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Abstract

Interaction trajectories between agents and en-
vironments have proven effective in tuning
LLMs into task-specific agents. However, con-
structing these trajectories, especially success-
ful trajectories, is often computationally and
time intensive due to the relatively low success
rates of even the most advanced LLMs, such
as GPT-4 and Claude. Additionally, common
training paradigms like supervised fine-tuning
(SFT) and reinforcement learning (RL) not only
require large volumes of data but also have spe-
cific demands regarding the trajectories used.
For instance, existing SFT approaches typically
utilize only positive examples, limiting their ef-
ficiency in low-resource scenarios. To address
this, we introduce Negative-Aware Training
(NAT), a straightforward yet effective method
that leverages both successful and failed trajec-
tories for fine-tuning, maximizing the utility of
limited resources. Experimental results demon-
strate that NAT consistently surpasses existing
methods, including SFT, DPO, and PPO, across
various tasks!.

1 Introduction

An agent is a model that can interact with envi-
ronments, make decisions, and achieve predefined
goals (Wooldridge, 1999). Recent work has built
powerful LLMs such as GPT-4 (OpenAl, 2023),
prompting them as the core of an agent system
to process information and make decisions with
few-shot examples (Gravitas, 2024; Yoheinakajima,
2024). However, these agents depend on closed-
source, paid APIs, raising concerns about cost and
latency, and face limitations as LLMs are not specif-
ically designed for tasks like action generation or
tool use, with few-shot prompting offering only
limited learning support (Chen et al., 2023; Wang
et al., 2024).

!Code and data are available at: https://github.com/
Reason-Wang/NAT

Tuning LLMs on interaction trajectories between
agents and environments has proven effective in
transforming them into task-specific agents (Chen
et al., 2023; Zeng et al., 2023; Yin et al., 2023;
Qiao et al., 2024; Wang et al., 2024). However,
building these trajectories, especially successful
ones, is resource-intensive and time-consuming.
Even advanced models like GPT-4 (OpenAl, 2023)
and Claude (Anthropic, 2023), struggle with tasks
requiring complex planning, reasoning, or tool use,
resulting in low success rates. This scarcity of
successful trajectories turns agent-tuning into a low-
resource scenario, where the lack of high-quality
data becomes a significant bottleneck.

Traditional approaches to fine-tuning, such as
supervised fine-tuning (SFT) and reinforcement
learning (RL), heavily depend on a large volume of
successful trajectories to be effective. Supervised
fine-tuning, in particular, tends to focus on posi-
tive examples—those where the task is completed
successfully—discarding failed trajectories, or neg-
ative examples, as irrelevant or uninformative. Re-
inforcement learning-based methods like Proximal
Policy Optimization (PPO) attempt to address this
issue by exploring a broader range of trajectories,
but they still face challenges when dealing with
complex, low-success-rate tasks (Trung et al., 2024;
Song et al., 2024c). Our preliminary observations
show that over 80% of data generated during typ-
ical interaction-based data collection is discarded
due to failure, leading to resource wastage and un-
dertrained agents despite multiple rounds of data
generation.

To address these inefficiencies, we propose a
novel approach to fine-tuning agents that lever-
ages both successful and failed trajectories more
effectively. Our method, called Negative-Aware
Training (NAT), builds on the insight that nega-
tive examples contain valuable information that
can complement positive examples when used ap-
propriately. Rather than discarding negative data,
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Figure 1: An overview of previous methods and our NAT paradigm. (a) Data collection, where interactions between
LLMs and environments (tools) are collected. (b) Data processing, where previous methods simply filter out
negative examples, while we reformat trajectories by adding prompts to task queries based on whether they are
positive or negative. (c) An example of reformated positive and negative trajectories. We omit the system prompts

here.

NAT uses both positive and negative trajectories
during fine-tuning, providing the model with richer
information about what works and what doesn’t in
a given task. Through simple but effective modifi-
cations, NAT enables LLM-based agents to better
generalize from limited resources by learning from
a more diverse range of examples.

Our experimental results demonstrate that NAT
significantly outperforms traditional methods, in-
cluding SFT, DPO, and PPO, across a range of
tasks. NAT is particularly effective in low-resource
scenarios, where it delivers substantial improve-
ments in mathematical reasoning and multi-hop
question answering tasks, with gains of 8.74 points
and 6.05 points, respectively, over traditional fine-
tuning approaches. These results confirm our hy-
pothesis that failed trajectories are valuable for
agent tuning, and show that our approach, NAT,
is an effective and efficient way of utilizing failed
trajectories.

Our contributions can be summarized as follows:

* We demonstrate the value of negative trajecto-
ries in low-resource scenarios and introduce
a negative-aware training paradigm, allowing
LLM-based trained agents to effectively learn
from both positive and negative examples.

* We validate the broad applicability and effec-
tiveness of learning from negative examples,

and show that NAT enables models to acquire
information akin to positive examples across
various tasks and prompting strategies.

