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Abstract

Despite the remarkable performance of large
language models (LLMs), they still struggle
with generating logically sound arguments, re-
sulting in potential risks such as spreading mis-
information. An important factor contributing
to LLMs’ suboptimal performance in gener-
ating coherent arguments is their oversight of
logical fallacies. To address this issue, we intro-
duce fallacy-informed preference optimization
(FIPO) that helps steer LLMs toward generat-
ing logically sound arguments. FIPO includes
a classification loss to capture the fine-grained
information on fallacy types. Our results on
argument generation tasks show that FIPO re-
duces the fallacy errors by up to 17.5%. Fur-
thermore, our human evaluation results reveal
that the quality of the arguments generated by
our method significantly outperforms the fine-
tuned baselines and other preference optimiza-
tion methods, such as DPO. These findings
highlight the importance of ensuring models
are aware of logical fallacies for effective argu-
ment generation.1

1 Introduction

Argument generation is crucial in daily life and has
numerous online and offline applications. For in-
stance, legislative bodies often use persuasive argu-
ments to secure the necessary votes for bills to pass.
However, generating logically coherent arguments
is a challenging task and requires an appropriate
combination of reliable evidence and effective log-
ical reasoning (Walton et al., 2008; Wachsmuth
et al., 2017). Humans are prone to misconstruing
logical argumentation in the real world and often
unknowingly adopt flawed reasoning in discussions
(Evans, 2002). Similarly, large language models
(LLMs) have demonstrated limitations in their log-
ical reasoning capabilities, suffering from logical

1Our code and datasets are publicly available for research
purposes at github.com/lucamouchel/Logical-Fallacies
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Figure 1: Examples of fallacious and logically sound
arguments.

inconsistencies (Chen et al., 2023b; Jin et al., 2022;
Sourati et al., 2023), and producing logically incor-
rect arguments (Chen et al., 2023a).

In this work, we hypothesize that LLMs generate
logically incorrect arguments because they lack an
understanding of logical fallacies. A logical fallacy
is an error in reasoning that undermines the validity
of an argument (Tindale, 2007). For example, "I’ve
never had the flu because I take my vitamins ev-
ery day." is an instance of a false causality fallacy.
These fallacies arise from unsound premises. They
can be identified by the absence of legitimate and
relevant evidence to support their claims.

In a preliminary study, we evaluate 100 argu-
ments on different topics with ChatGPT and find
that 21% of the arguments contain fallacies. We ob-
serve that several types of logical fallacy arguments,
especially false causality and faulty generalization
are commonly generated by different LLMs such
as Llama-2 (Touvron et al., 2023) or Mistral (Jiang
et al., 2023). Our study explores the relationship be-
tween logical fallacy understanding and argument
generation. We view models generating logically
coherent arguments as a logical alignment problem,
i.e., aligning the model responses (arguments) to
the given topic and stance. Recent methods, such as
Reinforcement Learning with Human or AI Feed-
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back, have been shown to bridge the “alignment
gap” between model responses and human prefer-
ences (Christiano et al., 2017; Ziegler et al., 2019;
Lee et al., 2023). However, LLMs fine-tuned with
RLHF can still generate logically fallacious argu-
ments. Hence, to train models to prefer logically
correct arguments, it is important to have reliable
and diverse error scenarios as training examples.
To address this issue, we define 13 categories of
logical fallacy errors, drawing inspirations from the
history of logic and logical fallacies studied since
the times of Ancient Greece by Aristotle (Aristotle,
2006). Figure 1 depicts some fallacy examples, and
Figure 3 shows different fallacy categories.

