycle exceeds three edges, the likelihood of
success drops to 14%. We find a moderate nega-
tive correlation between success and cycle length
(r(290) = −0.42, ρ =< 0.0001).

Examining the edits in cycles, we find the ma-
jority (90%) involve missing clues. Furthermore,
most cycles edits (66%) are exclusively rewrites (l,
m, or 0); of these, 43% do not change the level of
detail in any clues (0). This shows that students get
stuck in a cycle of failing prompts when they are
missing important information.

How do students escape? Of the 44 prompt tra-
jectories that manage to break out of a cycle, only 7
have trivial edits. Most escape by adding a new clue
(13) or adding detail to existing clues (20). Taken
together, our results show that the most successful
strategy is adding information, but that most stu-
dents in cycles simply try trivial wording changes.

8548

Prompt: This function takes the input of a dictio-
nary. If the key is a planet, it takes the entry and
adds it to the total mass. The function outputs the
total mass of all planets in the dictionary.
def planets_mass(planets):

total_mass = 0
for key in planets:

if key in planets:
total_mass += planets[key]["mass"]

return total_mass

Figure 5: Variable/concept confusion.

6.4 When Does Style Matter, Revisited

Overall, our findings support the view that the infor-
mation content of prompts is more important that
wording. However, there are a handful of cases
where prompts fail even with all clues.

Figure 5 shows a prompt that succinctly states
all clues for the problem. However, the model
cannot disambiguate between “planets” as a pa-
rameter name and as a general concept, and ends
up translating the instruction if the key is a planet
into if key in planets. In other cases, the model
interprets language in a surprising way. Three stu-
dents experienced the same model error in a task to
capitalize every other letter in a string: the model
produced code that followed their instructions, but
also rearranged the string so that all the uppercase
letters came first (Figure 15 in the Appendix).

The remaining exceptions can be found in Ap-
pendix F.2. Overall, we observe that these failures
stem from ambiguity in natural language or model
limitations rather than technical vocabulary issues.

7 Conclusion

By investigating two commonly espoused concrete
hypotheses about why students struggle to effec-
tively prompt LLMs for code, our work sheds
light on what it means for students to write “good
prompts.” Our results suggest that it is the (lack
of) information in prompts, rather than how the
information is communicated, that causes student-
LLM miscommunication. Although these findings
imply that attempts to help student prompters by
suggesting alternative wording are unlikely to be
very useful, by providing the first empirical evi-
dence of the source of student struggles, we hope
our findings will guide future work on teaching
prompting towards more impactful interventions.

Limitations

This work builds on the existing STUDENTEVAL

dataset, which was collected from 80 students in
early 2023. These students were selected from
three institutions and all had taken only one pro-
gramming course. Babe et al. (2024) argue that
they are representative of beginning students, but
they are not representative of students with more
programming experience. Our findings may not
generalize to more advanced programmers.

The prompts we study were written by students
using code-davinci-002, which was state-of-the-art
at the time, but is now an older model. A newer
model, such as a chat model, would lead to differ-
ent interactions. However, Babe et al. (2024) show
that their benchmark remains challenging for sev-
eral newer models. We re-evaluate STUDENTEVAL

using Gpt-4o mini, Llama 3.1 8B and 70B and also
find that the prompts remain challenging.

The set of categories and terms we explore in
our causal inference experiments are specific to
the Babe et al. (2024) and Feldman and Anderson
(2024) user populations. These students attend se-
lect US institutions, therefore their wording choices
represent a certain level of English proficiency. The
set of substitutions would differ with speakers of
other natural languages, as might their effect.

The clues used to tag prompt trajectories repre-
sent an expert annotator’s perception of the infor-
mation that successful prompts typically contain.
There may be other ways to formulate the same
problem. However, we studied all exceptions to
our finding and did not find cases where students
appeared to use a different set of clues than what
the expert annotator found (§6.4).

Ethics Statement

The main ethical concerns surrounding this work
lie in its study of student interactions with LLMs.
This work uses the public, fully anonymized ver-
sion of the STUDENTEVAL dataset. Therefore, this
work has no additional ethical considerations be-
yond those described in the ethics statement of
Babe et al. (2024). The secondary analysis of exist-
ing data that we do is consistent with the intended
use of the dataset, which is to study how students
write prompts.

Acknowledgements

We thank the ARR reviewers for their thoughtful
feedback. This work is partially supported by the

8549

U.S. National Science Foundation (SES-2326174
and SES-2326175). This material is based upon
work supported by the U.S. Department of En-
ergy, Office of Science under Award Number DE-
SC0025613.

Disclaimer: This report was prepared as an
account of work sponsored by an agency of the
United States Government. Neither the United
States Government nor any agency thereof, nor
any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability
or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use
would not infringe privately owned rights. Refer-
ence herein to any specific commercial product,
process, or service by trade name, trademark, man-
ufacturer, or otherwise does not necessarily con-
stitute or imply its endorsement, recommendation,
or favoring by the United States Government or
any agency thereof. The views and opinions of
authors expressed herein do not necessarily state
or reflect those of the United States Government or
any agency thereof.

References
Hannah Babe, Sydney Nguyen, Yangtian Zi, Arjun

Guha, Molly Feldman, and Carolyn Anderson. 2024.
StudentEval: A Benchmark of Student-Written
Prompts for Large Language Models of Code. In
Findings of the Association for Computational Lin-
guistics ACL 2024, pages 8452–8474, Bangkok, Thai-
land and virtual meeting. Association for Computa-
tional Linguistics.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1):1–
48.

Ruei-Che Chang, Yuxuan Liu, Lotus Zhang, and An-
hong Guo. 2024. EditScribe: Non-Visual Image
Editing with Natural Language Verification Loops.
ArXiv:2408.06632 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. Preprint,
arXiv:2107.03374.

Paul Denny, Juho Leinonen, James Prather, Andrew
Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker,
and Brent N. Reeves. 2023. Promptly: Using Prompt
Problems to Teach Learners How to Effectively Uti-
lize AI Code Generators. arXiv preprint. Issue:
arXiv:2307.16364.

Jean-Baptiste Döderlein, Mathieu Acher, Djamel Ed-
dine Khelladi, and Benoit Combemale. 2023. Pi-
loting Copilot and Codex: Hot Temperature, Cold
Prompts, or Black Magic? arXiv preprint.
ArXiv:2210.14699 [cs].

Deborah Etsenake and Meiyappan Nagappan. 2024. Un-
derstanding the Human-LLM Dynamic: A Literature
Survey of LLM Use in Programming Tasks. arXiv
preprint. Version Number: 1.

Molly Q Feldman and Carolyn Jane Anderson. 2024.
Non-Expert Programmers in the Generative AI Fu-
ture. In Proceedings of the 3rd Annual Meeting of
the Symposium on Human-Computer Interaction for
Work, pages 1–19, Newcastle upon Tyne United King-
dom. ACM.

James Finnie-Ansley, Paul Denny, Brett A. Becker, An-
drew Luxton-Reilly, and James Prather. 2022. The
Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In
Australasian Computing Education Conference, ACE
’22, pages 10–19, New York, NY, USA. Associa-
tion for Computing Machinery. Event-place: Virtual
Event, Australia.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Bar-
bara J. Ericson, David Weintrop, and Tovi Grossman.
2023a. Studying the effect of AI Code Generators on
Supporting Novice Learners in Introductory Program-
ming. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pages 1–23,
Hamburg Germany. ACM.

Majeed Kazemitabaar, Xinying Hou, Austin Henley,
Barbara Jane Ericson, David Weintrop, and Tovi
Grossman. 2023b. How Novices Use LLM-based
Code Generators to Solve CS1 Coding Tasks in a
Self-Paced Learning Environment. In Proceedings
of the 23rd Koli Calling International Conference on
Computing Education Research, pages 1–12, Koli
Finland. ACM.

Daniel Khashabi, Xinxi Lyu, Sewon Min, Lianhui
Qin, Kyle Richardson, Sean Welleck, Hannaneh Ha-
jishirzi, Tushar Khot, Ashish Sabharwal, Sameer
Singh, and Yejin Choi. 2022. Prompt wayward-
ness: The curious case of discretized interpretation

8550

https://aclanthology.org/2024.findings-acl.501
https://aclanthology.org/2024.findings-acl.501
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1145/3663548.3675599
https://doi.org/10.1145/3663548.3675599
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2307.16364
https://doi.org/10.48550/arXiv.2307.16364
https://doi.org/10.48550/arXiv.2307.16364
http://arxiv.org/abs/2210.14699
http://arxiv.org/abs/2210.14699
http://arxiv.org/abs/2210.14699
https://doi.org/10.48550/ARXIV.2410.01026
https://doi.org/10.48550/ARXIV.2410.01026
https://doi.org/10.48550/ARXIV.2410.01026
https://doi.org/10.1145/3663384.3663393
https://doi.org/10.1145/3663384.3663393
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3631802.3631806
https://doi.org/10.1145/3631802.3631806
https://doi.org/10.1145/3631802.3631806
https://doi.org/10.18653/v1/2022.naacl-main.266
https://doi.org/10.18653/v1/2022.naacl-main.266

of continuous prompts. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3631–3643, Seattle,
United States. Association for Computational Lin-
guistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model
Serving with PagedAttention. In Symposium on Op-
erating Systems Principles (SOSP), pages 611–626,
New York, NY, USA. Association for Computing
Machinery.

Sam Lau and Philip Guo. 2023. From "Ban It Till We
Understand It" to "Resistance is Futile": How Uni-
versity Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explana-
tion Tools such as ChatGPT and GitHub Copilot. In
Proceedings of the 2023 ACM Conference on Inter-
national Computing Education Research V.1, pages
106–121, Chicago IL USA. ACM.

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu,
Benjamin Zorn, Jack Williams, Neil Toronto, and
Andrew D. Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-
User Programmers and Code-Generating Large Lan-
guage Models. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–31, Hamburg Germany. ACM.

Vivian Liu and Lydia B Chilton. 2022. Design Guide-
lines for Prompt Engineering Text-to-Image Genera-
tive Models. In CHI Conference on Human Factors
in Computing Systems, pages 1–23, New Orleans LA
USA. ACM.

AI @ Meta Llama Team. 2024. The Llama 3 Herd of
Models. arXiv preprint.

Qianou Ma, Weirui Peng, Hua Shen, Kenneth
Koedinger, and Tongshuang Wu. 2024. What You
Say = What You Want? Teaching Humans to Ar-
ticulate Requirements for LLMs. arXiv preprint.
ArXiv:2409.08775 [cs].

Aman Madaan, Katherine Hermann, and Amir Yazdan-
bakhsh. 2023. What makes chain-of-thought prompt-
ing effective? a counterfactual study. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1448–1535, Singapore. Associ-
ation for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Asaf Achi Mordechai, Yoav Goldberg, and Reut Tsar-
faty. 2024. NoviCode: Generating Programs from
Natural Language Utterances by Novices. arXiv
preprint. ArXiv:2407.10626 [cs].

Hussein Mozannar, Gagan Bansal, Adam Fourney, and
Eric Horvitz. 2024. Reading Between the Lines:
Modeling User Behavior and Costs in AI-Assisted
Programming. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pages 1–
16, Honolulu HI USA. ACM.

Syndey Nguyen, Hannah McLean Babe, Yangtian Zi,
Arjun Guha, Carolyn Jane Anderson, and Molly Q
Feldman. 2024. How Beginning Programmers and
Code LLMs (Mis)read Each Other. In Proceedings of
the CHI Conference on Human Factors in Computing
Systems (CHI ’24).

OpenAI. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Jonas Oppenlaender. 2023. A taxonomy of prompt
modifiers for text-to-image generation. Behaviour &
Information Technology, pages 1–14.

James Prather, Brent N. Reeves, Paul Denny, Brett A.
Becker, Juho Leinonen, Andrew Luxton-Reilly, Gar-
rett Powell, James Finnie-Ansley, and Eddie Anto-
nio Santos. 2023. “It’s Weird That it Knows What
I Want”: Usability and Interactions with Copilot
for Novice Programmers. ACM Transactions on
Computer-Human Interaction, page 3617367.