2 Related Work
2.1 Fine-tuning LLMs as Agents

Previous work on language agents has taken a pow-
erful LLM as the core of the agent system without
fine-tuning (Sumers et al., 2023; Wu et al., 2023;
Ruan et al., 2023; Zhao et al., 2023; Wang et al.,
2024). However, LLMs are optimized to generate
natural language. To make them capable of us-
ing tools and making decisions, current work typi-
cally collects trajectories generated by GPT-3.5/4,
then uses these trajectories to fine-tune a smaller
LLM (Chen et al., 2024; Zhang et al., 2024; Zhou
et al., 2024). Zeng et al. (2023) collect trajecto-
ries generated by GPT-4 on AgentBench (Song
et al., 2024b) tasks, and only keep samples that
receive the best rewards. Chen et al. (2023) collect
trajectories on question answering tasks and fine-
tune models with samples that correctly answer
the question. Liu et al. (2024) propose a memory-
enhanced agent framework and a complex filtering
mechanism to collect fine-tuning datasets. Qiao
et al. (2024) divide an agent into sub-agents with
different functions. They then synthesize trajecto-
ries for the respective agents. However, they still
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only use samples with the best rewards. A simple
ablation study was conducted by Zeng et al. (2023).
However, none of this work has investigated the ef-
fectiveness of negative samples in detail. Although
not directly comparable, in Table 1, we provide
the results of these methods and ours on several
benchmarks for reference.

2.2 Learning from Negative Samples

Learning from negative results can be divided into
prompt-based and training-based methods. Prompt-
based methods enable LLLMs to summarize expe-
riences from previous mistakes without updating
parameters (Madaan et al., 2023; Shinn et al., 2023;
Zhao et al., 2023). The success of these methods re-
lies on the quality of the evaluator used to analyze
the trajectories. The performance of training-based
methods is less predictable since model weights are
updated, and less work has been done on this. Li
et al. (2023) propose a two-stage training paradigm
to capture knowledge from negative samples. How-
ever, their method focuses on Chain-of-Thought
prompts and is complex since multiple models are
fine-tuned. Liu et al. (2023a) propose CoH that
combines positive and negative responses together.
However, this needs pair-wise responses for a sam-
ple, often unavailable in low-resource scenarios
like agent-tuning. CodeRanker (Inala et al., 2022)
is a fault-aware model tained to predict the rich
attributes from executing programs. It achieves su-
perior performance in Coding tasks compared to
other traditional neural ranker. Some work uses
fine-grained optimization method for agent leran-
ing. For example, IPR (Xiong et al., 2024) opti-
mizes the agent with reward in each step using Di-
rect Preference Optimization, enabling better agent
learning and yielding superior agent capabilities.
Contemporaneous to our work, AgentBank
(Song et al., 2024a) proposes the largest agent tra-
jectories tuning data, comprising 16 tasks and con-
vering diverse agent skills. To mitigate the failure
problem during the data collection, it proposes a
pipeline to mitigate the difficulty bias in trajectories.
Tong et al. (2024) adds different prefixes to posi-
tive and negative reasoning rationales during fine-
tuning. Their work mainly focuses on Chain-of-
Thought (Wei et al., 2022) reasoning tasks, while
our work focuses on multi-round agent prompt-
ing that integrates calling tools. Besides, we did
more analysis on data quantity, quality, working
mechanism, and possible applications. Some other
works train agents with exploration trajectories and

Model GSMSK SVAMP HotpotQA
AutoAct-7B - - 29.2
AgentLM-7B 24.6 - 223
Lumos-O-7B 50.5 65.5 24.9
Lumos-I-7B 47.1 63.6 29.4
NAT-7B 49.1 64.4 29.8
CodeLlama-13B 36.1 60.0 -
AgentLM-13B 324 - 29.6
NAT-13B 53.8 70.6 29.6

Table 1: Comparison with methods from other papers.
We report the best results reported in the corresponding
papers.

reinforcement learning (Yuan et al., 2024; Song
et al., 2024b). Our work mainly focuses on the
SFT stage, which can be integrated seamlessly into
these works yet offers a better initialization.

3 Negative-Aware Training (NAT)

In this section, we introduce our agent framework
and the full pipeline of Negative-Aware Training
(NAT). We outline the process from task comple-
tion and data collection to the integration of nega-
tive samples, which enhances learning efficiency
in low-resource settings by leveraging both pos-
itive and negative data. Following this, we de-
scribe the fine-tuning process and inference phase.
Figure 1 contrasts previous approaches with our
NAT paradigm, demonstrating how NAT leads to
more effective agent tuning with constrained data
resources.

