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Abstract

Dancing to music with lyrics is a popular form
of expression. While it is generally accepted
that there are relationships between lyrics and
dance motions, previous studies have not ex-
plored these relationships. A major challenge is
that the relationships between lyrics and dance
motions are not constant throughout a song but
are instead localized to specific parts. To ad-
dress this challenge, we hypothesize that lyrics
and dance motions that co-occur across mul-
tiple songs are related. Based on this hypoth-
esis, we propose a novel data-driven method
to detect the parts of songs where meaningful
relationships between lyrics and dance motions
exist. We use clustering to transform lyrics
and dance motions into symbols, enabling the
calculation of co-occurrence frequencies and
detection of significant correlations. The effec-
tiveness of our method is validated by a dataset
of time-synchronized lyrics and dance motions,
which showed high correlation values for emo-
tionally salient lyrics such as “love”, which is
expressed in heart-shaped motions. Further-
more, using our relationship detection method,
we propose a method for retrieving dance mo-
tions from lyrics that outperforms previous text-
to-motion retrieval methods, which focus on
prose and non-dance motions.

1 Introduction

Platforms like YouTube and TikTok have popular-
ized dance videos, allowing amateur dancers to
express their creativity, but choreographing these
performances is challenging for those without pro-
fessional training. Consequently, previous stud-
ies have focused on synthesizing or retrieving
dance motions that match the rhythms and tim-
bres of music (Zhu et al., 2024). However, chore-
ographic design is influenced by both audio at-
tributes and lyrics, as dancers often interpret lyrics
literally, such as by making heart shapes to express
“love”. However, no empirical studies have quanti-
tatively analyzed the relationships between lyrics

and dance, and no studies have specifically focused
on retrieving dance motions associated with lyrics.
Quantitative analysis of lyrics and dance motions
offers two main contributions. Academically, this
analysis provides clear evidence of how lyrics and
dance motions are related. Practically, it enables
the development of systems that suggest dance mo-
tions based on user-input lyrics, offering choreo-
graphic ideas to support dancers, particularly ama-
teurs, in creating or enhancing their choreography.

Previous studies have quantified the relationship
between prose and corresponding non-dance ges-
tures (e.g., “A man walks in a quarter circle to the
left”) (Yu et al., 2024; Horie et al., 2023; Petrovich
et al., 2023; Tevet et al., 2022). These methods as-
sume that text and motion are analyzed in units of
sentences and sequences, respectively, and that all
text-motion pairs are inherently related. However,
these methods fall short for analyzing interactions
between lyrics and dance motions, because those
interactions are often localized to specific parts of
songs rather than uniformly distributed across the
entire song. For example, functional words like
“the” or “is” may not correspond to any dance mo-
tion, while emotionally charged words like “love”
might correlate with specific motions. To analyze
lyrics and dance motions, we need a method that
can detect which frames' have motions related to
lyrics.

This study proposes a novel data-driven method
to analyze and quantify the relationship between
lyrics and dance motions as illustrated in Figure 1.
We hypothesize that lyrics and dance motions that
co-occur in different songs are related. For exam-
ple, if “jump” is sung while a jumping motion is
performed in multiple songs, the co-occurrence
suggests a meaningful relationship. To quantify
these relationships, we first transform lyrics and

'A “frame’ refers to a single pose within a sequence of
dance motions, similar to a frame in a video. Dance motions
are recorded at a specific frames-per-second rate.
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Time-synchronized lyrics and dance motion
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Figure 1: Overview of the proposed data-driven method.

dance motions of each frame into discrete symbols
by using clustering methods. These symbols al-
low us to calculate their co-occurrence frequency.
We then calculate Pointwise Mutual Information
(PMI), a measure used in natural language process-
ing (NLP) methods, and use it to evaluate these
frequencies. By using PMI we find positive cor-
relations for frequent co-occurrences and negative
correlations for independent occurrences, thus de-
tecting specific frames where lyrics and dance mo-
tions are related.

To investigate the effectiveness of our method,
we have prepared a novel dataset of time-
synchronized lyrics and dance motions, including
the dancer’s finger motions. Applying our method
to this dataset, we have detected frames with high
PMI values between lyrics and dance motions. For
example, the lyric “love” corresponds to dance mo-
tions that form heart shapes with the hands, and the
phrase “getting lost” is associated with motions that
suggest searching for a destination. Our proposed
method therefore makes it possible to quantify and
analyze specific relationships between lyrics and
dance motions, revealing valuable correlations.