James Prather, Brent N Reeves, Juho Leinonen, Stephen
MacNeil, Arisoa S Randrianasolo, Brett A. Becker,
Bailey Kimmel, Jared Wright, and Ben Briggs. 2024.
The Widening Gap: The Benefits and Harms of Gen-
erative AI for Novice Programmers. In Proceedings
of the 2024 ACM Conference on International Com-
puting Education Research - Volume 1, pages 469–
486, Melbourne VIC Australia. ACM.

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop
Kang. 2023. CoEdIT: Text Editing by Task-Specific
Instruction Tuning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
5274–5291.

Hendrik Strobelt, Albert Webson, Victor Sanh, Ben-
jamin Hoover, Johanna Beyer, Hanspeter Pfister, and
Alexander M. Rush. 2022. Interactive and Visual
Prompt Engineering for Ad-hoc Task Adaptation
With Large Language Models. IEEE Transactions on
Visualization and Computer Graphics, pages 1–11.

Tiffany Tseng, Ruijia Cheng, and Jeffrey Nichols. 2024.
Keyframer: Empowering Animation Design using
Large Language Models. arXiv preprint. Version
Number: 1.

Annapurna Vadaparty, Daniel Zingaro, David H.
Smith IV, Mounika Padala, Christine Alvarado, Jamie
Gorson Benario, and Leo Porter. 2024. CS1-LLM:
Integrating LLMs into CS1 instruction. In Proceed-
ings of the 2024 on Innovation and Technology in

8551

https://doi.org/10.18653/v1/2022.naacl-main.266
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3491102.3501825
https://doi.org/10.1145/3491102.3501825
https://doi.org/10.1145/3491102.3501825
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2409.08775
http://arxiv.org/abs/2409.08775
http://arxiv.org/abs/2409.08775
https://doi.org/10.18653/v1/2023.findings-emnlp.101
https://doi.org/10.18653/v1/2023.findings-emnlp.101
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
http://arxiv.org/abs/2407.10626
http://arxiv.org/abs/2407.10626
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1080/0144929X.2023.2286532
https://doi.org/10.1080/0144929X.2023.2286532
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.48550/ARXIV.2402.06071
https://doi.org/10.48550/ARXIV.2402.06071
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/3649217.3653584

Computer Science Education V. 1, ITiCSE 2024, page
297–303, New York, NY, USA. Association for Com-
puting Machinery.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2717–2739, Toronto, Canada. Association for
Computational Linguistics.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300–2344, Seattle, United States.
Association for Computational Linguistics.

Jules White, Quchen Fu, Sam Hays, Michael Sand-
born, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C. Schmidt.
2023. A Prompt Pattern Catalog to Enhance
Prompt Engineering with ChatGPT. arXiv preprint.
ArXiv:2302.11382 [cs].

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang.
2024. Top leaderboard ranking = top coding profi-
ciency, always? EvoEval: Evolving coding bench-
marks via LLM. In Conference on Language Model-
ing.

Xi Ye and Greg Durrett. 2022. The unreliability of ex-
planations in few-shot prompting for textual reason-
ing. In Advances in Neural Information Processing
Systems.

Catherine Yeh, Gonzalo Ramos, Rachel Ng, Andy Hunt-
ington, and Richard Banks. 2024. GhostWriter: Aug-
menting Collaborative Human-AI Writing Experi-
ences Through Personalization and Agency. arXiv
preprint. ArXiv:2402.08855 [cs].

J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why Johnny Can’t
Prompt: How Non-AI Experts Try (and Fail) to De-
sign LLM Prompts. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
pages 1–21, Hamburg Germany. ACM.

Chen Zhu-Tian, Zeyu Xiong, Xiaoshuo Yao, and Elena
Glassman. 2024. Sketch Then Generate: Provid-
ing Incremental User Feedback and Guiding LLM
Code Generation through Language-Oriented Code
Sketches. arXiv preprint. ArXiv:2405.03998 [cs].

8552

https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
https://openreview.net/forum?id=zZa7Ke7WAJ
https://openreview.net/forum?id=zZa7Ke7WAJ
https://openreview.net/forum?id=zZa7Ke7WAJ
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S
http://arxiv.org/abs/2402.08855
http://arxiv.org/abs/2402.08855
http://arxiv.org/abs/2402.08855
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
http://arxiv.org/abs/2405.03998
http://arxiv.org/abs/2405.03998
http://arxiv.org/abs/2405.03998
http://arxiv.org/abs/2405.03998

A Dataset and Code Availability

The code and dataset for this submission is publicly available and licensed under the terms of the BSD 3
Clause license. The STUDENTEVAL dataset is licensed under under the terms of the OpenRAIL license.

The code and data for this paper are available at https://github.com/nuprl/substance-vs-style.

B Use of AI Assistants

Some authors used AI assistants while writing code for this paper.

C Computing Resources

The computational experiments for this paper were conducted with less than 1,000 hours of A100 GPU
time. The models evaluated were Meta Llama 3.1 8B and 70B (Llama Team, 2024).

D Software Configuration

We use vLLM 0.6.2 for LLM inference (Kwon et al., 2023). We use spaCy 3.8.0 for lemmatization with
the en_core_web_trf pipeline.

E Causal Analysis of Lexical Choices

This section describes the procedure we used to perform the causal analysis of lexical choices and presents
detailed results.

E.1 Data Annotation Procedure
The overall approach to data annotation is described in §4.1. We provide some additional detail below.

The process for tagging concept references proceeded as follows. First, we developed an automated
script to perform tagging automatically. This approximated the set of necessary tags, but a manual
pass was necessary for numerous reasons. For instance, some student terms (e.g., convert) occurred in
numerous problems, but were either function names or parameters in some. In other cases grammatical
features, such as prepositions, led the automated approach to be insufficient (e.g., $takes:brings$ should
be tagged as $takes:brings in$).

The two expert annotators, who are both CS1 instructors, then proceeded to perform a manual review.
During this review, care was taken to tag idiosyncratic references; for instance, when a participant
mistakenly referred to an input dictionary as a list, this was tagged under the dictionary category, so that
we could explore substitutions of a more accurate term. The goal of this process was a consistent tag set,
thus the annotators ultimately came to consensus on all tags for all prompts. Inter-annotator reliability
was not calculated due to the emphasis on consensus and the number/precision of tags per prompt.

To gain insight into the range of terms used over problems, the annotators independently assessed two
distinct prompts for each of the 48 problems, for a total of 96 problems. They then met to discuss their
tagging edits. Out of this discussion, we made three main changes: (1) “given” was removed as a possible
term, as it has too many possible use cases; (2) the Input concept was divided into the three lemmas of
“parameters”, “take”, and “provide;” and (3) specific disambiguation for “concatenate” and “insert” was
developed. The annotators then came to consensus on all tags for the 96 problems.

After this process, the above changes were made to the automatic tagging script and then the two
annotators independently tagged the remainder of the problems in the dataset. They then met to discuss
the tagging edits and determine the consensus decision. Most disagreements were easily resolved (e.g.,
missed tags, typos). The main substantive disagreement was regarding tags relevant to the String concept.
Specifically, determining student meaning of character versus string was too challenging to tag consistently.
Therefore, most mentions of character/s were removed from the String tag set. This was done retroactively
to the original 96 problems as well.

E.2 Concepts, Expressions, and Interventions
Table 2 shows the lemmas for each concept category used in the lexical substitution experiments, along
with the set of replacement terms and example expressions that students use to refer to them.

8553

https://github.com/nuprl/substance-vs-style

Concept Lemma Substitution Lemmas Example Student Terms
String string word, phrase, string, character, string, word, string of text,

set of characters word or sentence, string of characters
List list brackets, set of brackets, set, list, list, array, set, arrangement,series,

array list, array collection, sequence
Dictionary dictionary map, dictionary dictionary, dict, object, array
Integer integer integer, whole number, int int, integer numbers, whole number
Key key key, item, entry, attribute, part, key, key value, category

element, variable element, variable, parameter
Input parameter parameter, argument, value provided, input, parameter, value, component,

input input value, value inputted
take take, bring in, accept, get, input take, take in, take input of, get
provide provide, enter, input input

Loop loop through go through, run through, iterate through, loop, loop through, go through, parse,
loop through, run a for loop through, iterate through, run through
look through, execute a for loop with

Output return return, output, print, produce, display return, output, print, provide, out put
Concatenate concatenate concatenate, combine, splice, add concatenate, append, add, combine
Insert insert insert, add, append, attach put, insert, input, add, give
Skip skip skip, avoid, neglect, ignore, remove skip, ignore, avoid, neglect
Typecast typecast typecast, type cast, cast, convert, typecast, convert, turn, change

change

Table 2: Concepts, Lemmas, and Substitution Terms for Causal Analysis Experiments

Fixed effects β̂ SE z p

(Intercept) -4.4 0.69 -6.3 <0.0001
character -1.1 0.32 -3.6 0.0004
phrase -0.69 0.2 -3.4 0.0006
set of characters -1.4 0.36 -4.1 <0.0001
string 0.048 0.054 0.87 0.38
word -0.62 0.19 -3.3 0.0009

Table 3: Llama 8B mixed-effects model for String concept.

E.3 Experimental Method
For generations, we generated 200 completions for each model with temperature (0.2), top-p sampling
(0.95), and a 512 token limit.

E.4 Statistical Analysis
Statistical significance results are from mixed-effects binary logistic regression models that include
random effects for prompt ID and problem. The random effects structure for problem contains both
random slopes and intercepts; due to issues with convergence, the random effects for prompt ID contain
only random intercepts.

The outcome variable is the pass@1 rate calculated with 200 samples. All models were fit in R using
the lme4 library (Bates et al., 2015) with sample weights of 200 (the number of observations from which
the proportion was computed).

E.4.1 Type Concepts
Tables 3-16 provide the full mixed-effects results for datatype concepts.

E.4.2 Control Flow Concepts
Tables 18-31 provide the full mixed-effects results for control flow concepts.

8554

Fixed effects β̂ SE z p

(Intercept) -3.4 0.62 -5.5 <0.0001
character -0.59 0.19 -3 0.002
phrase -0.29 0.18 -1.6 0.1
set of characters -1.1 0.22 -4.8 <0.0001
string 0.11 0.075 1.5 0.14

word -0.098 0.12 -0.79 0.43

Table 4: Llama 70B mixed-effects model for String concept.

Fixed effects β̂ SE z p

(Intercept) -0.14 1.4 -0.1 0.92
character -1.7 0.54 -3.2 0.0013
phrase -0.92 0.53 -1.7 0.083
set of characters -4.3 0.79 -5.4 <0.0001
string 0.21 0.23 0.91 0.36

word -0.18 0.35 -0.5 0.62

Table 5: Gpt-4o mini mixed-effects model for String concept.

Fixed effects β̂ SE z p

(Intercept) -5.5 0.75 -7.4 <0.0001
array 0.1 0.087 1.2 0.24
array list 0.11 0.11 1 0.31
brackets -1 0.23 -4.4 <0.0001
list -0.0032 0.041 -0.078 0.94
set -2.4 0.51 -4.7 <0.0001
set of brackets -1.9 0.37 -5.2 <0.0001

Table 6: Llama 8B mixed-effects model for List concept.

Fixed effects β̂ SE z p

(Intercept) -5.1 0.74 -6.9 <0.0001
array -0.057 0.083 -0.69 0.49
array list 0.11 0.098 1.1 0.28
brackets -0.55 0.16 -3.3 0.0009
list -0.074 0.057 -1.3 0.19

set -2.3 0.55 -4.1 <0.0001
set of brackets -1.6 0.41 -3.9 0.0001

Table 7: Llama 70B mixed-effects model for List concept.

8555

Fixed effects β̂ SE z p

(Intercept) -4 1.4 -2.9 0.004
array 0.2 0.26 0.76 0.45
array list 0.25 0.23 1.1 0.29
brackets -1.9 0.71 -2.7 0.006
list 0.24 0.082 2.9 0.0043

set -4 0.89 -4.5 <0.0001
set of brackets -2.9 1 -2.9 0.0036

Table 8: Gpt-4o mini mixed-effects model for List concept.