3.1 Agent Framework

As shown in Figure 1, in our agent framework,
the process of task completion is delineated as fol-
lows. First, the LLM is provided with a system
prompt that outlines (a) the specific task to be ad-
dressed (for instance, “solve a mathematical
problem”), (b) the tools that are permissible for
task execution, and (c) the expected action space
and output format (for example, finish/N] signifies
that N is the final answer). We do not provide sys-
tem prompts in Figure 1, for simplicity. Second, a
query instance is introduced. We prompt the model
to answer the query in the ReAct (Yao et al., 2023)
format, which consists of reasoning texts (referred
to as “thoughts”) and “actions”. Finally, during the
interaction phase, the system executes the LLM-
generated actions using the predefined tools, re-
turns the resulting observations back to the LLM,
and prompts for subsequent actions until the finish
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Dataset # Times 1 2 3
GSMSK [ Cemal dan 417 1%
StrategyQA ?nlsl?:rirtig/rftsall 6%3?‘/3; ii(())%g 14057-2

Table 2: Number and incremental ratio of positive sam-
ples from three seed datasets after generation for 1, 2,
and 3 times. Incremental ratio is calculated as the per-
centage of newly generated samples to the total samples.
The number of newly generated positive samples de-
creases as the generation count increases.

action of the task is generated, or the interaction
rounds exceed a pre-defined threshold. Naturally,
the task-solving process yields interaction trajec-
tories between the LLM and the environment (i.e.,
tools in our framework).

Tool Deployment For math tasks, we design a
calculator implemented by SymPy (Meurer et al.,
2017), which takes a math expression as input and
outputs the result. For the two question-answering
tasks, we deploy a search tool with the Serper API.
It takes a search query as input and returns the
Google search results. To get more relevant snip-
pets, we further deploy a search results re-ranker us-
ing MPNet (Song et al., 2020) and DPR (Karpukhin
et al., 2020).

3.2 Insights from Agent Tuning Data
Collection

For each task, we obtain the initial questions and
corresponding ground truth answers as seed data.
We then use GPT-3.5 to generate trajectories three
times,> each with different temperatures (0.2, 0.5,
and 0.7). This allows us to gather a diverse range
of positive and negative samples. By comparing
predicted answers and ground truth answers, we
can label each trajectory as positive or negative.
Table 2 presents the data collection results for
three key tasks used in this study, which will be in-
troduced in detail later. From the table, we observe
that the agent framework captures a substantial
portion of positive samples during the first round.
However, the success rate for previously failed
instances steadily decreases with each additional

*https://serper.dev/

3We use GPT-3.5-1106 version. Although GPT-4 has the
potential to produce even higher quality data, we opted for
GPT-3.5 due to cost considerations.

round of data collection. For example, in the Hot-
potQA dataset, only 8% and 4% of new positive
trajectories were generated in the second and third
rounds, respectively. Based on this trend, we esti-
mate that subsequent rounds would yield 2%, 1%,
and so on, resulting in a final success rate likely not
exceeding 60%, even with an infinite budget.

From this data collection process, we made two
key observations: (1) Relying solely on positive tra-
jectories leads to inefficiency and resource wastage
as the data collection progresses. (2) For a large
proportion of data instances, it is challenging to
collect pairwise (positive and negative) samples,
which complicates the application of RL-based
methods. Our experiments in Section 4 and Section
5 further validate these findings.

3.3 Leveraging Negative Samples for Agent
Tuning

To address data inefficiency, we propose that nega-
tive samples can be valuable in low-resource sce-
narios. To reduce the dependency on pairwise data
samples, we introduce supervised fine-tuning with
negative-aware reformatting, which explicitly in-
forms the model of incorrect responses, as outlined
below.

Negative-Aware Reformatting Differentiating
positive samples from negative samples during the
agent tuning process aids in teaching the model to
discern between successful and unsuccessful out-
comes. We append a string suffix to tell the model
whether the training sample is positive or nega-
tive. For positive samples, we append “Please
generate a solution that #**correctly#**
answers the question.” For negative samples,
we append “Please generate a solution that
**xincorrectly** answers the question.”
Unless explicitly stated, we use this setting in ex-
periments. We also experimented with other refor-
matting strategies.*

Fine-tuning and Inference We use the reformat-
ted trajectories to fine-tune LLMSs. The loss is com-
puted only on the part of the text generated by the
LLM, which is similar to fine-tuning a chat model
(Zheng et al., 2023). During inference, we prompt
the fine-tuned agent using the prompt for positive
examples only.

*The actual prompts that we use in our experiments are
slightly more complex than those provided here.
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Mothod Employ = Require  Extra — oovrep AGDiv SVAMP MultiArith  Average
Negative Paired Compute
SFT X 2949  58.13 4450 71.81 50.98
CoH (Liu et al., 2023a) X 30.10  56.65  41.40 72.32 50.12
PPO (Trung et al., 2024) X 2881 5838  46.60 70.64 5111
DPO (Song et al., 2024c) X X 29.80 5655  42.90 69.30 49.64
NUT 3412 5971 49.90 75.68 54.85
NAT (ours) 3517 60.01  50.60 77.68 55.87

Table 3: Overall results for math tasks with a comparison between baseline models and ours from three perspectives:
(1) Negative — the method can employ negative samples for agent tuning; (2) Paired — the method require paired
positive and negative samples for agent tuning; and (3) Compute — the method need extra computational resources
(e.g., an extra reward is needed for PPO). The best results are bolded.