In addition, we have developed a lyrics-to-dance
motion retrieval method by utilizing our method to
detect relationships between lyrics and dance mo-
tions. This method outperforms an existing text-to-
motion retrieval method based on contrastive learn-
ing, which assumes that all text-motion pairs are
inherently related. Unlike this general method that
focuses on text and non-dance motions, our method
specifically targets lyrics and dance motions that
frequently co-occur across multiple songs, indicat-
ing a meaningful relationship. Our method over-

comes the limitations observed in broader text-to-
motion studies and improves retrieval performance,
providing an effective solution in this area.

2 Related Work

2.1 Audio-to-Dance Motion Synthesis

Previous studies have focused on correlating dance
motions with the rhythmic and timbral features of
audio signals (Zhu et al., 2024). A notable trend in
this area is the use of diffusion models to synthe-
size dance motions from music audio (Tseng et al.,
2023; Dabral et al., 2023; Li et al., 2024; Zhang
etal., 2024; Luo et al., 2024; Qi et al., 2023). These
models represent dance motion as matrices defined
by frame counts 7' and joint parameters J, and
they use architectures such as U-Nets (Ronneberger
et al., 2015) or Transformers (Vaswani et al., 2017)
to reconstruct these matrices. While promising,
synthesis based on diffusion models often results
in long computation times and can produce mo-
tions plagued by unnatural artifacts such as jitter or
sliding feet.

An alternative method involves motion graph-
based synthesis (Chen et al., 2021; Au et al., 2022;
Gao et al., 2022) structured into three phases: seg-
menting audio into musical bars, retrieving dance
motions from a database for each segment, and en-
suring natural transitions between sequences. This
method, ideal for music with repetitive structures
like verse-bridge-chorus, maintains consistency
across similar musical sections.

Unlike these studies, we do not focus on synthe-
sizing dance motions from audio signals. Instead,
we present a novel method that quantifies the rela-
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tionship between lyrics and specific dance motions,
offering a unique approach within the field of dance
motion analysis. Our method enriches the under-
standing of how lyrics influence and correspond to
dance, and it provides findings that could improve
future methods of dance motion synthesis and re-
trieval by ensuring that dance motions are more
closely aligned with lyrical content.

2.2 Text and Motion Relationships

The relationship between prose text descriptions
and corresponding non-dance motion has attracted
considerable interest. Recent advances have used
contrastive learning to embed text and motion fea-
ture vectors in a shared vector space, effectively
aligning related text and motion vectors to improve
the accuracy of motion vector retrieval (Yu et al.,
2024; Horie et al., 2023; Petrovich et al., 2023;
Tevet et al., 2022). In addition, the integration of
large language models has extended the capabili-
ties of text-motion analysis (Jiang et al., 2023). A
particularly innovative method involves the use of
vector quantized-variational auto-encoders to trans-
form motion data into codebooks, which are then
treated as pseudowords. These pseudowords are
integrated with text to train language models, sup-
porting a range of applications from text-to-motion
synthesis to motion description generation and pre-
dictive modeling.

However, many existing methods assume a uni-
form relationship across all text-motion pairs, an
assumption that may not reflect the complexity
of lyrics-dance interactions. Contrary to the com-
monly assumed uniformity, lyrics-dance relation-
ships may appear selectively, becoming prominent
only in particular contexts, such as when emotion-
ally charged words like “love” inspire certain dance
motions. Our study examines how lyrics influence
dance in different situations, allowing us to detail
the multifaceted nature of these interactions.

3 Time-Synchronized Lyrics and Dance
Motion Pair Data

Our goal is to analyze and quantify the relationship
between lyrics and dance motions. To achieve this,
we need data where each frame of dance motion is
associated with specific words or sentences from
the corresponding lyrics.

3.1 Data Collection

We collected 1,000 dance motion datasets (totaling
55.3 hours) from the MikuMikuDance community,

where creators manually trace dance motions from
dance videos on platforms such as YouTube and
NicoNico or use motion capture technologies to
create dance sequences. Our collection includes
979 traced motions and 21 captured motions. These
dance motions correspond to 868 unique songs, as
some songs have multiple associated dance mo-
tions.

We obtained the corresponding audio and lyrics
for these songs from various online resources. Most
of the lyrics are in Japanese, with some in En-
glish. To ensure synchronization between the
dance motions and the audio, we manually aligned
their start times and annotated the start and end
times of each lyric sentence during audio play-
back. Word-level timing annotation, which is labor-
intensive, was refined using an automatic synchro-
nization method (Nakano and Goto, 2016) that al-
lows precise alignment of individual words. As
a result, each frame of the motion data, recorded
at 30 frames per second, is associated with spe-
cific words and sentences. Frames without cor-
responding lyrics were assigned a padding token,
represented as [PAD], to maintain sequence con-
sistency. As these choreographies and lyrics are
copyrighted, we do not plan to make the collected
data publicly available. However, the code for
training the proposed model and conducting the
evaluation is available at https://github.com/
KentoW/lyrics-and-dance.