Fixed effects β̂ SE z p

(Intercept) -5.9 0.9 -6.6 <0.0001
int -0.1 0.091 -1.2 0.25
integer 0.057 0.038 1.5 0.13
whole number -0.45 0.23 -1.9 0.052

Table 9: Llama 8B mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -5.6 1.1 -5.3 <0.0001
int -0.096 0.14 -0.71 0.48
integer 0.14 0.18 0.77 0.44
whole number -0.1 0.21 -0.5 0.62

Table 10: Llama 70B mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -3.8 4.1 -0.92 0.36
int -0.18 0.42 -0.42 0.68
integer -0.11 0.47 -0.22 0.82
whole number -1.4 0.54 -2.7 0.0078

Table 11: Gpt-4o mini mixed-effects model for Integer concept.

Fixed effects β̂ SE z p

(Intercept) -13 1.3 -9.9 <0.0001
dictionary -0.099 0.056 -1.8 0.075
map -0.066 0.41 -0.16 0.87

Table 12: Llama 8B mixed-effects model for Dictionary concept.

Fixed effects β̂ SE z p

(Intercept) -12 1.4 -9 <0.0001
dictionary -0.1 0.14 -0.73 0.46
map -0.33 0.27 -1.2 0.23

Table 13: Llama 70B mixed-effects model for Dictionary concept.

8556

Fixed effects β̂ SE z p

(Intercept) -17 5.4 -3.2 0.0015
dictionary 1 0.54 1.9 0.063
map 1.1 0.9 1.3 0.21

Table 14: Gpt-4o mini mixed-effects model for Dictionary concept.

Fixed effects β̂ SE z p

(Intercept) -9.8 1.3 -7.8 <0.0001
attribute -0.7 0.32 -2.2 0.028
element -0.25 0.15 -1.7 0.087
entry -0.39 0.14 -2.8 0.0048
item -0.28 0.14 -2 0.047

key 0.046 0.15 0.3 0.77
part -0.59 0.21 -2.8 0.005
variable -0.56 0.14 -3.9 <0.0001

Table 15: Llama 8B mixed-effects model for Key concept.

Fixed effects β̂ SE z p

(Intercept) -6.5 1.4 -4.7 <0.0001
attribute -0.87 0.43 -2 0.04
element -0.29 0.16 -1.8 0.065
entry -0.28 0.19 -1.5 0.14
item -0.28 0.22 -1.3 0.21

key -0.16 0.11 -1.5 0.15
part -0.48 0.36 -1.3 0.18
variable -0.85 0.5 -1.7 0.092

Table 16: Llama 70B mixed-effects model for Key concept.

Fixed effects β̂ SE z p

(Intercept) -0.91 3.3 -0.27 0.78
attribute -4.1 1.7 -2.4 0.019
element -2.9 1.7 -1.7 0.087
entry -2.2 1 -2.2 0.031
item -2.8 1.6 -1.8 0.077

key 0.35 0.39 0.89 0.37
part -2.8 1.7 -1.6 0.11
variable -2.8 1.3 -2.1 0.039

Table 17: Gpt-4o mini mixed-effects model for Key concept.

8557

Fixed effects β̂ SE z p

(Intercept) -5 0.62 -8.1 <0.0001
display -1.3 0.25 -5.1 <0.0001
output -0.14 0.13 -1.1 0.27
print -2.9 0.37 -7.8 <0.0001
produce -0.16 0.12 -1.3 0.2

return 0.11 0.061 1.8 0.068

Table 18: Llama 8B mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -4.9 0.56 -8.7 <0.0001
display -0.87 0.28 -3 0.002
output -0.071 0.17 -0.42 0.67
print -2.8 0.41 -6.8 <0.0001
produce 0.21 0.16 1.3 0.18

return 0.0061 0.096 0.063 0.95

Table 19: Llama 70B mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -2.6 1 -2.6 0.01
display -6.1 1.1 -5.5 <0.0001
output 0.34 0.53 0.64 0.52
print -19 2.1 -9.1 <0.0001
produce 0.78 0.34 2.3 0.023

return 0.68 0.28 2.4 0.014

Table 20: Gpt-4o mini mixed-effects model for Return concept.

Fixed effects β̂ SE z p

(Intercept) -11 2.1 -5 <0.0001
execute a for loop with -3.5 0.59 -6 <0.0001
go through -0.56 0.15 -3.8 0.0001
iterate through 0.0045 0.14 0.032 0.97
look through -0.41 0.27 -1.6 0.12
loop through -0.38 0.27 -1.4 0.16
run a for loop through -2.9 0.48 -6 <0.0001
run through -0.37 0.2 -1.8 0.067

Table 21: Llama 8B mixed-effects model for Loop concept.

8558

Fixed effects β̂ SE z p

(Intercept) -10 1.8 -5.8 <0.0001
execute a for loop with -4.7 1.3 -3.5 0.0005
go through -0.92 0.56 -1.6 0.1
iterate through -1.3 0.33 -4.1 <0.0001
look through -0.62 0.45 -1.4 0.16
loop through -1.4 0.34 -4.2 <0.0001
run a for loop through -1.7 0.52 -3.3 0.001
run through -0.34 0.48 -0.71 0.48

Table 22: Llama 70B mixed-effects model for Loop concept.

Fixed effects β̂ SE z p

(Intercept) -3 4.7 -0.65 0.52
execute a for loop with 0.22 1.1 0.2 0.84
go through -0.99 1.1 -0.94 0.35
iterate through -0.36 0.74 -0.48 0.63
look through 0.15 0.74 0.2 0.84

loop through 0.33 1 0.32 0.75
run a for loop through -0.19 0.96 -0.19 0.85
run through -0.017 0.75 -0.022 0.98

Table 23: Gpt-4o mini mixed-effects model for Loop concept.

Fixed effects β̂ SE z p

(Intercept) -15 4.1 -3.6 0.0004
enter 0.31 0.36 0.87 0.38
input 0.079 0.24 0.33 0.74
provide 1.8 1.2 1.5 0.13

Table 24: Llama 8B mixed-effects model for Input - Provide lemma.

Fixed effects β̂ SE z p

(Intercept) -15 6.5 -2.2 0.03
enter -0.27 0.43 -0.63 0.53
input 0.29 0.49 0.6 0.55
provide -1.1 0.42 -2.6 0.008

Table 25: Llama 70B mixed-effects model for Input - Provide lemma.

Fixed effects β̂ SE z p

(Intercept) -19 18 -1.1 0.28
enter 1 1.5 0.68 0.49
input 0.61 2.6 0.23 0.82
provide -0.31 2.2 -0.14 0.89

Table 26: Gpt-4o mini mixed-effects model for Input - Provide lemma.

8559

Fixed effects β̂ SE z p

(Intercept) -5.6 0.83 -6.7 <0.0001
argument -0.045 0.1 -0.43 0.67
input 0.088 0.06 1.5 0.14
parameter -0.095 0.11 -0.86 0.39
value provided -0.17 0.13 -1.3 0.19

Table 27: Llama 8B mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -5.4 0.98 -5.5 <0.0001
argument 0.28 0.13 2.2 0.03
input -0.031 0.094 -0.33 0.74
parameter 0.23 0.14 1.6 0.1
value provided 0.27 0.16 1.7 0.086

Table 28: Llama 70B mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -4.2 3.4 -1.2 0.22
argument -0.26 0.69 -0.37 0.71
input 0.34 0.35 0.96 0.34
parameter -0.62 0.64 -0.97 0.33
value provided -0.47 0.81 -0.58 0.56

Table 29: Gpt-4o mini mixed-effects model for Input - Parameter lemma.

Fixed effects β̂ SE z p

(Intercept) -5.7 0.97 -5.9 <0.0001
accept -0.061 0.078 -0.79 0.43
bring in -0.051 0.14 -0.38 0.71
get 0.0086 0.11 0.081 0.94
input -0.15 0.1 -1.4 0.15
take 0.029 0.056 0.51 0.61

Table 30: Llama 8B mixed-effects model for Input - Take lemma.

Fixed effects β̂ SE z p

(Intercept) -5.2 1.1 -4.6 <0.0001
accept -0.024 0.14 -0.17 0.87
bring in -0.22 0.22 -1 0.31
get 0.14 0.14 0.96 0.34
input 0.054 0.14 0.39 0.7

take -0.066 0.12 -0.53 0.6

Table 31: Llama 70B mixed-effects model for Input - Take lemma.

8560

Fixed effects β̂ SE z p

(Intercept) 0.89 4.9 0.18 0.85
accept 0.17 0.3 0.58 0.56
bring in -1.6 0.94 -1.7 0.088
get -0.79 0.6 -1.3 0.19
input -0.34 0.66 -0.52 0.6

take 0.2 0.51 0.39 0.7

Table 32: Gpt-4o mini mixed-effects model for Input - Take lemma.

8561

Fixed effects β̂ SE z p

(Intercept) -4.4 1.5 -2.8 0.005
add 0.11 0.27 0.39 0.7
combine -0.14 0.13 -1.1 0.29
concatenate 0.24 0.14 1.7 0.081
splice -0.56 0.19 -3 0.003

Table 33: Llama 8B mixed-effects model for Concatenate concept.

Fixed effects β̂ SE z p

(Intercept) -1.5 1.5 -0.97 0.33
add -0.024 0.21 -0.12 0.91
combine 0.37 0.43 0.87 0.38
concatenate 0.28 0.35 0.82 0.41
splice -0.31 0.51 -0.61 0.55

Table 34: Llama 70B mixed-effects model for Concatenate concept.

E.4.3 Operation Concepts
Tables 33-43 provide the full mixed-effects results for control flow concepts.

Fixed effects β̂ SE z p

(Intercept) 17 5.3 3.3 0.0011
add 9.8 5.8 1.7 0.089
combine -4.2 1.9 -2.2 0.025
concatenate -2.2 1 -2.2 0.03
splice -2.6 1.2 -2.2 0.031

Table 35: Gpt-4o mini mixed-effects model for Concatenate concept.

8562

Fixed effects β̂ SE z p

(Intercept) -5.5 1.8 -3 0.003
add -0.091 0.12 -0.73 0.47
append -0.38 0.46 -0.82 0.41
attach -0.53 0.45 -1.2 0.24
insert -1.4 1.1 -1.3 0.18

Table 36: Llama 8B mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -9.9 1.9 -5.3 <0.0001
add -0.4 0.22 -1.8 0.067
append -0.51 0.33 -1.5 0.12
attach -0.11 0.34 -0.32 0.75
insert -0.76 0.45 -1.7 0.089

Table 37: Llama 70B mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -3.6 4.3 -0.85 0.4
add 0.62 1 0.6 0.55
append -0.88 0.84 -1 0.3
attach 0.071 0.8 0.088 0.93
insert -0.063 1.3 -0.048 0.96

Table 38: Gpt-4o mini mixed-effects model for Append concept.

Fixed effects β̂ SE z p

(Intercept) -13 3.8 -3.3 0.001
avoid -0.76 0.28 -2.7 0.006
ignore 0.014 0.17 0.083 0.93
neglect -0.18 0.28 -0.62 0.54
remove -4.2 2.1 -2 0.046
skip -0.21 0.46 -0.46 0.65

Table 39: Llama 8B mixed-effects model for Skip concept.

Fixed effects β̂ SE z p

(Intercept) -14 6.4 -2.2 0.03
avoid 0.041 0.81 0.051 0.96
ignore -0.98 0.22 -4.4 <0.0001
neglect -1.2 0.43 -2.7 0.007
remove -6.6 3.6 -1.8 0.068
skip -0.66 0.47 -1.4 0.16

Table 40: Llama 70B mixed-effects model for Skip concept.

8563

Fixed effects β̂ SE z p

(Intercept) -17 12 -1.4 0.15
avoid 0.42 0.68 0.62 0.54
ignore -3.3 1.6 -2 0.044
neglect -3.5 1.8 -1.9 0.052
remove 1 2.8 0.36 0.72

skip -7.1 3.7 -1.9 0.053

Table 41: Gpt-4o mini mixed-effects model for Skip concept.