HotpotQA

Method StrategyQA
EM F1

SFT 27.80 36.45 55.40
CoH 28.60 39.53 -

PPO 28.20 36.47 60.00
DPO 26.40 34.83 -

NUT 28.80 40.59 62.40
NAT 29.60 42.50 65.80

Table 4: Overall results on question answering tasks.
For HotpotQA, we measure the performance using exact
match and f1 score. For StrategyQA, we use accuracy.
Best results are bolded.

4 NAT for Math Reasoning

4.1 Experimental Setup

Datasets We conduct experiments on mathemati-
cal reasoning tasks. We use GSM8k (Cobbe et al.,
2021) as seed data to collect trajectories and test
the performance on four math testing sets, includ-
ing GSM8k, ASDiv (Miao et al., 2020), SVAMP
(Patel et al., 2021), and MultiArith (Roy and Roth,
2015). The details of these datasets are introduced
in Appendix B.

Baselines We compare NAT with finetuning or
exploration-based baselines. SFT directly fine-
tunes the model with positive trajectories. This
is the method that previous work (Zeng et al., 2023;
Chen et al., 2023; Qiao et al., 2024; Liu et al.,
2024) has employed. We also implemented CoH,
DPO, PPO and NUT for comparison. In particular,
CoH concatenate pairwise positive and negative re-
sponses to form one example to finetune the model.
PPO and DPO explore solution trajectories and op-
timize the model based on trajectory rewards. NUT
(negative-unaware training) finetunes the model di-

rectly with positive and negative trajectories. For
finetuning-based methods (SFT, CoH, NUT and
NAT), responses are included for training. While
for exploration-based methods (PPO and DPO),
only queries and answers are used. Except SFT,
other methods can employed negative examples
during training. Among them, CoH and DPO re-
quire pairwise data to finetune the model. DPO
and PPO require extra computation, through infer-
ence during exploration and reinforcement learning
optimization.

Fine-tuning Setup We conduct experiments on
LLaMA-2-Chat 7B models (Touvron et al., 2023).
All the models are fine-tuned for 3 epochs with a
batch size of 64. We use a cosine scheduler with
3% of total steps as the warm-up. The maximum
learning rate is set to 2 x 1075, We train the model
with 4x A100 GPUs with DeepSpeed ZeRO 3 stage
(Rajbhandari et al., 2019).

4.2 Results

Table 3 presents the overall results of the math
tasks, which demonstrates that: (1) NUT shows in-
corporating negative examples can improve model
performance. (2) Models with negative-aware train-
ing (NAT) not only outperform the corresponding
model trained only on positive examples (SFT),
but also beat the same model trained by directly
incorporating negative examples (NUT); and (3)
Methods that integrate exploration (PPO and DPO)
only show a small improvement or even decrease
performance compared to directly finetuning using
negative examples (NUT and NAT).

It is worth noting that previous work (Zeng et al.,
2023) has shown that including negative examples
harms model performance. We believe this does
not contradict our findings: as we discuss in Sec-
tions 6.1 and 6.2, performance is determined by
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both the quantity and quality of the negative data.

5 NAT for Question Answering

5.1 Experimental Setup

Datasets We collect trajectories and test the per-
formance on HotpotQA (Yang et al., 2018), a multi-
hop question answering dataset, and StrategyQA, a
binary question answering dataset where answers
are yes or no (Geva et al., 2021), respectively. See
details in Appendix B.

Baselines and Finetuning We compare NAT
with the same baselines shown in Section 4.1 and
take the same hyper-parameters for finetuning.

5.2 Results

Table 4 shows the results on HotpotQA and Strate-
gyQA, which demonstrate similar results to math
tasks. Directly incorporating negative samples
(NUT) improves the performance in low-resource
agent-tuning. NAT outperforms both finetuning
and exploration-based methods on exact match
(EM) and f1 scores. Again, PPO and DPO show
their inability in QA tasks with very limited explo-
ration resources, highlighting the value and effec-
tiveness of NAT.

6 Analysis

Tables 3 and 4 showcase the capability of LLMs to
learn from negative examples and the superiority of
NAT compared to other methods in low-resource
scenarios. In this section, we delve into various
factors that could influence the effectiveness of
NAT. Specifically, we seek to address the following
questions:

* Section 6.1: How much negative samples
should be used in NAT?

* Section 6.2: Are all negative samples benefi-
cial?

e Section 6.3: What does the model learn from
negative samples?

* Section 6.4: Can NAT be adapted to handle
fine-grained labels of negative samples?

Since only the math task contains enough data for
our experiments, the analysis is done on the math
task.

@-- w/o Negative —&— NAT I NAT Improvements

70
5000 Positives
2000 Positives

Average Accuracy
&
v

60 ‘/

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

# Negatives

Figure 2: Performance of LLaMA-2-Chat with 2,000
(green) and 5,000 (purple) positive samples and a vari-
able number of negative samples. The number of nega-
tive samples is changed from 0 to 12,000. The shaded
area represents improvements using NAT.
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Figure 3: Performance for a fixed number of negative
samples (10k) and decreasing number of positive sam-
ples. A smaller number of positive samples means a
lower-resource scenario. The bars show performance
of NAT and SFT without negative samples. The line
shows the improvements using NAT compared to SFT.