3.2 Dance Motion Data Pre-processing

The human skeletal model in our dataset com-
prises 53 joints, each represented by global co-
ordinates (X, y, z) and Euler angles (roll, pitch,
yaw). See Appendix B for details on the structure
of the human skeletal model. To avoid issues like
gimbal lock, we convert these angles into a six-
dimensional format using sine and cosine transfor-
mations: sin(roll), cos(roll), sin(pitch), cos(pitch),
sin(yaw), and cos(yaw). Preliminary tests showed
this transformation method to be more effective
than using quaternions.

In this study, we define the unit of analysis for
dance motions as bars for easier analysis. Using
the downbeat tracking method (Bock et al., 2016),
we segmented the dance motion and audio data into
bars, discarding any bars shorter than one second.
This resulted in a dataset of 119,691 bars: 92,723
with lyrics and 26,968 without.

To ensure uniform spatial positioning for con-
sistent analysis, we adjusted the y axis to set the
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minimum coordinate of the “foe” joints to zero
and adjusted the x and z axes to align the human
model’s average position with the origin for each
bar. We calculated velocities and accelerations for
each joint based on its positional and angular data,
including local xyz directional velocities and ac-
celerations in six dimensions and point-to-point
global velocities and accelerations in two dimen-
sions. We derived the first and second derivatives
of the six-dimensional angular parameters, integrat-
ing twelve additional dimensions. As a result, each
joint frame contained 29-dimensional parameters,
providing a detailed framework for comprehensive
motion analysis. Finally, we normalized the 29-
dimensional parameters to ensure that they ranged
between —1 and 1.

4 Analyzing Lyrics and Dance Motion
Relationships

In this section we present a method for detecting
frames that demonstrate meaningful relationships
between lyrics and dance motions within our time-
synchronized data. Based on our hypothesis that
the frequent co-occurrence of lyrics and dance mo-
tions across multiple songs indicates meaningful
relationships, we use co-occurrence frequencies to
quantitatively analyze these interactions.

To analyze the co-occurrence relationships at
each frame, we utilize PMI, a metric used in NLP.
PMI is calculated with the formula

P(z,y)
P(x)P(y)
where x and y respectively represent the lyrics and
dance motions at a specific frame. P(z,y) is the
probability of their co-occurrence within the same
frame, and P(x) and P(y) are the probabilities
of observing x and y independently at any frame.
High PMI values at a frame indicate a strong as-
sociation between the lyrics and dance motions at
that particular moment.

To apply PMI, we convert lyrics and dance mo-
tions into discrete symbols x and y for each frame.
This involves transforming feature vectors, derived
from deep learning models, into a form suitable
for PMI analysis. Using a clustering method, we
categorize similar motions and lyrical expressions
into codebooks x and y, which serve as the basis
for calculating PMI, enabling us to detect frames
where lyrics and dance motions are closely related.

The process begins with extracting feature vec-
tors for lyrics and dance motions by using deep

PMI(z,y) = log (1)

learning models. We then implement clustering to
group similar lyrics and dance motions, facilitating
the PMI calculations for our analysis.

4.1 Lyrics Feature Extraction

Before clustering lyrics, we calculate feature vec-
tors using a language model, either at the word
level or the sentence level. This distinction is cru-
cial, as the relationship between lyrics and dance
motions can vary. For example, “jump” may corre-
spond to a specific motion, while “I feel free like a
bird in the sky” can inspire broader, fluid motions,
capturing the overall feeling.

To explore these relationships, we use
a pre-trained multilingual Sentence-BERT
model? (Reimers and Gurevych, 2019) to generate
both word-level and sentence-level feature vectors.
This method allows us to analyze how individual
words and broader thematic content influence
corresponding dance motions.

4.2 Dance Motion Feature Extraction

We developed a novel dance motion encoder to
extract features from our dataset, which includes
detailed elements like finger joint configurations
and variable sequence lengths. This encoder pre-
processes both the physical and expressive compo-
nents of dance, providing features for clustering.

The encoder processes two data types per frame:
motion sequences and affective features. Each
frame’s motion data, denoted \S;, is a matrix with
dimensions J x P, where J represents the number
of joints and P represents the number of parame-
ters per joint. These matrices, S1,...,S%, ..., 57,
cover T' frames within a musical bar, capturing
detailed motion across the sequence.