Fixed effects β̂ SE z p

(Intercept) -5 1.5 -3.3 0.001
cast -0.86 0.39 -2.2 0.028
change -1.5 0.85 -1.7 0.087
convert -0.048 0.27 -0.18 0.86
type cast -0.73 0.54 -1.4 0.17
typecast -1.4 0.86 -1.6 0.1

Table 42: Llama 8B mixed-effects model for Typecast concept.

Fixed effects β̂ SE z p

(Intercept) -7.6 4.3 -1.8 0.074
cast -0.89 0.74 -1.2 0.23
change 0.27 0.13 2 0.045
convert 0.31 0.23 1.3 0.19
type cast -0.61 0.72 -0.85 0.4
typecast -1 0.97 -1.1 0.28

Table 43: Llama 70B mixed-effects model for Typecast concept.

Fixed effects β̂ SE z p

(Intercept) 0.59 11 0.055 0.96
cast 3.3 1.1 3.1 0.0022
change -1.6 1.4 -1.1 0.26
convert 1.9 0.72 2.6 0.0082
type cast 4.9 2 2.4 0.017

typecast 5.4 1.5 3.6 0.00028

Table 44: Gpt-4o mini mixed-effects model for Typecast concept.

8564

br
ing

 in ge
t

inp
ut

oth
er

tak
e

tak
e i

n

tak
es

 in

Expression

ac
ce

pt

br
ing

 in

ge
t

inp
ut

tak
e

In
te

rv
en

tio
n

-0.01 0.03 0.01 -0.03 0.00 0.00 -0.00

0.00 0.06 -0.02 -0.04 -0.00 -0.02 0.02

0.00 0.02 -0.01 -0.02 0.01 -0.03 0.02

-0.00 0.02 -0.01 -0.03 -0.01 -0.01 -0.00

-0.01 0.03 0.01 -0.03 0.00 -0.02 0.00

Concept: take

ca
st

ch
an

ge

co
nv

er
t

oth
er

Expression

ca
st

ch
an

ge

co
nv

er
t

typ
e c

as
t

typ
ec

as
t

-0.00 0.02 -0.07 0.03

-0.06 0.04 -0.05 0.02

-0.09 0.12 -0.00 0.03

-0.00 0.20 -0.05 -0.01

-0.02 0.10 -0.05 0.00

Concept: typecast

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 6: This heatmap shows the difference in pass rates (pass@1) using Meta Llama 3.1 8B after replacing the
original expression of a concept in a prompt (x-axis) with a the expression chosen for the intervention (y-axis). We
present one heatmap per concept. We report differences on the subset of prompts that have the original expression.
We group rare expressions into a single Other class for each concept. See figures 9 and 10 for more categories.

br
ing

 in ge
t

inp
ut

oth
er

tak
e

tak
e i

n

tak
es

 in

Expression

ac
ce

pt

br
ing

 in

ge
t

inp
ut

tak
e

In
te

rv
en

tio
n

0.00 0.03 -0.02 -0.03 -0.01 -0.02 -0.01

0.00 -0.01 -0.01 0.00 -0.01 -0.04 -0.01

0.01 0.03 -0.01 0.02 -0.00 -0.04 0.00

0.00 0.01 0.03 -0.02 0.00 -0.02 0.00

0.00 -0.02 0.01 -0.04 -0.01 -0.03 0.00

Concept: take

ca
st

ch
an

ge

co
nv

er
t

oth
er

Expression

ca
st

ch
an

ge

co
nv

er
t

typ
e c

as
t

typ
ec

as
t

0.00 0.02 -0.03 0.05

0.00 0.00 0.01 0.06

0.00 -0.01 -0.01 0.04

0.00 0.02 0.00 0.06

0.00 0.01 -0.02 0.06

Concept: typecast

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

Figure 7: For Meta Llama 3.1 70B. See the caption for Figure 6 for more information.

E.5 Substitution Visualizations
Figures 6, 9 and 10 presents the results of causal interventions using Meta Llama 3.1 8B (Llama Team,
2024). Figures 7, 11 and 12 presents the results of causal interventions using Meta Llama 3.1 70B.
Figures 8, 13 and 14 presents the results of causal interventions using OpenAI Gpt-4o mini.

8565

br
ing

 in ge
t

inp
ut

oth
er

tak
e

tak
e i

n

tak
es

 in

Expression

ac
ce

pt

br
ing

 in

ge
t

inp
ut

tak
e

In
te

rv
en

tio
n

-0.02 -0.01 0.01 0.00 0.01 0.00 0.00

0.00 -0.02 0.03 0.00 -0.02 -0.01 -0.02

-0.02 0.01 0.01 0.00 0.01 0.03 -0.01

0.00 -0.04 0.03 0.00 0.00 -0.00 -0.01

0.00 0.01 0.02 0.03 0.01 0.00 -0.00

Concept: take

ca
st

ch
an

ge

co
nv

er
t

oth
er

Expression

ca
st

ch
an

ge

co
nv

er
t

typ
e c

as
t

typ
ec

as
t

0.00 0.01 0.05 0.08

0.00 0.00 0.01 -0.07

0.00 0.01 0.01 0.08

0.00 0.01 0.06 0.07

0.00 0.01 0.06 0.08

Concept: typecast

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 8: For Gpt-4o mini. See the caption for Figure 6 for more information.

8566

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh
oth

er

ru
n t

hr
ou

gh

ex
ec

ut
e a

 fo
r l

oo
p w

ith

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh

ru
n a

 fo
r l

oo
p t

hr
ou

gh

ru
n t

hr
ou

gh

In
te

rv
en

tio
n

0.00 -0.03 0.02 -0.03 -0.01 0.03

-0.01 -0.03 -0.00 -0.02 -0.00 -0.00

0.02 -0.00 -0.03 -0.01 -0.01 0.03

0.01 -0.01 0.00 0.00 0.01 -0.01

0.02 -0.01 0.00 -0.02 -0.01 0.04

0.01 -0.02 -0.02 -0.04 -0.02 0.05

-0.02 -0.01 -0.02 0.02 -0.01 -0.00

Concept: loop_through

inp
ut

inp
ut

 va
lue

oth
er

pa
ra

mete
r

ar
gu

men
t

inp
ut

pa
ra

mete
r

va
lue

 pr
ov

ide
d

-0.00 -0.03 0.06 -0.00

0.00 0.05 0.03 -0.00

-0.01 -0.05 0.03 0.01

-0.01 -0.02 0.05 -0.02

Concept: parameter

en
ter

inp
ut

oth
er

en
ter

inp
ut

pr
ov

ide

In
te

rv
en

tio
n

-0.00 -0.01 0.00

0.01 -0.01 0.00

0.07 -0.01 0.00

Concept: provide

dis
pla

y
oth

er

ou
tp

ut
pr

int

pr
od

uc
e

re
tu

rn

dis
pla

y

ou
tp

ut

pr
int

pr
od

uc
e

re
tu

rn

-0.05 0.05 -0.08 0.02 -0.05 -0.11

0.07 -0.00 0.00 0.05 0.02 -0.03

-0.08 0.03 -0.13 0.00 -0.11 -0.19

0.04 -0.02 0.01 0.05 0.01 -0.03

-0.03 0.02 0.03 0.07 0.09 -0.00

Concept: return

ign
or

e
oth

er

Expression

av
oid

ign
or

e

ne
gle

ct

re
mov

e

sk
ip

In
te

rv
en

tio
n

-0.02 0.00

0.00 0.00

0.01 0.00

-0.08 0.00

0.00 0.00

Concept: skip

oth
er

ph
ra

se
sti

ng
s

str
ing wor

d

Expression

ch
ar

ac
ter

ph
ra

se

se
t o

f c
ha

ra
cte

rs

str
ing

wor
d

-0.41 -0.09 -0.01 -0.07 -0.10

-0.48 0.05 -0.01 -0.04 0.01

-0.48 -0.07 -0.01 -0.08 -0.09

-0.18 0.03 -0.01 0.00 0.05

-0.48 -0.00 -0.01 -0.03 -0.01

Concept: string

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 9: Continuation of Figure 6. See the caption of that figure for more information.

8567

ad
d

ap
pe

nd

co
mbin

e

co
nc

ate
na

te
ins

er
t

oth
er

ad
d

co
mbin

e

co
nc

ate
na

te

sp
lic

e

In
te

rv
en

tio
n

-0.00 -0.02 0.04 -0.05 -0.00 -0.00

-0.01 -0.04 0.03 -0.04 0.03 -0.01

0.02 0.00 0.03 -0.01 0.04 -0.00

-0.00 0.01 -0.07 -0.02 0.02 0.01

Concept: concatenate

dic
tio

na
ry

oth
er

dic
tio

na
ry

map

-0.01 0.10

-0.02 0.04

Concept: dictionary

ad
d

ap
pe

nd
ins

er
t

oth
er

ad
d

ap
pe

nd

att
ac

h

ins
er

t

In
te

rv
en

tio
n

-0.00 0.03 0.01 -0.05

0.02 0.01 0.01 -0.15

-0.01 0.04 0.02 -0.15

0.03 -0.04 0.00 -0.15

Concept: insert

int

int
eg

er
oth

er

who
le

nu
mbe

r

int

int
eg

er

who
le

nu
mbe

r

-0.00 0.00 0.00 0.00

-0.00 0.00 0.00 0.02

-0.06 -0.02 0.00 0.01

Concept: integer

ite
m ke

y
oth

er

va
ria

ble

Expression

att
rib

ut
e

ele
men

t

en
try

ite
m

ke
y

pa
rt

va
ria

ble

In
te

rv
en

tio
n

-0.13 -0.04 0.01 0.00

0.06 -0.02 -0.02 0.00

0.00 -0.03 -0.02 -0.00

0.05 -0.02 -0.02 0.00

0.05 -0.01 0.07 -0.00

0.01 -0.04 -0.00 0.01

-0.05 -0.04 -0.01 0.00

Concept: key

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts lis

t
oth

er
str

ing

Expression

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts

lis
t

se
t

se
t o

f b
ra

ck
ets

-0.00 0.04 0.12 0.00 0.05 0.02

0.00 0.01 0.08 0.00 0.05 0.03

-0.07 0.13 0.01 -0.08 -0.03 -0.03

-0.00 0.06 0.06 -0.00 0.02 0.01

-0.05 0.01 -0.01 -0.12 -0.02 -0.04

-0.12 0.10 -0.02 -0.13 -0.04 -0.04

Concept: list

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 10: Continuation of Figure 6. See the caption of that figure for more information.

8568

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh
oth

er

ru
n t

hr
ou

gh

ex
ec

ut
e a

 fo
r l

oo
p w

ith

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh

ru
n a

 fo
r l

oo
p t

hr
ou

gh

ru
n t

hr
ou

gh

In
te

rv
en

tio
n

-0.06 -0.04 -0.19 -0.09 0.07 0.03

-0.01 -0.03 -0.06 -0.01 0.08 0.04

-0.09 -0.01 -0.04 -0.07 0.00 0.06

-0.05 -0.04 0.04 -0.00 0.05 -0.00

-0.08 -0.02 -0.09 -0.04 0.01 0.03

-0.09 -0.04 -0.12 -0.05 0.01 0.02

-0.00 -0.04 -0.06 0.03 0.04 0.05

Concept: loop_through

inp
ut

inp
ut

 va
lue

oth
er

pa
ra

mete
r

ar
gu

men
t

inp
ut

pa
ra

mete
r

va
lue

 pr
ov

ide
d

0.00 -0.04 0.03 0.03

-0.01 -0.04 0.01 0.02

0.00 -0.03 -0.01 0.01

0.00 -0.01 0.01 0.04

Concept: parameter

en
ter

inp
ut

oth
er

en
ter

inp
ut

pr
ov

ide

In
te

rv
en

tio
n

0.00 -0.00 0.00

0.02 -0.02 0.00

0.00 -0.12 0.00

Concept: provide

dis
pla

y
oth

er

ou
tp

ut
pr

int

pr
od

uc
e

re
tu

rn

dis
pla

y

ou
tp

ut

pr
int

pr
od

uc
e

re
tu

rn

-0.06 0.02 -0.08 0.02 -0.07 -0.08

0.01 0.02 0.00 0.06 -0.04 -0.02

-0.07 -0.03 -0.17 0.00 -0.17 -0.21

0.05 0.02 0.01 0.10 0.03 -0.01

-0.01 0.02 0.01 0.06 -0.02 -0.00

Concept: return

ign
or

e
oth

er

Expression

av
oid

ign
or

e

ne
gle

ct

re
mov

e

sk
ip

In
te

rv
en

tio
n

-0.04 0.01

-0.03 -0.02

-0.02 -0.01

-0.14 -0.03

0.03 -0.02

Concept: skip

oth
er

ph
ra

se
sti

ng
s

str
ing wor

d

Expression

ch
ar

ac
ter

ph
ra

se

se
t o

f c
ha

ra
cte

rs

str
ing

wor
d

0.02 -0.12 0.01 -0.04 -0.12

-0.07 -0.08 -0.01 -0.02 0.01

-0.04 -0.11 -0.02 -0.08 -0.01

-0.05 -0.02 0.00 0.00 0.02

-0.07 -0.10 -0.01 -0.01 -0.00

Concept: string

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

Figure 11: Continuation of Figure 7. See the caption of that figure for more information.