6.1 Impact of Training Sample Quantity

Our initial analysis focuses on the influence of neg-
ative sample quantity. We maintain a constant num-
ber of positive samples at 2k and 5k, while ad-
justing the negative samples from O to 12k. The
results, depicted in Figure 2, illustrate the relation-
ship between the quantity of negative data and the
average performance on math tasks. We observe
a performance enhancement with an increase in
negative data, which plateaus when the volume of
negative samples is about 11k in both cases. Due to
data availability, we did not experiment with more
negatives.

Based on insights from Table 3 and Figure 2, we
think that the ideal ratio of negative samples is not
fixed. Instead, it is influenced by the number of
positive samples, as the improvements are larger
for fewer positive samples.
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Data GSMSK ASDiv SVAMP MArith Avg.

2K positive samples

Vanilla 35.63 60.55 47.40 80.03  55.90
NAT-bad 32.98 58.72 47.60 71.64 5274
NAT-good  46.93 66.93 60.80 83.89 64.64
5K positive samples

Vanilla 45.87 68.12 58.80 83.89 64.17
NAT-bad 38.59 62.28 52.50 78.52  57.97
NAT-good  49.05 68.66 64.40 87.58 67.42

Table 5: LLaMA-2 7B model results trained with differ-
ent quality negative data. We use 10k negative samples
and experiment with 2k or 5k positive samples.

We hypothesize that the marginal improvement
from negative samples becomes more significant
as the availability of positive samples decreases in
low-resource settings. To validate this, we maintain
a constant number of negative samples while vary-
ing the quantity of positive samples from 5,000 to
500. As depicted in Figure 3, there is an increased
benefit from the negative samples as the count of
positive samples decreases. This showcases the
value of NAT for low-resource tasks where there is
limited positive data. For the second point, we in-
vestigate the effects of negative data quality in Sec-
tion 6.2.

6.2 Impact of Data Quality

We sourced negative data from various models to
investigate the impact of negative data quality in
NAT. Specifically, we consider the data from GPT-
3.5 to be high-quality examples. In contrast, we
generated 10k negative examples using a fine-tuned
LLaMA-2-7B (Touvron et al., 2023) model to rep-
resent low-quality data. For experiments, we paired
2k positive examples with 10k negative examples.
The outcomes presented in Table 5 underscore the
critical role of data quality in NAT. In the 2k posi-
tive sample setting, the improvement is —3.16 for
low quality compared to +8.74 for high-quality
negative examples. Similarly, in the 5k positive
sample setting, the improvements are —6.20 and
+3.25, respectively.

6.3 What does the Model Learn with NAT?

Learning Reasoning while Preventing Errors
The learnable parts of trajectories are thoughts and
actions, where thoughts involve reasoning on the
current situation and planning for what to do next.
Actions involve selecting which tool to call and the
input to that tool. We analyze the trajectories of

the GSMS8K (Cobbe et al., 2021) test set, generated
by LLaMA-2-7B trained with positive examples
(SFT), NUT, and NAT respectively. Table 6 shows
the accuracy, action error (the percentage of incor-
rectly calling a tool), and average turns (the average
number of steps needed to solve a question). Incor-
porating negative examples introduces more action
errors, resulting in fine-tuned models with more
errors compared to SFT. However, after incorporat-
ing negative examples, both the accuracy of NUT
and NAT increase. This indicates that negative ex-
amples mainly work by teaching models with better
“thoughts” (i.e. reasoning and planning). Compared
to NUT, NAT achieves significantly fewer action
errors and, therefore, better accuracy. This demon-
strates that our method works by providing a better
trade-off between better “thoughts” and more ac-
tion errors.

Negative Samples Play a Similar Role as Positive
Samples To further explore whether models learn
from negative trajectories in the same manner as
they learn from positive trajectories, we randomly
sample 100 successful trajectories from the train-
ing set (as a dev set) and measure the perplexity
of models trained with 500 positive examples (not
overlapping with the dev set) and varying numbers
of negative examples. Figure 4 shows the change
in perplexity as the number of negative data in-
creases. The perplexity decreases as more negative
data is included, which indicates the model learns
to fit successful trajectories with knowledge from
failed trajectories. However, this curve seems to
be horizontal at the end, and there is still a large
gap between the curve with 2,500 positives, which
shows that some properties or knowledge from suc-
cessful trajectories can never be learned from failed
trajectories.

6.4 Scale up NAT with Fine-grained Labels

Different negative trajectories contain different de-
grees of errors. Intuitively, this information also
helps models to learn. Therefore, we further pro-
pose fine-grained NAT, which divides negative tra-
jectories into different groups based on their quality.
During training, different groups will be reformat-
ted with different prompts. For HotpotQA, in addi-
tion to the EM score, each trajectory has an f1 score,
measuring the overlap between the predicted and
gold answers. We take this as a fine-grained mea-
surement of data quality, where a trajectory with
a higher f1 score has better quality. In this way,
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Figure 4: Perplexity for the model trained with 500 pos-
itive samples and differing numbers of negative samples.
The three dashed lines are perplexity computed on mod-
els tuned with differing numbers of positive trajectories
(without negatives).