Additionally, we include affective features for
each frame, denoted as a;. These vectors, derived
from geometric properties like volume, area, length,
and curvature between joints, represent the expres-
sive qualities of dance. The sequence of these fea-
tures across a bar is denoted as a1, ..., ay, ..., ar.
Affective features recognized in human motion
analysis (Kleinsmith and Bianchi-Berthouze, 2013;
Crenn et al., 2016; Bhattacharya et al., 2020a,b,
2021) help capture the expressive aspects of dance,
enriching our encoder’s data input. By combining
motion matrices and affective features, our encoder
processes inputs that reflect both the physical exe-
cution and expressive dynamics of dance.

2https: //huggingface.co/sentence-transformers/
paraphrase-multilingual-MinilLM-L12-v2
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Figure 2: Overview of the proposed dance motion encoder and auto-encoder.

4.2.1 Affective Feature

We use 40 affective features, including the area of
triangles formed by major joints, volume, distances
between key joints, and limb curvature. These
features provide a multidimensional view of the
dancer’s expressive state, revealing various emo-
tional states. For example, a smaller area may sug-
gest a reserved or tense posture, while a larger area
implies openness and relaxation. See Appendix B
for more details about the 40 affective features.

For each frame of motion data, we calculate
these features along with their velocity and acceler-
ation, forming a 120-dimensional affective feature
vector. This method captures both the static pos-
ture and the dynamics of movement, which are
crucial for understanding the fluidity and intensity
of dance motions. We apply min-max normaliza-
tion to these vectors, ensuring all features range
from O to 1. This standardization allows for consis-
tent and meaningful comparisons across different
dance sequences.

4.2.2 Dance Motion Encoder Architecture

Our dance motion encoder consists of a skele-
tal encoder and a temporal encoder, as shown
on the left side of Figure 2. The process starts
with skeletal data for each frame S;. Each P-
dimensional joint vector in .S; is transformed by

a specific Multi-Layer Perceptron (MLP) for each
joint. These transformed vectors are fed into a
Graph Transformer, which uses Laplacian posi-
tional embeddings to maintain the relative positions
of the joints (Rao and Miao, 2023). The output is a
J x D-dimensional vector for the joints, which is
flattened and compressed through a linear layer to
produce a single D-dimensional vector represent-
ing the skeletal features for each frame, denoted as
u. This vector captures the comprehensive skele-
tal structure of the dance motions at each frame.

Simultaneously, affective features (a;) are calcu-
lated for each frame, capturing emotional dynam-
ics through metrics like joint areas and volumes.
Before inputting into the temporal encoder, skele-
tal feature vectors (u;) and affective features (a;)
are concatenated, forming a combined D + 120-
dimensional vector for each frame. This vector is
then compressed through an MLP to ensure uni-
form D-dimensional vector consistency across all
frames. The compressed vectors are fed into a
Transformer encoder without positional embed-
dings (Haviv et al., 2022), emphasizing intrinsic
interactions across frames rather than chronological
order. This method generates a sequence of motion
feature vectors ([v1, ..., v, ..., v7]), which com-
prehensively represent both the skeletal structure
and emotional dynamics of the dance.
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To train our dance motion encoder, we use an
auto-encoder method suitable for our dataset that
lacks gold labels. The dance motion decoder,
shown on the right side of Figure 2, is designed
as a reverse architecture of the encoder. Both the
encoder and the decoder are trained by minimizing
the Mean Squared Error (MSE) between the inputs
and reconstructed outputs. The training process re-
constructs skeletal matrices S’t with tanh activation
and affective features a; with sigmoid activation,
ensuring the output matches the input:

T
Loss =Y (MSE(St, tanh(Sy))
P 2)

+ MSE(ay, sigmoid(dﬁ)) .

We train our auto-encoder on the full dataset
of 119,691 bars using the AdamW opti-
mizer (Loshchilov and Hutter, 2019), with a
mini-batch size of 8 over 200 epochs. Our skeletal
encoder processes data from 53 joints (J = 53)
and 29 motion parameters per joint (P = 29).
The encoder and decoder, with a dimensionality
of D = 256, use 4 multi-heads and 2 layers for
skeletal processing, and 8 multi-heads and 4 layers
for temporal processing.

4.3 Lyrics and Dance Motion Clustering

To confirm that lyrics and dance motions that co-
occur in multiple songs indicate a meaningful rela-
tionship, it is crucial to preprocess the data before
applying k-means clustering. This is because repet-
itive elements within a single song could skew our
analysis. For example, if a word like “flower” is
associated with a particular dance motion multiple
times within only a single song, their association
does not necessarily indicate a meaningful relation-
ship. If the word and motion co-occur in multiple
songs, however, their co-occurrence is likely to be
meaningful.