8569

ad
d

ap
pe

nd

co
mbin

e

co
nc

ate
na

te
ins

er
t

oth
er

ad
d

co
mbin

e

co
nc

ate
na

te

sp
lic

e

In
te

rv
en

tio
n

-0.00 -0.02 0.04 -0.05 -0.00 -0.00

-0.01 -0.04 0.03 -0.04 0.03 -0.01

0.02 0.00 0.03 -0.01 0.04 -0.00

-0.00 0.01 -0.07 -0.02 0.02 0.01

Concept: concatenate

dic
tio

na
ry

oth
er

dic
tio

na
ry

map

-0.01 0.10

-0.02 0.04

Concept: dictionary

ad
d

ap
pe

nd
ins

er
t

oth
er

ad
d

ap
pe

nd

att
ac

h

ins
er

t

In
te

rv
en

tio
n

-0.00 0.03 0.01 -0.05

0.02 0.01 0.01 -0.15

-0.01 0.04 0.02 -0.15

0.03 -0.04 0.00 -0.15

Concept: insert

int

int
eg

er
oth

er

who
le

nu
mbe

r

int

int
eg

er

who
le

nu
mbe

r

-0.00 0.00 0.00 0.00

-0.00 0.00 0.00 0.02

-0.06 -0.02 0.00 0.01

Concept: integer

ite
m ke

y
oth

er

va
ria

ble

Expression

att
rib

ut
e

ele
men

t

en
try

ite
m

ke
y

pa
rt

va
ria

ble

In
te

rv
en

tio
n

-0.13 -0.04 0.01 0.00

0.06 -0.02 -0.02 0.00

0.00 -0.03 -0.02 -0.00

0.05 -0.02 -0.02 0.00

0.05 -0.01 0.07 -0.00

0.01 -0.04 -0.00 0.01

-0.05 -0.04 -0.01 0.00

Concept: key

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts lis

t
oth

er
str

ing

Expression

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts

lis
t

se
t

se
t o

f b
ra

ck
ets

-0.00 0.04 0.12 0.00 0.05 0.02

0.00 0.01 0.08 0.00 0.05 0.03

-0.07 0.13 0.01 -0.08 -0.03 -0.03

-0.00 0.06 0.06 -0.00 0.02 0.01

-0.05 0.01 -0.01 -0.12 -0.02 -0.04

-0.12 0.10 -0.02 -0.13 -0.04 -0.04

Concept: list

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 12: Continuation of Figure 7. See the caption of that figure for more information.

8570

ad
d

ap
pe

nd

co
mbin

e

co
nc

ate
na

te
ins

er
t

oth
er

ad
d

co
mbin

e

co
nc

ate
na

te

sp
lic

e

In
te

rv
en

tio
n

0.02 -0.07 -0.08 -0.04 -0.03 0.00

-0.04 -0.07 -0.02 -0.00 0.07 0.00

0.01 0.01 0.03 -0.01 0.02 0.00

0.03 -0.02 -0.04 -0.06 0.18 0.00

Concept: concatenate

dic
tio

na
ry

oth
er

dic
tio

na
ry

map

-0.00 0.19

-0.01 0.19

Concept: dictionary

ad
d

ap
pe

nd
ins

er
t

oth
er

ad
d

ap
pe

nd

att
ac

h

ins
er

t

In
te

rv
en

tio
n

0.00 0.00 0.12 -0.09

0.04 0.00 0.08 -0.14

0.00 0.00 0.12 -0.12

0.01 0.00 -0.06 -0.14

Concept: insert

int

int
eg

er
oth

er

who
le

nu
mbe

r

int

int
eg

er

who
le

nu
mbe

r

-0.01 0.01 0.00 -0.01

-0.02 0.00 0.00 0.00

0.01 -0.01 0.17 0.00

Concept: integer

ite
m ke

y
oth

er

va
ria

ble

Expression

att
rib

ut
e

ele
men

t

en
try

ite
m

ke
y

pa
rt

va
ria

ble

In
te

rv
en

tio
n

-0.02 -0.09 0.02 -0.06

-0.07 -0.07 0.05 -0.01

0.17 -0.07 0.02 0.01

-0.05 -0.06 0.01 0.04

0.07 0.00 0.10 -0.06

-0.05 -0.08 0.02 0.02

0.02 -0.07 0.03 0.02

Concept: key

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts lis

t
oth

er
str

ing

Expression

ar
ra

y

ar
ra

y l
ist

br
ac

ke
ts

lis
t

se
t

se
t o

f b
ra

ck
ets

-0.00 0.03 0.11 0.00 -0.01 0.00

0.01 0.05 0.11 0.00 -0.00 0.00

-0.10 -0.14 -0.06 -0.09 0.00 0.00

-0.01 -0.00 0.11 0.00 0.00 0.00

-0.05 0.14 -0.03 -0.19 -0.05 -0.09

-0.10 -0.13 0.07 -0.14 -0.00 0.00

Concept: list

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 13: Continuation of Figure 8. See the caption of that figure for more information.

8571

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh
oth

er

ru
n t

hr
ou

gh

ex
ec

ut
e a

 fo
r l

oo
p w

ith

go
 th

ro
ug

h

ite
ra

te
th

ro
ug

h

loo
k t

hr
ou

gh

loo
p t

hr
ou

gh

ru
n a

 fo
r l

oo
p t

hr
ou

gh

ru
n t

hr
ou

gh

In
te

rv
en

tio
n

0.00 0.00 0.04 -0.01 0.00 -0.11

-0.01 0.02 -0.10 -0.04 0.00 0.05

-0.02 -0.00 0.02 -0.05 0.00 0.09

0.00 0.02 -0.03 -0.04 0.00 0.07

-0.02 -0.01 -0.07 0.02 0.00 0.09

-0.05 0.00 0.04 -0.03 0.00 0.04

-0.02 0.02 -0.02 -0.02 0.00 0.06

Concept: loop_through

inp
ut

inp
ut

 va
lue

oth
er

pa
ra

mete
r

ar
gu

men
t

inp
ut

pa
ra

mete
r

va
lue

 pr
ov

ide
d

-0.01 0.00 0.07 0.01

-0.00 0.00 0.05 0.02

-0.00 -0.02 0.05 0.00

0.00 -0.02 0.03 0.00

Concept: parameter

en
ter

inp
ut

oth
er

en
ter

inp
ut

pr
ov

ide

In
te

rv
en

tio
n

-0.00 0.03 0.00

-0.03 0.03 0.00

0.02 0.00 0.00

Concept: provide

dis
pla

y
oth

er

ou
tp

ut
pr

int

pr
od

uc
e

re
tu

rn

dis
pla

y

ou
tp

ut

pr
int

pr
od

uc
e

re
tu

rn

-0.24 -0.26 -0.11 0.13 -0.07 -0.20

0.00 -0.01 0.01 0.24 0.02 -0.02

-0.50 -0.51 -0.37 0.00 -0.59 -0.48

0.00 -0.01 0.02 0.25 0.03 0.00

0.00 0.00 0.01 0.23 0.03 -0.00

Concept: return

ign
or

e
oth

er

Expression

av
oid

ign
or

e

ne
gle

ct

re
mov

e

sk
ip

In
te

rv
en

tio
n

0.05 0.02

0.01 -0.10

0.01 -0.10

0.04 -0.02

0.07 -0.11

Concept: skip

oth
er

ph
ra

se
sti

ng
s

str
ing wor

d

Expression

ch
ar

ac
ter

ph
ra

se

se
t o

f c
ha

ra
cte

rs

str
ing

wor
d

-0.38 0.02 0.03 -0.07 -0.12

-0.07 -0.03 0.27 -0.04 -0.00

0.27 -0.03 -0.02 -0.15 -0.13

0.00 0.02 0.02 -0.00 0.07

-0.50 0.02 0.22 -0.02 0.05

Concept: string

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Figure 14: Continuation of Figure 8. See the caption of that figure for more information.

8572

def altText(s):
if len(s) == 1:

return s.upper()
else:

return s[::2]. upper() + s[1::2]

Figure 15: Reordering letters unexpectedly.

F Analyzing Prompt Trajectories

F.1 Tagging Prompt Clues

Four expert annotators tagged the information content of the 290 prompt trajectories. All annotators have
experience teaching courses in Python programming and are therefore familiar with how students talk
about programming concepts.

Annotators developed the sets of clues associated with problems by reading the successful prompts,
the expert-written prompts from the original STUDENTEVAL dataset, and reflecting on the common
information. Although information can be annotated at different levels of granularity, we strove for 3-8
clues per problem.

After annotation, a consistency check was performed on each prompt. Any inconsistencies in tagging
(e.g., tagging an “add” operation for an existing clue; tagging a “modify” operation for a clue that had not
previously been tagged) were corrected at this stage.

F.2 Additional Style Matters Examples

We examine additional examples where students include all necessary clues in their prompt, but the
model’s generated function still fails tests.

A common model error observed across two problems (topScores in Figure 16 and sort_physicists
in Figure 17 and Figure 18) consists of a sorting error. Both problems receive as input a nested list, with
the inner lists containing fixed elements: [[x0, ..., xn], ..., [x0, ..., xn]]. The problems stipulate that the
generated function must return one of the elements xi, sorted by another elements xk, where k ̸= x.
The error the model consistently makes is filtering out the key required for sorting, then subsequently
attempting to sort. This however cannot be done without the sorting key. Thus, the model often simply
calls sort, eluding the key. One plausible explanation to why this happens is that human programmers
are unlikely to delete the sorting key first, then try to sort. For this reason, training data may not include
many examples of how to sort in this way. Note that in all students’ subsequent successful attempts, the
model deletes the sorting key after sorting.

In a prompt from student46 for the planets_mass problem (Figure 19), the model conflates an extra
piece of information (“first letter capitalized”) with the definition of a planet. Removing this single line
leads the student to success. These examples serve to illustrate the kind of ambiguity in the wording of a
prompt which can make the difference between success and fail.