Strategy Acc Action Error #Avg. Turns
SFT 35.63 3.58% 3.12
NUT 44.43 10.47% 3.92
NAT 46.93 7.90% 3.71

Table 6: Accuracy, action error rate, and number of av-
erage turns for models with different training strategies.
For SFT, the action error in training data is 4.01%. For
NUT and NAT, itis 15.33%.

we can differentiate trajectories based on quality
by assigning different prompts. For example, the
trajectory is prepended “almost wrong” if its f1
score is smaller than 0.1, and another trajectory is
“mostly correct” with an f1 score of 0.9. We de-
note this NAT with different prompting strategies
as NAT-k, where k represents how many classes
we divide the negative data into based on quality.

Fine-grained NAT learns more from negative
samples For NAT-2, we take trajectories with f1
scores equal to 1.0 as positive and assign different
prompts for trajectories with f1 scores less than 0.4
and with f1 scores greater than 0.4 less than 1.0.
It can be seen from Figure 5 that both NAT-1 and
NAT-2 outperforms vanilla SFT. NAT-2 shows a
better scaling capability, consistently improves the
performance when using more negative examples,
while NAT-1 starts to drop with 1,000 negative ex-
amples. NAT-2 shows the best performance among
all settings, show its effectiveness and potential for
large volume of negative data.

7 Adapting NAT for Chain-of-Thought
(CoT)

So far, we have conducted all experiments on agent
scenarios with the ReAct (Yao et al., 2023) prompt-

% EM H F1 NUT = NAT-1 = NAT-2
50

40

Score

30

Positive only #500 Negative #1000 Negative

Figure 5: Performance of LLaMA-2-7B on HotpotQA
with 500 positive examples and varying numbers of
negative examples.

Strategy GSMS8K ASDiv  SVAMP MArith Avg
Vanilla 29.04 55.26 45.60 80.87  52.69
NUT 33.50 61.69 52.20 86.41 5845
NAT 36.24 61.10 53.90 86.24  59.37

Table 7: LLaMA-2-7B model CoT results fine-tuned
using 2k positive samples and 1.6k negative samples.

ing strategy. In this section, we conduct prelimi-
nary experiments to explore whether NAT works
well with Chain-of-Thought (CoT) prompting (Wei
et al., 2022). The key difference is that the agent
takes an action and receives an observation from
the environment iteratively, while CoT generates
reasoning steps without taking actions or receiving
observations.

We use GPT-3.5-0125 to generate CoT reasoning
steps with three in-context learning (Brown et al.,
2020) examples on the GSM8k dataset. We then
train the model with NAT. Table 7 shows the re-
sults with CoT prompting. NAT achieves a 6.68%
improvement compared to no negative data training
(SFT). NAT is still about 1% higher compared to
directly including negative samples (NUT). The
results demonstrate that NAT is also applicable
and effective for CoT training, showing its broad
applicability.

8 Conclusion

We introduced NAT (Negative-Aware Training),
a simple yet effective approach that incorporates
negative trajectories into the agent fine-tuning pro-
cess. Our experiments on mathematical reasoning
and question-answering tasks highlight the supe-
rior performance of NAT over existing methods
for agent tuning, particularly in low-resource sce-
narios. We also conducted extensive analyses to
uncover the factors contributing to the success of
NAT, providing insights into its effectiveness.
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Limitations

Despite the promising results demonstrated in our
experiments, there are several limitations to our
approach. First, like other agent-tuning methods,
our approach relies on the availability of ground
truth labels, which restricts its applicability in sce-
narios where such labels are scarce or unavailable.
Second, while our experiments indicate that high-
quality negative samples contribute significantly to
the success of NAT, we were unable to establish
a clear boundary or metric for distinguishing be-
tween high- and low-quality negative samples. We
leave it a further work. Lastly, due to time and bud-
get constraints, we did not fine-tune or evaluate our
method on more diverse and larger models (e.g.,
GPT-3.5), which may limit the generalizability of
our findings to more powerful models.
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A Example

Figure 6 shows examples trajectories generated by
GPT-3.5. The first turn of each trajectory is the
system prompt. Figure 7 shows example inference
results of models trained with different settings for
the same query.

B Datasets

For mathematical reasoning tasks, we use a dataset
of approximately 7k instances from the GSM8K
training set as initial seed data, and generate three
trajectories with GPT-3.5, as mentioned in Section
3. This process results in a collection of around
9k positive examples and 12k negative examples.
Among the positive examples, S5k are unique, indi-
cating that despite multiple attempts, GPT-3.5 fails
to solve 2k out of the 7k original questions.

For our experiments, we incorporate 5k unique
positive examples from GSMS8K to emulate all
available positive examples having been generated
by GPT-3.5. Additionally, we created a simulated
limited dataset using the 2k positive examples gen-
erated by ChatGPT. In both scenarios, we include
10k negative examples.