To avoid clustering bias caused by duplicate en-
tries within our dataset, we preprocess both lyrics
and dance motions before clustering. Specifically,
we identify and unify duplicate sentences within
the lyrics to ensure that each unique sentence is
represented only once in the clustering process.
This prevents the formation of clusters dominated
by repeated sentences. Similarly, for dance mo-
tions, we treat vectors with a cosine similarity of
0.99 or higher as duplicates and unify them. These
preprocessing steps enable more accurate cluster-
ing by ensuring both lyrics and dance motions are

represented by distinct, non-redundant data points.
With the data cleaned, we transform word vectors
into the codebook z,, and sentence vectors into
the codebook x, for each frame. Similarly, dance
motion vectors for each frame are transformed into
the codebook y.

4.4 PMI Calculation

To calculate PMI, we adjust the standard approach
to fit our hypothesis that lyrics and dance motions
that co-occur in multiple songs are indeed related.
We calculate the probabilities based on the number
of songs in which lyrics and dance motions co-
occur by using the following formulas:

_ #(z,y)
Pla,y) = total number of songs’ )
_ #(2)
Pla) = total number of songs’ @)
P(y) = #) 5)

~ total number of songs’

Here #(x, y) indicates the number of songs where
x and y co-occur within the same frame, while
#(x) and #(y) indicate the numbers of songs
where = and y appear independently. Equations (3),
(4) and (5) are then used to calculate PMI as de-
fined in Equation (1), emphasizing the importance
of frequent co-occurrences in different songs. Ad-
ditionally, to avoid bias from single occurrences
(#(x,y) = 1), which can misleadingly suggest
strong relationships, we set PMI for these cases to
zero. For clearer interpretation, we use Normalized
PMI (NPMI) by normalizing PMI values to a scale
between —1 and 1.

4.5 Analysis Setup

To comprehensively examine specific correlations
between lyrics and dance motions across our entire
dataset, we utilize high NPMI values in all lyric-
motion pairs without dividing the dataset into train-
ing and test sets. We analyze these pairs using two
types of lyric codebooks, x,, for word-level and z
for sentence-level lyrics, alongside one codebook,
1, for dance motions. To obtain each codebook, we
applied k-means clustering to each set of lyric or
motion vectors across varying codebook sizes from
500 to 7000, in increments of 500, to explore differ-
ent levels of granularity and find the most effective
categorization for capturing nuanced relationships.

For each codebook size combination, we calcu-
lated NPMI values between all cluster pairs, one
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Table 1: Numbers and percentages of songs, bars, and
frames with positive NPMI values.

In the case of  In the case of

Entity

NPMI(zy,y) NPMI(zs,y)
781 songs 980 songs
Number of songs (78.10%) (98.00%)
2,671 bars 16,161 bars
Number of bars (2.88%) (17.43%)
Number of frames 14,431 frames 91,593 frames
(0.03%) (1.99%)

from the motion codebook and one from the lyrics
codebook. This helped us detect the optimal gran-
ularity that maximizes the meaningful mutual in-
formation. Specifically, our highest NPMI values
were 0.82 for word-level analysis (with a codebook
size of 5000 for lyrics and 4500 for motions) and
0.93 for sentence-level analysis (with a codebook
size of 6500 for both lyrics and motions). We use
these codebook sizes for the following analysis.

4.6 Analysis Results

Table 1 shows that while the majority of songs
(78.1% for word-level analysis and 98.0% for
sentence-level analysis) have positive NPMI values,
indicating strong lyrics-motion relationships, the
numbers of bars and frames with positive NPMI
values are quite small. This suggests that meaning-
ful interactions between lyrics and dance motions
are localized to specific parts of songs, supporting
our hypothesis that meaningful relationships, while
present, are not uniformly distributed across songs.
The examples shown in Figure 3 were selected
from musical bars with positive NPMI values to
illustrate specific relationships as we interpreted
them. For example, emotional expressions in lyrics,
such as “love”, are often translated into heart-
shaped gestures in dance. Sentence-level corre-
lations show clear patterns, such as “getting lost”
with a peering motion, demonstrating how broader
narrative elements within lyrics can influence dance
motions. See Appendix D for other examples of
interpretable relationships between lyrics and cor-
responding dance motions. This analysis confirms
that our data-driven method can uncover intuitive
relationships between lyrics and dance motions.

5 Lyrics-to-Dance Motion Retrieval

We developed a method that allows input of a single
musical bar of lyrics to retrieve the corresponding
bar of dance motions. The input is a sequence of
lyric words within a musical bar. The retrieved

output is a ranked list of musical bars containing
the corresponding motions.