F.3 Clue Sets

Here we provide the clue sets for all 33 problems.
Problem: add_int

Signature: def add_int(lst, num):

Clues:
1. edge case of list in list
2. concatenate num to strings
3. add num to integers
4. return list

Problem: add_up

Signature: def add_up(arr):

Clues:
1. 2D array

8573

2. sum integer
3. sum float
4. return the sum of all elements
5. mention 0 base case
6. misdirection - add number within string

Problem: altText

Signature: def altText(s):

Clues:
1. input string
2. alternating uppercase
3. return all letters, including spaces
4. first letter upper

Problem: assessVowels

Signature: def assessVowels(s):

Clues:
1. argument s is a string
2. result is a list of strings
3. result is the vowels present in the argument
4. result has both upper and lower case vowels

Problem: changeSection

Signature: def changeSection(s,i):

Clues:
1. result is a string
2. result reverses a part of the argument ’s’
3. the result reverses the first ’i’ characters of the argument
4. the result also includes the remaining characters of ’s’, but not reversed

Problem: check_prime

Signature: def check_prime(num):

Clues:
1. convert input string to int
2. output bool
3. check prime
4. correct description of a procedure to check prime number

Problem: combine

Signature: def combine(l1,l2):

Clues:
1. input 2 lists
2. row correspondence
3. output 1 2d array

Problem: convert

Signature: def convert(lst):

Clues:
1. takes a list of numbers
2. maps numbers to letters
3. joins letters
4. -1 means split
5. return list of strings

Problem: create_list

Signature: def create_list(dt, lst):

Clues:
1. takes a dict and a list
2. looks up list items in dict

8574

3. construct list with matching values
4. use None for items that aren’t in dict
5. return list

Problem: fib

Signature: def fib(n):

Clues:
1. check if a Fib number
2. returns a Boolean
3. explanation of Fib
4. construct set of Fib numbers
5. hardcodes numbers
6. bound set

Problem: findHorizontals

Signature: def findHorizontals(puzzle,wordList):

Clues:
1. input is two lists
2. find words in second list within strings in first list
3. return dictionary
4. keys are words
5. values are indices of strings where words are found
6. words can be backwards or forwards

Problem: find_multiples

Signature: def find_multiples(start,stop,factor):

Clues:
1. return multiples
2. inclusive start and stop

Problem: generateCardDeck

Signature: def generateCardDeck(suits, vals):

Clues:
1. takes two lists
2. creates all pairs from the lists
3. sort alphabetically
4. first list item comes before second list item in pairs
5. return list

Problem: getSeason

Signature: def getSeason(month):

Clues:
1. input is string
2. month to season
3. return lowercase
4. explain which are which

Problem: increaseScore

Signature: def increaseScore(score):

Clues:
1. input integer
2. if less than 10, make 10
3. if 10 or more, add 1
4. if negative, turn positive
5. if single digit, add 0
6. return

Problem: laugh

Signature: def laugh(size):

8575

Clues:
1. prefix h
2. reverse order
3. number of a’s is based on size
4. space separation
5. down to 1
6. repetition
7. misdirection-print instead of return

Problem: pattern

Signature: def pattern(value):

Clues:
1. takes an int
2. produces a nested list
3. there are value n of inner lists
4. each inner list is from 1 to value
5. returns

Problem: percentWin

Signature: def percentWin(guess,answers):

Clues:
1. takes two lists
2. compares items from both lists and counts matches
3. computes percent match
4. rounds to whole percent
5. convert to string and add "
6. returns

Problem: planets_mass

Signature: def planets_mass(planets):

Clues:
1. takes a dictionary
2. skip Pluto
3. skip Sun
4. look up in dictionary
5. sum masses
6. return

Problem: print_time

Signature: def print_time(day,hour):

Clues:
1. input is a string and an int
2. how to distinguish sleeping
3. how to distinguish weekday versus weekend
4. short form of day
5. return not print

Problem: readingIceCream

Signature: def readingIceCream(lines):

Clues:
1. input is a list of strings
2. go through all strings
3. split on tab
4. extract last item from each string
5. convert to float
6. sum numbers
7. return total

8576

Problem: remove_odd

Signature: def remove_odd(lst):

Clues:
1. takes a (potentially mixed) list of numbers
2. removes only odd numbers
3. removes only integers
4. returns list

Problem: reverseWords

Signature: def reverseWords(words):

Clues:
1. takes a list of strings
2. reverses each word in list
3. sorts list
4. reverse before sort
5. returns list

Problem: set_chars

Signature: def set_chars(s,c,l):

Clues:
1. input is described correctly
2. second argument is used to replace certain characters
3. third argument contains list of indices to replace
4. return string
5. handle indices outside string length

Problem: sortBySuccessRate

Signature: def sortBySuccessRate(nominations):

Clues:
1. input is list of dictionaries
2. add a key success
3. success is wins/noms
4. round success
5. sort by success
6. return

Problem: sort_physicists

Signature: def sort_physicists(scientists):

Clues:
1. Input is a list of lists
2. specify inner list structure
3. filter list with the right key
4. sort list with the right key
5. specify return
6. sort

Problem: sortedBooks

Signature: def sortedBooks(books, writer):

Clues:
1. takes a list of dictionaries
2. takes an author
3. removes books not by that author
4. sorts list
5. sorts list by year
6. returns list

Problem: student_grades

Signature: def student_grades(students, grades):

8577

Clues:
1. input is two dictionaries
2. match keys to values between dictionaries
3. create a new dictionary with lists of grades
4. return

Problem: subtract_add

Signature: def subtract_add(lst):

Clues:
1. input is list
2. convert items to integers
3. alternate add and subtract
4. add is even indices and subtract is odd indices
5. return result

Problem: times_with

Signature: def times_with(meetings):

Clues:
1. input is nested list
2. describe nested list structure
3. make dictionary where keys are people and values are numbers
4. sum times
5. return dictionary

Problem: topScores

Signature: def topScores(lst):

Clues:
1. nested list with items in format [grade, name]
2. return only names with grade >80
3. return list of names
4. sort by grades descending
5. only top 5 scoring names
6. equal 80 edge case

Problem: total_bill

Signature: def total_bill(grocery_list, sales_tax):

Clues:
1. input is a list
2. list structure explained
3. input is sales tax
4. multiply item by its quantity
5. sum items
6. apply sales tax
7. round
8. return total

Problem: translate

Signature: def translate(lexicon,sentence):

Clues:
1. input 1 is a dictionary
2. input 2 is a string
3. extract words from string
4. look up words in dictionary
5. use UNK for words that are not in dictionary
6. function returns
7. join string

8578

def topScores(lst):
"""
taken lst , loop each list and if the zeroth index is more than or equal to 80,
add
the 1st index into a list and return this new list in the order of the highest
zeroth index. If the list is larger than 4 items , then return only 4 items with
the highest zeroth index.
"""

new_lst = []
for i in lst:

if i[0] >= 80:
new_lst.append(i[1])

new_lst.sort(reverse=True)
if len(new_lst) > 4:

return new_lst [:4]
else:

return new_lst

def topScores(lst):
"""
if 0th index of the nested list of lst is greater than or equal to 80, return a
list of the 1st index in the order from the largest 0th index integer. Return up
to a list of 5 items.
"""

return [x[1] for x in sorted(lst , key=lambda x: x[0], reverse=True) if x[0] >=
80][:5]

Figure 16: Student53 example prompt for topScores. The second prompt is the student’s final successful attempt.

def sort_physicists(scientists):
"""
The internal lists contain name , year graduated and subject. If the subject is
"Physics" return just the names in order of what year they graduated from lowest
to highest
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort()
return physicists

def sort_physicists(scientists):
"""
The internal lists contain name , year graduated and subject. If the subject is
"Physics" return just the names , in order of what year they graduated from
lowest
to highest
"""

return [name for name , year , subject in sorted(scientists , key=lambda x: x[1])
if subject == "Physics"]

Figure 17: Attempt by student36 at sort_physicists. The second prompt is the student’s final successful attempt.

8579

def sort_physicists(scientists):
"""
Given a set of lists with a scientist , number , and a subject , respectively , only
return the scientist if the subject is "Physics" in a list. Then sort the list
into ascending order based on the number , but don't return the number.
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort()
return physicists

def sort_physicists(scientists):
"""
Given a set of lists with a scientist , number , and a subject , respectively , only
return the scientist if the subject is "Physics" in a list. Then sort the
scientists based on the numbers given in the set of lists from smallest to
largest. For example , if the scientist has the smallest number attached to them
in
the set of lists , they should be placed first in the output list.
"""

physicists = []
for scientist in scientists:

if scientist [2] == "Physics":
physicists.append(scientist [0])

physicists.sort(key=lambda x: x[1])
return physicists

Figure 18: Student77’s attempt at sort_physicists. The second prompt is the student’s final successful attempt.

def planets_mass(planets):
"""
The function will take in a dictionary
where the keys are strings, with the first letter capitalized, and integers
are stored inside them. It will remove
any strings that are not associated
with planets , then it will take all
the integers stored inside and add
them together and output that.
"""

Completion 1
for key in planets:

if key [0]. isupper () == False:
del planets[key]

mass = 0
for key in planets:

mass += planets[key]
return mass

Completion 2
total = 0
for planet in planets:

if planet == "Mercury" or planet == \
"Venus" or planet == "Earth" or \
planet == "Mars" or planet == \
"Jupiter" or planet == "Saturn" or \
planet == "Uranus" or \
planet == "Neptune":

total += planets[planet]
return total

Figure 19: two attempts by student46 at planets_mass. Deleting the terms in blue results in the second completion

8580

s65

s7

s1 s14 s14 s14 s15 s15

s24

s45 s45 s46 s46 s46 s46 s47 s47 s47 s47s55 s6 s6

s65

s65s65 s7 s7 s7s7

s9

s14s45 s46s58 s58s65s9 s9 s9s9 s9 s9s15

s1 s15 s47 s58

s31 s31

s55 s47

s1

a2,a3,a4

s14

a2,a3,a4

a6,d2,d3

a5

d6

s15

a2,a3,a4,a5

m4

m3

s24

a2,a4

a1

s31

a1,a3,a4

m1

m4

s45

a2,a3,a4

m4

m2,m3

s46

a2,a4

m4

a3

s47

a3,a4

s55

a1,a2,a3,a4

m2,m3

s58

a2,a3,a4d3 a3

d3

s6

a2,a4

m4,m2,a5

a6

s65

a2,a3,a4,a5

m4

a1

s7

a2,a3,a4,a5

d3,d2,d4,d5

a1,a2,a3,a4,a5

s9

a4,a6

d6

a6 a2 a3

Figure 20: Prompt trajectories for the “add up” problem.

s70

s70s70s66s66 s66 s67

s29

s29

s32

s34 s49

s49

s66s66 s68 s68 s68 s68 s70

s68

s29

a2,a3

a1

s32

a2,a3

a1

s34

a2,a3

l3

s49

a2,a3

a1

m1

s66

a2,a3

m2

l3

a1m1

m1

s67

a2,a3

a1

s68

a1,a2,a3

s70

a3

a1

d1

a1

m1

Figure 21: Prompt trajectories for the “check prime” problem.

F.4 All Prompt Trajectory Graphs
The prompt trajectories for all remaining problems are in Figure 20—Figure 51.

8581

s19

s54

s36 s54

s54

s38 s77

s54

s42

s19

a3,a4

a2,m3

s36

a2,a3,a4

m2,m3

s38

a2,a3,a4

a1

s42

a2,a3,a4

a1

s54

a3,a4

a2,m3

m2,m3

m2

l3

s77

a2,a3,a4

a1

Figure 22: Prompt trajectories for the “add int” problem.

8582

s23 s44s63

s40s40 s40 s40 s40

s23 s23 s23s35

s35

s63

s75

s44

s59 s59s23

s44

s75

s23

s23

s23

a1,a2,a4

m2 l2,a3

m2

d2

a2

s35

a1,a2,a3,a4

m2

m2

s40

a1,a2,a3,a4

m2

l2

s44

a1,a2,a4

m2

m1,m2

s59

a1,a3

s63

a1,a2,a3,a4

m2

s75

a1,a2,a3

m2

m2

Figure 23: Prompt trajectories for the “altText” problem.

8583

s2

s16

s2

s13

s2s2 s2

s13

s16

s2

s22

s37

s5 s5

s72

s74

s13

a1,a2,a3,a4

d4

a4

s16

a1,a2,a3

m3

a4

s2

a2

a3

m3,a4

l3,d4 m3

l3

s22

a1,a2,a3

m3,a4

s37

a1,a2,a3,a4

m4

s5

a1,a2,a3,a4

m4 m4

s72

a1,a2,a3

a4

s74

a1,a2,a3

a4

Figure 24: Prompt trajectories for the “assessVowels” problem.