We evaluate different models and training strate-
gies on four test datasets: GSM8K (Cobbe et al.,
2021), a high-quality school math word problem
dataset containing 1,319 examples (test set), each
requiring 2—8 steps to solve; ASDiv (Miao et al.,
2020), a math word problem dataset that contains
2,023 examples with diverse language patterns and
problem types. SVAMP (Patel et al., 2021), a chal-
lenge set of math word problems with 1k examples
based on perturbing existing datasets (Miao et al.,
2020; Koncel-Kedziorski et al., 2016). MultiArith
(Roy and Roth, 2015), a multi-step arithmetic prob-
lem dataset with 596 examples.

For question-answering tasks, we collected tra-
jectories based on HotpotQA (Yang et al., 2018)
and StrategyQA (Geva et al., 2021). HotpotQA
is a Wikipedia-based question-answering dataset
where each question requires several steps of rea-
soning with supporting passages. We use 4k exam-
ples from the training set to generate trajectories.
StrategyQA is also a multi-step question-answering
dataset but the reasoning steps are implicit. The
answer to its question is either yes or no. It consists
of 2,780 examples, of which 1k is the training set.

Similar to math tasks, we generate three QA tra-
jectories. As discussed in Section 6, the quality of
negative samples is important for the effectiveness
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Model Setting GSMSK ASDiv SVAMP MultiArith AVG.
SFT 2949 5813 44.50 71.81 50.98
Llama-2-7B-Chat NAT 3517 60.01  50.60 77.68 55.87
SFT 2835  59.66  50.60 75.34 53.49
Llama-2-13B-Chat NAT 4147 6322 6090 84.06 62.41
Llama.3.8B.Instruct SFT 18.12 5279  45.10 54.19 42.55
NAT 3328 6391  58.90 82.72 59.70
SFT 5762 8260  75.90 95.30 77.86
Qwen2.5-3B-Instruct NAT 60.58 8581  79.10 9379  79.82
SFT 29.04 5344  36.70 69.80 4725
Deepseek-LLM-7B-Base  \yy 3647 6253 5040 78.18  56.90
Table 8: Results for different LLMs trained with SFT and NAT.

Setting Il1-Inst. 1I1-Tool 1I1-Cat. I2-Inst. I2-Cat. I3-Inst. AVG.

SFT 3497 37776  45.64 3491 2677 2459  34.13

NAT 36.40 3871 4357 2940 3562  39.89  37.27

Table 9: Results of tool learning for Llama-2-7B-Chat. 11 represents single tool setting, I2 and I3 represent multi-tool
setting. Tools in 12 come from the same collection while in I3 come from different collections.

Positive Negative Average
Correct Incorrect 63.55
Incorrect Correct 63.33
Good Bad 63.91
A B 63.15
Random string 1  Random string 2 64.04

Table 10: Results for models trained on prompts
with and without interpretability. Strings in the Pos-
itive/Negative column represent prompts (prefixes or
suffixes) we use for positive/negative trajectories.

of NAT. For HotpotQA, we filter out trajectories
that do not give an answer within a certain num-
ber of turns or with a zero fl score. Finally, we
obtain 2k unique positive samples and 2k negative
samples. However, we find that 2k examples are
enough for performance to saturate and that adding
more negative samples causes a performance drop.
Therefore, we set the number of HotpotQA positive
examples to 500 in our experiments.

C Selection of Added Prompts

It has variously been shown that prompts are vi-
tal for LLM performance (Brown et al., 2020; Liu
et al., 2023b; Sclar et al., 2024). Here, we explore
the interpretability of added prompts. More specifi-
cally, does the content of the prompt enable LLMs
to learn differently from successful and failed tra-
jectories, or simply differentiate these trajectories?
We propose two sets of prompts. One set is prompts
with interpretability, such as having the model gen-
erate a correct or incorrect trajectory. Another set

is prompts without interpretability. For example,
different letters can be added as prefixes for queries.
Table 10 shows the results of models trained with
interpretable and uninterpretable prompts. Differ-
ent prompts do not show a large difference in per-
formance, indicating that the performance boost
of NAT comes from simply differentiating positive
and negative data.

D More Experiments

NAT for Different LLMs We experiment NAT
for different LLMs to validate its effectiveness.
As shown in Table 8, NAT improves performance
across diverse models and sizes. This also demon-
strates the broad applicability for NAT method.

NAT for Tool Usage We have done experiments
on math and question-answering (QA) tasks and
evaluated the method on 4 math test sets. However,
we also experimented NAT for Tool Learning, a
more real-world scenario where LL.Ms use differ-
ent tools to solve common tasks. We use datasets
from ToolBench (Qin et al., 2024) for training and
evaluation. The metric is pass rate, representing the
percentage that the evaluator believes the answer
generated by LLMs can solve the task. We first use
GPT-4 to annotate whether the answers of training
trajectories are passed. We take those annotated
with pass as positive trajectories and others as neg-
ative trajectories. The results are shown in Table 9.
Even in a more real-world and complex scenario,
NAT still improves the performance, surpassing
SFT with positive trajectories only.
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Math

Solve a math problem with interleaving Thought, Action, Observation steps. Thought can reason about the
current situation, and Action can be two types:

(1) calculate[expression], which calculates the expression and returns the answer.