For the retrieval task, we use Dynamic Time
Warping (DTW) (Berndt and Clifford, 1994) to
measure the similarity between the input lyrics and
available dance motions. DTW is ideal for handling
time series data of varying lengths and for capturing
partial frame similarities, thereby accounting for
how lyrics and dance motions relate within a bar.

In our DTW implementation, we derive the cost
matrix from the Normalized Pointwise Mutual In-
formation (NPMI) between the lyric and dance
motion codebooks. The substitution (match) cost
between elements = and y is defined as

cost(z,y) =1 — (1 4+ NPMI(z,y))/2.  (6)

This formula assigns lower costs when there is a
stronger relationship between x and y (i.e., higher
NPMI values) and assigns higher costs when the
relationship is weaker. For insertions and deletions,
we assign a fixed cost of 1. This means that when
aligning sequences, inserting or deleting an ele-
ment incurs a constant penalty, regardless of the
specific elements involved. This use of a fixed cost
was based on preliminary experiments showing that
using variable costs degraded performance in the
retrieval task.

We implemented two retrieval strategies: word-
to-dance motion retrieval (W2D) based on the
word-to-motion NPMI(z,,,y) and sentence-to-
dance motion retrieval (S2D) based on the sentence-
to-motion NPMI(z, y).

In this section, our dataset comprised 868 songs
and was divided into 78,875 bars (85%) for training,
5,237 bars (5%) for development, and 8,611 bars
(10%) for testing. Unlike Section 4 where models
were trained on the full dataset, here we specifically
trained the motion encoder and decoder, and con-
ducted k-means clustering from scratch using only
the training subset. In training the motion encoder,
we utilized early stopping based on the develop-
ment subset, ensuring precision in model tuning.
We confined k-means clustering and NPMI calcu-
lations strictly to the training data, guaranteeing
that these models were accurately calibrated for the
specific tasks described in this section. Addition-
ally, we adjusted the codebook sizes for k-means
clustering, with optimal sizes of 6000 for lyrics and
7000 for motions in the W2D method, and 3500
for lyrics and 7000 for motions in the S2D method.

As there are no existing methods specifically de-
signed for lyrics-to-dance motion retrieval, to eval-
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Figure 3: Examples of lyric and dance motion relationships from bars with positive NPMI values. The two examples
include one that shows word-level correlations and one that shows sentence-level correlations. Each example pairs
a synchronized lyric translated into English (with the original Japanese in parentheses) with its corresponding
dance motion. The term “FUNC” indicates Japanese functional words that defy easy translation. NPMI values are
indicated by visual cues: negative values are indicated by a minus sign in an orange box, positive values by a plus
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Table 2: Lyrics-to-dance motion retrieval comparison.

Method MRR t 1/MRR |
Random 0.00113 884
Contrastive learning 0.00151 663
Proposed method (W2D) 0.01905 53
Proposed method (S2D) 0.01837 54

uate our lyrics-to-dance motion retrieval method
we devised a baseline using contrastive learning
techniques adapted from text-to-motion retrieval
studies (Yu et al., 2024; Horie et al., 2023; Petro-
vich et al., 2023; Tevet et al., 2022). Additionally,
we included a basic random selection method that
randomly selects dance motions from the test set.
For the contrastive learning method, sentence vec-
tors from a bar, generated by pre-trained Sentence-
BERT, were first averaged into a 384-dimensional
vector and then compressed to a 256-dimensional
vector using an MLP. Dance motion feature vectors
from our pre-trained motion encoder were similarly
processed into a sequence of 256-dimensional vec-
tors by an MLP. Those vectors were then averaged
into a single 256-dimensional vector via mean pool-
ing. We fixed the parameters for Sentence-BERT
and the motion encoder, focusing training on the
MLP parameters using a contrastive loss function
to distinguish between matching and non-matching
pairs. Training employed the AdamW optimizer
with a mini-batch size of 16 over 200 epochs, with
early stopping triggered after 10 epochs without

improvement in development loss.

The experimental results presented in Table 2
show that while the contrastive learning method
slightly outperforms the random method, both of
our proposed methods achieve improvements, with
Mean Reciprocal Ranks (MRRs) of 0.019 for W2D
and 0.018 for S2D. This performance indicates that
for a total of 8,611 bars, W2D ranks the correct
dance motions within the top 53 positions on av-
erage, while S2D ranks them within the top 54
positions. A statistical t-test between W2D and
S2D results yields a p-value of 0.480, indicating
no significant difference between the two methods.
These results support our hypothesis that while not
all lyrics and dance motions share inherent relation-
ships, there are meaningful relationships in certain
instances.