We use ChatGPT to collect 7, 872 fallacy argu-
ments spanning different fallacy categories to train
preference models. First, we perform supervised
fine-tuning (SFT) to teach models to generate argu-
ments. Next, we use preference optimization meth-
ods to instil the ability to generate logically correct
arguments. Specifically, we use Direct Preference
Optimization (DPO) (Rafailov et al., 2023), Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017), Kahneman-Tversky Optimization (KTO)
(Ethayarajh et al., 2024), and Contrastive Prefer-
ence Optimization (CPO) (Xu et al., 2024) on our
preference dataset. These fallacy-informed models
demonstrate a notable improvement in argument
quality, achieving a higher win-rate (i.e., the pro-
portion of wins over the SFT baseline in terms of ar-
gument quality) and reducing the fallacy-rate (i.e.,
the proportion of fallacies generated) by up to 8.5%.
However, we observe that the above methods fail to
account for the nuanced differences between logi-
cal fallacies, instead treating each fallacy similarly.

To this end, we introduce Fallacy-Informed
Preference Optimization (FIPO) that combines
the original preference optimization loss with a
weighted cross-entropy classification loss. This
additional loss penalizes the model based on the
frequency of different fallacies in the preference
dataset, applying stronger penalties for misclassi-
fying more occurring fallacies during training and
reinforcing fallacy-aware learning. We observe that
FIPO outperforms the SFT baselines by reducing
the fallacy-rate from 34.5% to 17% for Llama-2
(7B) and from 32.5% to 19.5% for Mistral (7B).
FIPO also outperforms the best preference opti-
mization method (PPO-Llama 2 and KTO-Mistral)
by producing 9% and 8.25% fewer logical fallacy
errors, respectively. Our analysis explores how
preference optimization enhances argument quality

and compares FIPO to other methods. We also in-
vestigate whether preference optimization reduces
logical fallacy errors and how FIPO improves upon
existing techniques. Additionally, we examine the
most common fallacy types observed in arguments
generated during inference.
Contributions: (i) To the best of our knowledge,
we are the first to study and show how understand-
ing logical fallacies can improve argument gener-
ation quality; (ii) We introduce FIPO, which inte-
grates a classification loss during the preference
optimization phase, which helps further reduce the
fallacy-rate; (iii) Human evaluation results vali-
date GPT-4’s reliability in identifying fallacies and
FIPO’s higher-quality arguments compared to other
preference learning methods.

2 Related Work

Logical Fallacies. Logical fallacies are errors in
reasoning that can undermine the validity of an
argument (Tindale, 2007). In argumentative dis-
course, identifying fallacies is crucial for measur-
ing the quality of argumentation (Wachsmuth et al.,
2017; Nakpih and Santini, 2020). Prior works have
shown that LLMs struggle to classify logical fal-
lacies, with F1 scores reaching 66% (Jin et al.,
2022; Sourati et al., 2023; Ruiz-Dolz and Lawrence,
2023). More recently, Li et al. (2024) demon-
strated GPT-4’s ability to identify and classify fal-
lacies, achieving over 86% accuracy in both tasks.
Nevertheless, previous works have not explored
how a nuanced understanding of logical fallacies
might influence argument generation.

Argument Generation. Argument generation
is an important task in natural language process-
ing that involves generating coherent and persua-
sive arguments for a given topic. Existing argu-
ment generation frameworks have made significant
strides: Hua and Wang (2018) introduced a gener-
ator that creates arguments from key phrases, fol-
lowed by a separate decoder to produce the final
argument text. Hua et al. (2019) developed Can-
dela, a style-controlling counter-argument gener-
ation framework. Schiller et al. (2021) presented
Arg-CTRL, a model that uses control codes for
topic, stance, and aspect in sentence-level argument
generation. More recently, Saha and Srihari (2023)
introduced an argument generator for factual argu-
ments across a limited set of topics. Despite these
advances, no study has yet addressed generating
arguments from the lens of logical fallacies.
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Figure 2: Overview of our framework. The first step is supervised fine-tuning using argumentation data. Next, we
collect preference data by generating fallacious arguments using ChatGPT. We then perform preference optimization
using methods like DPO, PPO, CPO, and KTO. Finally, we introduce FIPO, which integrates a classification loss
during the preference optimization phase.