(2) finish[answer], which returns the answer and finishes the task.

=

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

ho

Thought: To find the total number of clips Natalia sold in April and May, | need to calculate the number of clips q'QP
sold in May and then add it to the number sold in April. Action: calculate[48 / 2]

5 Observation: 24
Thought: Now, | need to add the number of clips sold in April to the number sold in May to find the total '{[E]?
number of clips sold altogether.\nAction: calculate[48 + 24]

Observation: 72

Thought: The total number of clips Natalia sold altogether in April and May is 72. Action: finish[72] 1@?’

HotpotQA

‘EB!J Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason
about the current situation, and Action can be two types:

(1) search[query], which searches a query on google and returns a short snippet containing the answer. Note
that sometimes the snippet does not contain the answer, and some alternative search might be needed.

(2) finish[answer], which returns the answer and finishes the task.

% Forestville Commonwealth is an example of which 19th century socialist philosophy?

Thought: To answer this question, | need to search for information about Forestville Commonwealth and 1E]P
its association with 19th-century socialist philosophy. Action: search[Forestville Commonwealth 19th
century socialist philosophy]

@ Observation: Owenism is the utopian socialist philosophy of the 19th century social ... Forestville

www > Commonwealth, Lapham's Mills, Coxsackie, Greene County, New York (1826 ... Communitarian Socialism in
America: 1663-1829 (Philadelphia, 1950), 62-63. 5. Robert Owen's teachings were the basis for all of the
Owenite societies, ...

Thought: The observation suggests that Forestville Commonwealth is associated with Owenism, a utopian q'E]Ib
socialist philosophy of the 19th century. Action: finish[Owenism]

StrategyQA
SN solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason
about the current situation, and Action can be two types:
(1) search[query], which searches a query on google and returns a short snippet containing the answer.
Note that sometimes the snippet does not contain the answer, and some alternative search might be needed.
(2) finish[answer], which returns the answer and finishes the task. Remember you should answer Yes or No.

1,
S

==

& If you were on a diet, would you have to skip lunch at McDonald's?

Thought: Whether someone on a diet would have to skip lunch at McDonald's depends on their specific @
dietary restrictions and goals. McDonald's offers a variety of menu items, including salads and other healthier
options, so it is possible to make a suitable choice while still adhering to a diet plan. Action: search[healthy

options for lunch at McDonald's]

I@ Observation: 1. Side Salad: McDonald's offers a side salad that is typically low in calories and fat. 2. Grilled
&ww'> Chicken Sandwich: Opting for a grilled ...

Thought: The observation provides several low-calorie and healthier options available at McDonald's, 1E]P
including salads and grilled chicken sandwiches. This indicates that someone on a diet could indeed find
suitable lunch options at McDonald's without having to skip lunch altogether. Action: finish[No]

Figure 6: Example trajectories of GSM8k, HotpotQA, and StrategyQA generated by GPT-3.5.
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Vanilla

% Each solid 10-foot section of a redwood tree weighs 400 pounds. Termites ate 30% of this redwood's wood.
If the redwood is 200 feet tall, how much does it weigh? Please generate a solution path.

Thought: To find the total weight of the redwood tree, | need to calculate the weight of the wood that was
not eaten by the termites and then add the weight of the wood that was eaten. Action: calculate[200 * 10
* 400 - (200 * 10 * 400 * 0.3)]

Observation: 560000

(=[]
oo

Action: finish[560000] 1@)1

NUT

% Each solid 10-foot section of a redwood tree weighs 400 pounds. Termites ate 30% of this redwood's wood.
If the redwood is 200 feet tall, how much does it weigh? Please generate a solution path.

Thought: To find the weight of the redwood tree, | need to calculate the weight of the wood that was eaten 1@!:
by the termites and then subtract that from the total weight of the wood. Action: calculate[30% of 400

pounds per foot]

55| Observation: Error: Sympify of expression 'could not parse '30% of 400 pounds per foot" failed, because of
exception being raised: SyntaxError: invalid syntax (<string>, line 1)

=[]
oo

NAT

% Each solid 10-foot section of a redwood tree weighs 400 pounds. Termites ate 30% of this redwood's wood.
If the redwood is 200 feet tall, how much does it weigh? Please generate a **correct™ solution path.

Thought: Thought: To find the weight of the redwood tree, | need to calculate the weight of one 10-foot CEE]P
section and then multiply it by the total number of sections in the tree. First, | need to calculate the weight
of one 10-foot section after the termites ate 30% of the wood. Action: calculate[400 * 0.7]

o] Observation: 280
Thought: Now, | need to calculate the total weight of the redwood tree by multiplying the weight of one cEE]EJ
10-foot section by the total number of sections in the tree. Action: calculate[280 * 200 / 10]

g_g Observation: 5600
Thought: The total weight of the redwood tree is 5600 pounds. | have finished the task. Action: TE]F
finish[5600]

Figure 7: Inference results of models trained with different settings, where Vanilla model gets wrong because of
reasoning error, NUT model gets wrong because of action error, and NAT gets correct.

7398