6 Conclusion and Future Work

This paper introduces a novel method for quan-
tifying the relationship between lyrics and dance
motions that uses co-occurrence frequency. Our
method effectively detects where lyrics correlate
with dance motions and was validated by identi-
fying meaningful relationships, such as the asso-
ciation between “love” and heart-shaped motions,
and outperforming a previous method in a lyrics-
to-dance motion retrieval task.

The success of this method not only impacts
fields such as lyrics information processing, dance
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information processing, music information re-
trieval, and computer vision but also opens promis-
ing avenues for interdisciplinary studies and en-
hances the integration of text content into choreo-
graphic design. Future work will aim to integrate
our method into existing audio-to-dance motion re-
trieval methods to improve their accuracy in match-
ing dance motions with lyrics.

7 Limitations

First, the dataset we used to evaluate our method’s
performance contained predominantly Japanese
songs and thus may not represent the global musi-
cal landscape. Although our approach is adaptable,
its generalizability needs to be validated with dif-
ferent linguistic inputs in the future. The dance
motions in our dataset were mainly in the style
of Japanese popular music and lacked the diver-
sity of dance styles such as breakdance or street
dance. Nonetheless, our method can theoretically
be applied to other styles.

Second, while our method successfully identi-
fies many significant lyric-dance associations, not
all relationships are easily interpretable. This lim-
itation highlights the challenges of using purely
data-driven approaches without additional contex-
tual or cultural insights. Additionally, due to com-
putational constraints, we used the multilingual
Sentence-BERT for lyric analysis, forgoing more
advanced large-scale language models that might
enhance our method’s performance. Our study
paved the way for future research using such com-
putationally intensive models.
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A Implementation Details

The training of the dance motion encoder and de-
coder was implemented using PyTorch? and con-
ducted on an NVIDIA V100 GPU. The total num-
ber of trainable parameters for the dance motion
encoder-decoder is 5,858,221. For clustering, we
employed the k-means algorithm implemented in
scikit-learn®, and statistical significance testing was
performed using the t-test function from scipy’.
Due to computational resource constraints, all re-
sults presented in this paper are based on a single
run of the experiments.

B Human Skeletal Model and Affective
Features

The left side of Figure 4 illustrates the human
skeletal model with 53 joints, while the right side

3ht’cps: //pytorch.org
4ht’cps: //scikit-learn.org/stable/
Shttps://scipy.org
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Figure 4: Detailed specifications of human skeletal model and affective features.

Table 3: Retrieval performance with skeletal and affective feature vectors. The codebook size in the table is
displayed as a pair of values, with the first representing the codebook size for lyrics and the second representing the

codebook size for motions.

Retrieval strategy Feature vector Codebook size MRR 1 1/MRR |
Word-to-Dance Both feature vectors 6000, 7000 0.01905 53
motion (W2D) Skelet.al feature vectors 6000, 5000 0.01641 61
Affective feature vectors 6000, 5000 0.01757 57
Sentence-to-Dance Both feature vectors 3500, 7000 0.01837 54
motion (S2D) Skelet.al feature vectors 3000, 6500 0.01547 65
Affective feature vectors 5000, 4500 0.01475 68

displays 40 affective features designed to express
emotional states through body language. These
features include volume (V') calculated from the
distances between the extremal joint coordinates,
length (L) measured across ten different joint pairs,
area (A) derived from five types of triangles formed
by triplets of joints, body joint curvature (C) calcu-
lated from 14 different measurements, and finger
joint curvature (F') represented by ten different cal-
culations that together quantify expressive body
dynamics.

C Effectiveness of Combining Skeletal
and Affective Feature Vectors

In this section, we investigate the contribution of
skeletal feature vectors and affective feature vectors
to the performance of our dance motion encoder
through an ablation test.

For this experiment, we retrained the dance mo-
tion encoder using only skeletal feature vectors
and, separately, using only affective feature vec-
tors. The training parameters and configurations
were kept identical to those used in the proposed
method. Additionally, the optimal codebook sizes

were determined separately for the W2D and S2D
methods.

The results are shown in Table 3. The table
shows that the model using both skeletal and af-
fective feature vectors achieves better retrieval per-
formance than models using either type of feature
vector alone. This improvement is statistically sig-
nificant, with p-values below 0.05 as determined by
t-tests. These results suggest that the combination
of skeletal and affective feature vectors effectively
contributes to the lyrics-to-dance motion retrieval
task.

D Additional Examples of Lyric-Dance
Relationships

Figures 5, 6, 7, and 8 present additional examples
of the relationships between lyrics and dance mo-
tions. Figures 5 and 6 present the relationships
between lyric words and dance motions, while Fig-
ures 7 and 8 present the relationships between en-
tire lyric sentences and dance motions. Table 4 lists
the song titles and lyricists presented in Figures 3,
5,6,7,and 8.