Data Generation and Automatic Evaluation
with LLMs. Using LLMs in data generation is
supported by their proven effectiveness in a spec-
trum of text generation tasks, including the cre-
ation of instructional and relational datasets (Peng
et al., 2023; Sun et al., 2023; Wang et al., 2023;
Shao et al., 2023). Notably, Schick and Schütze
(2021) demonstrated the utility of LLMs in produc-
ing datasets that significantly enhance the training
of smaller models. Regarding the evaluation of
automatically generated text, Liu et al. (2023) high-
light that traditional metrics such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are in-
adequate for tasks requiring creativity and diversity.
Given Li et al. (2024)’s demonstration of GPT-4’s
ability to identify and classify logical fallacies, we
use it as a judge to identify fallacies in arguments–
validated by a human annotation task we performed
to verify GPT-4’s reliability (Section 5.2).

3 Task Formulation

In this work, we address the argument genera-
tion task. In order to assess LLMs’ capabili-
ties for argument generation, we leverage the EX-
PLAGRAPHS dataset (Saha et al., 2021), consist-
ing of topics, stances and arguments, denoted as
D={t(i), s(i), y(i)w }Ni=1, where t is the topic, s the
stance (supporting or counter), and yw the argu-
ment. One naive approach to address the prob-
lem of logical argument generation is prompting
LLMs. To assess this approach, we evaluate Chat-
GPT (gpt-3.5-turbo), Llama-2 (7B), and Mistral
(7B) in the zero-shot setting on a set of 100 topics.
Additionally, we implement a Retrieval Augmented
Generation (RAG) model with Llama-2 using the

wiki-dpr database (Karpukhin et al., 2020). Exam-
ples of contexts retrieved for RAG are provided in
Appendix C.2. This baseline evaluation is made on
two separate scenarios: in S1, we prompt models to
generate arguments given a topic and a stance. In
S2, we guide the model towards generating logical
arguments by defining logical fallacies, giving two
examples, and instructing them not to generate a
fallacious argument. We observe models struggle
to generate logically sound arguments in S1. In
Tab. 1, we report the performance of all the mod-
els in argument generation. Since GPT-4 (gpt-4
on OpenAI’s API) is a good fallacy identifier (Li
et al., 2024), further validated by our own human
annotation task to verify reliability (Section 5.2),
we use it to assess the fallacy-rate of the gener-
ated arguments. In S1, ChatGPT outperformed
the open source models–however, it still generates
fallacious arguments in 21% of the cases. We no-
tice a very sharp improvement in S2, implying
explicit knowledge of fallacies and examples in
prompts help generate logical arguments. While
we include S2 as a baseline to assess the impact of
explicit guidance, our study examines LLMs’ in-
herent ability to generate logical arguments without
assistance—mirroring the conditions of S1. The de-
tailed distributions of fallacy types across different
approaches in the zero-shot setting are presented in
Tab. 7.

Model ChatGPT Llama-2 Mistral Llama-2-RAG

fallacy-rate S1 21 55 38 37
fallacy-rate S2 14 21 18 19

Table 1: fallacy-rate for arguments generated by differ-
ent baselines.
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4 Methodology

To address the challenge of generating fallacy-free
arguments, we propose using preference learning
methods to generate arguments logically aligned
with the given topic and stance. This approach in-
volves making models aware of logical fallacies
and training them to generate logically correct ar-
guments by rewarding valid arguments and penal-
izing dispreferred samples. The process of prefer-
ence learning typically involves three main steps:
(i) supervised fine-tuning (SFT) (Section 4.1), (ii)
preference data collection (Section 4.2) and (iii) re-
inforcement learning (Section 4.3). In Section 4.4,
we introduce our method (FIPO), which intro-
duces fine-grained information about fallacies in
the alignment process. A comprehensive overview
of the methodology is presented in Fig. 2. To jus-
tify our design and methodology for FIPO and the
preference data collection, we perform two abla-
tion studies with different training approaches, de-
scribed in Section 5.3. The results demonstrate that
our design achieves the best performance.