8584

s17

s17

s26 s41s41

s18

s18

s17

s21s30

s17

s17

s25

s17

s26

s21

s17

s17

s21

s10

s17s18s21s21 s3 s3 s3 s4 s4

s17

s10

a1,a2,a3,a4

m2,m3,m4

s17

a1,a2,a3

d1,d2,d3

a2,a3

d2,d3

a2

l2

m2,a3,a4

s18

a1,a2,a3

m3,l3

a4

s21

a1,a2,a3,a4

s25

a1,a2,a3

s26

a1,a2,a3,a4

m2,m4

s3

a1,a2,a3

m2,m3

s30

a1,a2,a3,a4

m2,m3,m4

s4

a1,a2

m2,a3

s41

a2,a3,a4

m2,l3,m4m3

Figure 25: Prompt trajectories for the “changeSection” problem.

8585

s20s20

s20

s54 s54

s20

s20

s54

s54

s19 s42

s43

s43s19

a1,a2,a3

m3

s20

a1

a2d2

a2

s42

a1,a2,a3

m3

s43

a2

m2,a3

l2

s54

a1

a3

m1,a2

l1,m2,d3

Figure 26: Prompt trajectories for the “combine” problem.

8586

s0 s0 s0s17

s21

s30 s30

s21

s3

s4 s4

s51

s18

s0s0

s10

s17

s3s3

s0

s17

s21s25 s30 s51

s17

s17

s18

s41

s0

s3

s17

s17

s17 s17

s25

s25

s3

s17

s21 s21

s21

s41

s17s17 s3s3

s17

s17

s18s21

s17

s0

s10

s17s17 s17s17

s41

s26

s3s3

s17 s17s17

s17

s17

s17

s17 s17 s17 s17

s3

s3

s3 s17

s17

s0

a1,a2,a4

a3,a5

m4

m4

m4

m4 l4

m2,m3,m4

m2

s10

a1,a2,a4,a5

m5

m5

s17

a2

m2

a3

m3

l2,d3

m2 l2

a3

a4

m3

m3

l3

d3,d4

a3,a4

m4

m2 l2,d3,l4

m4

a3,m4

d2,d3,d4

a2,a4

a3 m3

m4

s18

a1,a2,a3,a4,a5

m2

m4

s21

a2,a3,a4,a5

l4

m4

m4

m4

s25

a2

m2,a4

m4

l4

s26

a2

m2

s3

a1,a2

l1,l2

m1,m2

l1,l2

d1,d2a2

m2

a4

d4

a4

d4

s30

a2,a4

a3,m4

a5

s4

a2,a4

l2

m2

s41

a2,a3,a4

m2,m3,m4

m3,m4

m4

s51

a2,a3,a4

a5

Figure 27: Prompt trajectories for the “convert” problem.

8587

s20

s54

s36 s36 s42 s54 s57s43

s20

a2,a3

a4

s36

a2,a3,a5

a4

s42

a1,a2,a3,a5

a4

s43

a2,a4,a5

s54

a2,a4,a5

a3

s57

a1,a2,a3,a4,a5

Figure 28: Prompt trajectories for the “create list” problem.

8588

s13

s13

s22

s13 s13s13 s8

s13 s13s13s13

s13

s11

s8

s37

s16 s2 s2

s2

s22 s5 s5

s11

a5

m5

s13

a1,a2

m1

a4

d4

s16

a5

a2

s2

a2,a5

m2 m2

m5

s22

a1

d1,a2,a5

m5

s37

a1,a2,a4

m4,a6

s5

a2,a5

m2

s8

a1

a2

a3

Figure 29: Prompt trajectories for the “fib” problem.

8589

s62s67

s27 s32

s66s32 s70s70 s78

s70

s49

s27 s32 s78

s27

a1,a2,a3,a4,a5

s32

a2,a3,a4,a5

s49

a1,a2,a3,a4,a5

m2

s62

a2,a3,a4

m3

s66

a2,a3,a4

a5

s67 s70

a2,a3,a4,a5

d5 a5

s78

a1,a2,a3,a4,a5

Figure 30: Prompt trajectories for the “findHorizontals” problem.

8590

s16

s22

s22

s11

s2

s2

s22

s16

s11s11s11 s13 s13s16 s5 s61s61 s72 s74

s2

s11 s13

a1

a2

s16

a2

s2s22

a2

s5

a2

s61

a1

a2

s72

a1

a2

s74

a2

Figure 31: Prompt trajectories for the “find multiples” problem.

s23 s23 s23 s23 s23 s23

s33

s40 s40

s40

s50 s50

s50

s60 s60

s60

s63

s64

s64 s64 s64s64 s69

s69

s75

s75

s75

s75 s75 s75 s75 s75 s75 s75

s75

s79 s79

s60

s35 s35s40 s44 s44 s59 s59 s59s59 s64 s75 s79

s35 s75 s75 s75 s75 s75 s75 s75 s75

s75

s50s64 s60

s44

s23

a1,a2,a4

m2 m2 m2

s33

a1,a2

a3

s35

a1,a2,a4

m2

m4

m4

s40

a1,a2,a5

a4

a3 m3

m3 s44

a2,a4

s50

a1,a2,a3,a5 a4

m3 m3

s59

a1,a2,a5

a3 l3

s60

a1,a2

a4

a3 m3

m3

l3

s63

a2,a5

a3

s64

a2

a3

l3

m3 m3

l3

s69

a1,a2

s75

a1,a2l2 m2

s79

a1,a2,a3,a4

m4

m3 m3

Figure 32: Prompt trajectories for the “generateCardDeck” problem.

8591

s1

s15

s24

s6

s7

s14s46

s9 s14

s24 s39

s28 s28 s28

s14 s39

s15s15

s7

s47

s55

s7

s15

s31s31 s45 s45

s45

s55

s55

s9

s31 s46s46 s6 s6s65 s9

s39

s55s9 s9

s1

a1

m1

s14

a1,a2,a3,a4

d1,m4

m4

s15

a2

m2

m2m2m2

s24

a2

m2

s28

a2

a1 m2 a4

s31

a1,a2a3

d3,a4a3,m4

s39

a2

m2

m2

m2

s45

a1,a2,a3,a4

l4

s46

a1,a2

a3

m1

s47

a2,a3,a4

m3

s55

a1,a2

a3

a4

s6

a2

a1

s65

a1,a2a3

s7

a2,a4

m2

m2

a3

s9

a1,a2

a3

a4

m4

d4

a4

Figure 33: Prompt trajectories for the “getSeason” problem.

8592

s59s23 s33 s35 s75

s35

s50

s23

a1,a3,a4,a5,a6

s33

a1,a2,a3,a4,a6

m4

s35

a1,a2,a3,a4

m3

m3

s50

a1,a3,a4

d4,a2

s59

a1,a3,a4,a6

a5

s75

a4

a2,a3

Figure 34: Prompt trajectories for the “increaseScore” problem.

8593

s13

s72

s8 s8s8s8 s8 s8

s13

s2 s2s22

s2s8

s2

s2 s2s22

s8

s72

s8

s37

s37s2 s2s2s22

s37 s5

s13 s2 s2 s2 s37

s22 s22

s22

s8

s2 s2s2s8 s8

s11

s72s72

s2

s5

s2

s2s2 s2 s2 s2 s2

s2

s8

s2

s8

s8

s8

s8

s37

s5

s37

s11

a3

a6

s13

a1,a2,a3,a6

d1,l2

m2,m3,a5,m6

s2

a3,a1,a4,a5,a6,a2

d1,d2,d3,d4,d5,d6

a1,a3,a5,a6

d1,d3,d5,d6

a3,a4

d3,d4

a1,a3

m3,a5,a6

a2,m3,a4,m5,m6

l3,d2,d4

d5

d3,d1

a1,m6,a3,a2

a5

s22

a3

d3

a4

d4

a1,a2

s37

a1,a2,a3,a4,a5,a6,a7

m1,d7

m3,m6,d5

m3

a5,d3

d2,m4,a3

a2

s5

a6,a1

a4

m4

s72

a1,a2,a3,a6

a5

d5 a5

s8

a1,a4,a6

a2,m4,a5,m6

m5

d5,m6

a5

m5

d5

a5 l5

d5,d4

m2,a4,a5,m6

m2,m6

Figure 35: Prompt trajectories for the “laugh” problem.

8594

s17

s3

s25

s3

s4

s41 s41 s17

s17

s3

s3 s3 s41

s26s17

a3

a4

s25

a1,a2,a3,a4,a5

m4

s26

a3,a4

s3

a1,a2,a3,a4,a5

d2,d3

a2,a3

d2,d3

m4

s4

a1,a2,a3,a4

m3,m4

s41

a2,a3,a4,a5

m4

m4

m4

Figure 36: Prompt trajectories for the “pattern” problem.

8595

s21

s21

s0 s3s51 s30

s41 s41s10

s10

s17 s17

s18

s25

s26

s3

s4

s51

s10

s17

s18 s25 s26 s4

s4

s51

s17 s17 s26s26

s18s25

s0

a1,a2,a3,a5,a6

m5,a4

s10

a1,a2,a3,a6

a5

a4

s17

a2,a3

m3

m3

l3

a5

a4

s18

a2,a3

m3,a5

a4

m4

s21

a1,a3,a5,a6

m3

a4

s25

a1,a2,a3,a6

a5

a4

m4

s26

a2,a3 a5

a4

s3

a1,a2

a3,a4

a5

s30

a4,a5,a6

s4

a2,a3

a4,a5,a6

m4

m4

s41

a1,a2,a3

a5

s51

a2,a3,a6

a5

a4

m5

Figure 37: Prompt trajectories for the “percentWin” problem.

8596

s58

s58

s53

s14

s14 s14

s58

s47

s47

s55s65s65 s65

s47s47

s24 s46s46 s55 s55s55

s24

s58

s14

s14

a5

l5

a3,d5

a6

m3

s24

a4,a5,a6

m4 m4

s46

a1,a2,a3,a4,a5,a6

l1

s47

a2,a3,a5

m5

m5

m2,m3

a4

s53

a2,a3,a4,a5,a6

m4

s55

a1,a4,a5,a6

a2,a3

l1,d2,d3 a2,a3,m1m2,m3

s58

a2,a3,a5,a6

m2,m3

m2,m3,m6

l5

s65

a1,a4,a5,a6

d1a1,a2,a3,m4

m4

Figure 38: Prompt trajectories for the “planets mass” problem.

8597

s54

s12

s38

s54

s42

s54s54

s36 s42

s12

s12

s57

s36

s43

s12

a2,a5

a3

m3

a4

s36

a2,a3,a4,a5

l2

m2

s38

a2,a3,a4,a5

m3

s42

a2,a3,a4,a5

m3

m2

s43

a2,a3,a4,a5

s54

a2,a3,a4

m3

m2,m3,a5

m2

s57

a1,a2,a3,a4,a5

m3

Figure 39: Prompt trajectories for the “print time” problem.

8598

s66

s27

s32

s62

s66

s68

s70

s70

s67

s67

s29s29 s29s34

s34

s78

s29

s49s49

s34s34 s49

s29 s29 s29

s49

s62 s78 s78

s78 s62

s32

s27

a1,a2,a3,a4,a6

a5

s29

a2,a3,a4,a6,a7

m3,m4,a5

m3

m3

m2m2 m3

s32

a2,a3,a4,a6,a7

m4

s34

a4,a5,a6

m4,d5

l4,a5

a3,m5

l3

s49

a1,a2,a4,a6

a5

m2

m2

s62

a2,a3,a6,a7

m6

l6

a5

s66

a2,a5,a6,a7

a4,d5

a5

s67

a7

s68

a1,a2,a3,a4,a6,a7

a5

s70

a1,a2,a3,a4,a6,a7

a5

m5

s78

a1,a2,a4,a5,a6,a7

m4

d4,d5,d6,d7 a4,a5,a6,a7

Figure 40: Prompt trajectories for the “readingIceCream” problem.

s0 s0

s0

s0

s10 s10 s17 s17 s17 s17 s17 s17 s17

s17

s21

s21

s25 s25

s25

s26

s3

s3 s3 s48 s41

s0 s17s25 s3s4 s4s4 s4s4 s51 s51s51

s41 s41

s18s21 s21 s21

s26 s4

s0

a1,a2,a3,a4

m2,m3 m3

d3

a3

m3

s10

a2,a3,a4

l3 l3

s17

a1,a4

d1,d4

a1,a2

s18

a2,a3

s21

a2,a3

m2,m3

l2,l3

m2,m3

s25

a1,a2,a3

a4 m3

m4

s26

a2m2

s3

a2,a3

l3

m3

d3 a3

s4

a2,a3

a4

s41

a1,a2,a3,a4

m3

m3

s48

a2

a3

s51

a2,a3,a4

m3

Figure 41: Prompt trajectories for the “remove odd” problem.