In Figure 5, several relationships can be ob-
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Figure 5: Examples of lyric and dance motion relationships with positive NPMI (Part 1/4).
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Figure 6: Examples of lyric and dance motion relationships with positive NPMI (Part 2/4).
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Figure 7: Examples of lyric and dance motion relationships with positive NPMI (Part 3/4).
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Figure 8: Examples of lyric and dance motion relationships with positive NPMI (Part 4/4).

7915



served. Dance motions 3 and 4 correspond to num-
bers such as “2” and “3,” where dancers use their
fingers to count. Dance motions 5 and 6 show
that words related to photography, such as “pho-
tography” and “toy camera,’ are associated with
framing gestures using fingers. Dance motions
7 and 8 reveal that time-related words like “sec-
onds” and “clock” correspond to motions where
the arms mimic the hands of a clock. Dance mo-
tions 9 and 10 demonstrate that animal sounds such
as “Waoooon!”” and “Roar!” correspond to hand
gestures resembling animal claws.

In Figure 6, when words such as “heart” or
“chest” are sung, the corresponding dance motions
11 and 12 involve placing a hand on the chest.
Dance motions 13 and 14 correspond to the word
“promise,” where the dancer raises their pinky fin-
ger, a gesture that in some cultures symbolizes a
promise. Dance motions 15 and 16 correspond to
the word “you,” where the dancer extends an arm
forward, pointing toward the audience. Dance mo-
tions 17 and 18 correspond to the word “money,”
where the dancer’s finger form a circular shape rep-
resenting a coin. These examples demonstrate how
specific words in lyrics influence corresponding
dance motions.

Figure 7 illustrates examples of the relationship
between lyric sentences and dance motions. Dance
motions 19 and 20 correspond to sentences related
to “new world,” where the dancer raises an index
finger toward the sky, symbolizing the gesture of
pointing to a new world. Dance motions 21 and
22 align with sentences expressing “I meet you,”
where the dancer uses an index finger to point to-
ward “you.” Dance motions 23 and 24 correspond
to sentences about “white snow,” with the dancer
making a motion that mimics catching falling snow
with their hands. Dance motions 25 and 26 corre-
spond to sentences about “selfies,” where the dancer
makes a gesture of holding a camera while showing
a peace sign, a common pose for taking photos in
some cultures.

Figure 8 also presents examples of the relation-
ship between lyric sentences and dance motions.
Dance motions 27 and 28 correspond to negations
using “not,” where the dancer crosses their arms
to form an “X.,” a gesture that signifies negation in
some cultures. Dance motions 29 and 30 relate to
sentences about losing something, with the dancer
pointing to the ground with their index finger as if
indicating a lost object. Dance motions 31 and 32
correspond to sentences containing the phrase “/

Table 4: Song titles and lyricists referenced in Figures 3,
5,6, 7, and 8.

Ilz::g(c; Song title / Lyricist
IANTVIA )T/ FaARVEN
5587 1 / MARIA

HEBAER—1 /B0 - H L%
& X H / Omoi

¥ 27 /wotaku

GIFT / L3P

45t/ ngIEA

Love Timer / emon (Tes.)

WDV EXRT

52V YNYNR—=I NI KRABR
FMEXFUUEDZE - F &5/ hHHEP
TV R IMNLZ,

Who? / Azari

EREZED &N h—&
AEXRZRM | FaRx VBN

T Z1E / DECO*27

FIAXZY /yura

Z A8 / DECO*27

Brand New World / = H A %5

CESEREGSISe® o g e W~

20 Melody Line / SmileR

21 UNR—ZA2=ZN—A [/ FaRxRVEA
22 Stocking Filler / nuru

23 Stocking Filler / nuru

24 Snow Fairy Story / 40mP

25 =)V E VA DPWNWY EXRT

26 DALCER | WKL

27 FYv hTARALD | HEHO

28 E SV / DECO*27

29 Fantastic Night / /XX 5 AP

30 NY a3¥ 5 4 /40mP

31 CAZTTuwo<LLuv/ &3

32 B U *» £ H /DECO*27

33 HEROX VA FARVEAN

34 F—Xr—%2 74 ¥ A/ TOKOTOKO

love,” where the dancer touches both cheeks with
their hands in a cute expression. Dance motions 33
and 34 align with sentences related to love, where
the dancer forms a heart shape with their hands.
These examples demonstrate that our proposed
method can discover various lyric-dance motion
relationships in a data-driven manner.
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