8599

s6s1

s1

s39

s46

s55

s58 s58 s58s6

s7

s6

s1

a1,a2,a3,a4

l2

m2

s39

a1,a2,a3,a4

m3

s46

a1,a2,a3

a4

s55

a1,a2,a5

a3,a4

s58

a2,a5

m2 m5

s6

a1,a2,a5

a3

m3

a4

s7

a2

a3,a4,a5

Figure 42: Prompt trajectories for the “reverseWords” problem.

8600

s19 s36 s43 s57s57 s57s20 s20s42 s77

s38 s38

s57

s36 s43

s20

s36

s19

a1,a2,a3

a5

s20

a2,a3

a5

s36

a2,a3

a5

m2

s38

a2

m2

s42

a1,a2,a3,a4

a5

s43

a2,a3,a4

m2

m3

s57

a1,a2,a3,a4

m4l4

m4

a5

s77

a1,a2,a3

a5

Figure 43: Prompt trajectories for the “set chars” problem.

8601

s33 s40s63s64s79

s75

s50

s40 s60

s75 s75s75

s44

s69

s64s23 s23

s35

s60

s33 s35 s50s79 s79

s35

s69

s75

s75

s59

s79

s23

a1,a2,a3,a5

m5

m1

s33

a1,a2,a5

a3

a4,a6

s35

a1,a2,a3

m1

s40

a2,a3,a5,a6

a1,m5

a4

s44

a2,a3,a5

s50

a2,a3

l3

s59

a1,a6

s60

a1,a3,a6

a4

m3

s63

a1,a2,a3,a5,a6

a4

s64

a2,a3,a5

a1

a4,a6

s69

a1,a2,a3

a4,a6

s75

a1

s79

a1,a2,a3,a5

a4,a6

Figure 44: Prompt trajectories for the “sortBySuccessRate” problem.

s20

s19s20

s36

s43 s57

s57

s77 s77s77

s77

s20 s54s36

s12s12

s12

s38 s54

s20s36

s77

s43s12

a1,a3,a4,a5,a6

m5m1

m5

s19

a1,a2,a3,a5

a4,a6

s20

a1,a2,a3,a5

m1

a4,a6

d3,d4,d5

a4

s36

a3,a4,a5,a6

a1,a2

m5 m4

s38

a1

s43

a1,a3,a5

m3,m5

a4,a6

s54

a3,a4,a5,a6

a1

d5

s57

a1,a3,a5

a4,a6

s77

a1,a2,a3,a5

a6

a4m5

m4

m4

Figure 45: Prompt trajectories for the “sort physicists” problem.

8602

s62

s27

s29

s29

s49 s62 s68

s68

s70 s70

s70

s78 s78

s67 s32

s49

s67 s67 s66

s29 s29

s29

s70

s32s27

a1,a2,a3,a6

a4,a5

s29

a2,a3,a6

m6

a4,a5

s32

a4,a5,a6

m4

s49

a1,a2,a3,a6

a4,a5

l4

s62

a3

a2,m3

m3

s66

a4,a5

m5

s67

a2,a3,a6

l6

s68

a1,a2,a3,a6

m6

a4,a5

s70

a2,a3,a6

a1 m1

a4,a5

s78

a1,a2,a3,a6

Figure 46: Prompt trajectories for the “sortedBooks” problem.

8603

s16

s61

s74

s2 s5

s5

s74

s11 s11

s11

a2

m2

s16

a2,a3,a4

m3

s2

s5

a1,a2,a4

m2

s61

a2

m2

s74

a2

m2

Figure 47: Prompt trajectories for the “student grades” problem.

8604

s62

s32

s70

s62 s68

s27s70

s66

s67

s32

s29

s29

s62s62s62 s68

s67

s66 s32

s66

s66

s70

s70

s68 s49

s27

a1,a3,a4,a5

a2

s29

a1,a2,a3,a5

a4

s32

a1

a2,a5

m5

s49

a1,a3,a4,a5

a2

s62

a3,a5

a2

m3

a4

s66

a1,a2,a5

d2,a3,a4

a2

s67

a3,a4

a2

a5

s68

a1,a2,a3,a4,a5

m3

m5

s70

a1,a3,a4

a5

a2

d2

a2

Figure 48: Prompt trajectories for the “subtract add” problem.

8605

s75 s23s23 s23 s35s40 s40 s59s59

s63

s64

s75

s75 s79s79 s79

s69

s75

s40

s50 s50s79

s23

s75

s23

s60

s79

s50

s23

a1,a2,a3,a4

m3

m3m2

s35

a1,a2,a3,a4,a5

d5

s40

a1,a3,a4

m3

a2

s50

a3,a4

m4

a1,a2

s59

a1,a2,a3

a5

m2

s60

a1,a2,a4

a3,a5

s63

a1,a2,a3,a4,a5

m3

s64

a1,a3,a4

a2,m3

s69

a1,a2,a3

a4

s75

a2

a4

s79

a1,a2,a3

a5

m3

l5m2 m3

Figure 49: Prompt trajectories for the “times with” problem.

8606

s24

s7

s15s31s53

s55

s39s45 s45 s45 s45 s45 s65s9

s7s9

s7 s7s7 s53 s53

s15 s55

s7

s7

s45s7 s7

s7

s53

s65 s53

s53

s15 s53

s7

s15s15s31

s7

s7

s9

s14 s14

s15

s31

s55

s65s9

s53

s53

s15s15

s45

s15s7s7

s7

s7

s15

s53

s15

s9

s9

s9 s15

s55

s9

s14

a2,a3

d3

s15

a1,a3

m1

m3

a4

m1

a2

m2

m2 m3l3

m2

s24

a2,a3

a1,m2,m3

s31

a1,a2,a3,a6

a4

a5

s39

a1,a3

a2

s45

a1,a2,a6

a3,a4,a5

m3

m3 m4

s53

a2,a3

d2,a6,a1,m3

a2

a4,m3

m4,a5

d1,m4

a1

m5

l1,l4

s55

a1,a2,a3,a4

m1

a6

a5

s65

a1,a2,a3

a4

m4

m4

s7

a1,a3,a4

d4

a4

a5

l5

m5

d5

d1

a1

s9

a4

m4

a2

d2

Figure 50: Prompt trajectories for the “topScores” problem.

8607

s23

s69 s75

s60

s50 s59s75

s75

s64 s64

s60s60

s23

a1,a2,a4

s50

a1,a2,a4

a5

s59

a1,a2,a4,a6

a5

s60

a1,a2,a4,a5

a6

s64

a4,a5

m4 m4

s69

a2,a3,a4

m4

s75

a2,a4,a6

Figure 51: Prompt trajectories for the “translate” problem.

8608

G Checklist

A2 Potential Risks: Did you discuss any potential risks of your work? [Yes/No/NA] No
A2 Elaboration: For yes, provide a section number. For no, justify why not. The risks of this work lie

in the original dataset creation and collection, as described by (Nguyen et al., 2024) and (Babe et al.,
2024).

B Use Or Create Scientific Artifacts: Did you use or create scientific artifacts? [Yes/No] Yes
B1 Cite Creators Of Artifacts: Did you cite the creators of artifacts you used? [Yes/No/NA] Yes
B1 Elaboration: For yes, provide a section number. For no, justify why not. §3
B2 Discuss The License For Artifacts: Did you discuss the license or terms for use and/or distribution

of any artifacts? [Yes/No/NA] Yes
B2 Elaboration: For yes, provide a section number. For no, justify why not. Appendix A
B3 Artifact Use Consistent With Intended Use: Did you discuss if your use of existing artifact(s) was

consistent with their intended use, provided that it was specified? For the artifacts you create, do you
specify intended use and whether that is compatible with the original access conditions? [Yes/No/NA] Yes

B3 Elaboration: For yes, provide a section number. For no, justify why not. Ethics Statement
B4 Data Contains Personally Identifying Info Or Offensive Content: Did you discuss the steps taken to

check whether the data that was collected/used contains any information that names or uniquely identifies
individual people or offensive content, and the steps taken to protect/anonymize it? [Yes/No/NA] NA

B4 Elaboration: For yes, provide a section number. For no, justify why not.
B5 Documentation Of Artifacts: Did you provide documentation of the artifacts, e.g., coverage of

domains, languages, and linguistic phenomena, demographic groups represented, etc.? [Yes/No/NA] No
B5 Elaboration: For yes, provide a section number. For no, justify why not. This paper analyzes an

existing dataset, which documents the artifact per ACL guidelines.
B6 Statistics For Data: Did you report relevant statistics like the number of examples, details of

train/test/dev splits, etc. for the data that you used/created? [Yes/No/NA] Yes
B6 Elaboration: For yes, provide a section number. For no, justify why not. §3
C Computational Experiments: Did you run computational experiments? [Yes/No/NA] Yes
C1 Model Size And Budget: Did you report the number of parameters in the models used, the total

computational budget (e.g., GPU hours), and computing infrastructure used? [Yes/No/NA] Yes
C1 Elaboration: For yes, provide a section number. For no, justify why not. Appendix C
C2 Experimental Setup And Hyperparameters: Did you discuss the experimental setup, including

hyperparameter search and best-found hyperparameter values? [Yes/No/NA] Yes
C2 Elaboration: For yes, provide a section number. For no, justify why not. Appendix E.3
C3 Descriptive Statistics: Did you report descriptive statistics about your results (e.g., error bars around

results, summary statistics from sets of experiments), and is it transparent whether you are reporting the
max, mean, etc. or just a single run? [Yes/No/NA] Yes

C3 Elaboration: For yes, provide a section number. For no, justify why not. §4.1.4 and Appendix E.4
C4 Parameters For Packages: If you used existing packages (e.g., for preprocessing, for normalization,

or for evaluation, such as NLTK, SpaCy, ROUGE, etc.), did you report the implementation, model, and
parameter settings used? [Yes/No/NA] Yes

C4 Elaboration: For yes, provide a section number. For no, justify why not. Appendix D
D Human Subjects Including Annotators: Did you use human annotators (e.g., crowdworkers) or

research with human subjects? [Yes/No/NA] No
D1 Instructions Given To Participants: Did you report the full text of instructions given to participants,

including e.g., screenshots, disclaimers of any risks to participants or annotators, etc.? [Yes/No/NA] NA
D1 Elaboration: For yes, provide a section number. For no, justify why not.
D2 Recruitment And Payment: Did you report information about how you recruited (e.g., crowdsourcing

platform, students) and paid participants, and discuss if such payment is adequate given the participants’
demographic (e.g., country of residence)? [Yes/No/NA] NA

D2 Elaboration: For yes, provide a section number. For no, justify why not.

8609

D3 Data Consent: Did you discuss whether and how consent was obtained from people whose data
you’re using/curating (e.g., did your instructions explain how the data would be used)? [Yes/No/NA] NA

D3 Elaboration: For yes, provide a section number. For no, justify why not.
D4 Ethics Review Board Approval: Was the data collection protocol approved (or determined exempt)

by an ethics review board? [Yes/No/NA] NA
D4 Elaboration: For yes, provide a section number. For no, justify why not.
D5 Characteristics Of Annotators: Did you report the basic demographic and geographic characteristics

of the annotator population that is the source of the data? [Yes/No/NA] NA
D5 Elaboration: For yes, provide a section number. For no, justify why not.
E Ai Assistants In Research Or Writing: Did you use AI assistants (e.g., ChatGPT, Copilot) in your

research, coding, or writing? [Yes/No] Yes
E1 Information About Use Of AI Assistants: Did you include information about your use of AI

assistants? [Yes/No/NA] Yes
E1 Elaboration: For yes, provide a section number. For no, justify why not. Appendix B

8610