4.1 Supervised Fine-Tuning
We fine-tune a pretrained language model πβ on the
EXPLAGRAPHS (Saha et al., 2021) dataset D with
maximum likelihood estimation to obtain πSFT.

LSFT(πβ)=−E(t,s,yw)∼D
[
log (πβ(yw|t, s))

]
(1)

4.2 Preference Data Collection
Conventionally, after the SFT phase, πSFT is
prompted with input x to produce pairs of out-
puts (y1, y2)∼πSFT(y|x), which are then presented
to human annotators to rank as preferred and dis-
preferred responses. Our objective is to reduce
logical fallacy errors in the model’s outputs, there-
fore, including a diverse range of fallacy types in
the preference data is essential, as these may not
be sufficiently represented in the model’s outputs.
We define 13 categories of logical fallacy errors
(see Fig. 3). However, there are two key chal-
lenges: (i) determining the appropriate distribu-
tion of logical fallacy errors in the preference data,
and (ii) automatically collecting such fallacy argu-
ments. To address the first concern, we leverage the
LOGIC dataset (Jin et al., 2022), which was care-
fully curated through extensive web crawling and
data collection from diverse online sources. This
dataset reflects the distribution of fallacies in real-
world scenarios, providing a realistic foundation
for mitigating fallacies in everyday argumentative

Fallacy of Credibility
5.4%
Fallacy of Extension
5.8%
False Dilemma
5.8%
Intentional
5.8%
Fallacy of Logic
6.2%

Fallacy of Relevance
6.6%
Appeal To Emotion
6.8%
Circular Reasoning
7.0%

Faulty Generalization
18.0%

Equivocation
2.0%

Ad Hominem
12.3%

Ad Populum
9.5%

False Causality
8.8%

Figure 3: Distribution of different fallacy types accord-
ing to the LOGIC dataset (Jin et al., 2022), based on
which we build our preference dataset.

discourse. This data consists of labelled logical
fallacies, which we use only as examples when ad-
dressing the second concern–generating synthetic
fallacious arguments given topics. Using the EX-
PLAGRAPHS dataset defined as D in Section 3–
consisting of topics, stances and arguments–we
use ChatGPT (gpt-3.5-turbo) to build preference
pairs by generating an equivalent fallacious argu-
ment yl for each valid argument yw in D. To ensure
arguments generated by ChatGPT are indeed falla-
cies, we provide a definition of the specific fallacy
being generated and examples of that fallacy type
from the LOGIC dataset. To populate our prefer-
ence dataset and ensure it spans across the most
types of fallacies, we generate four fallacious ar-
guments with different fallacy types sampled from
the distribution in Fig. 3 for each yw. The origi-
nal dataset D = {t(i), s(i), y(i)w }Ni=1 containing the
topic, stance and argument is now augmented with
fallacies and their labels, denoted as yl and k re-
spectively. We define the preference dataset as
D′ = {t(i), s(i), y(i)w , y

(i)
l , k(i)}Mi=1, where we have

M pairs of preferred (yw) and dispreferred (yl) sam-
ples, with k(i) the fallacy type of the dispreferred
argument y(i)l . The test set is not augmented with
fallacies, as we use only the topics and stances at
inference time to evaluate the quality and logical
soundness of the arguments generated. More de-
tails on the generations and our prompt designs for
ChatGPT are presented in Appendix A.1. Finally,
our augmented fallacy argument dataset consists of
the train-test split shown in Tab. 2.

# Train # Test

EXPLAGRAPHS data (Saha et al., 2021) 1,968 400
Generated Fallacies 7,872 -

Total 7,872 400

Table 2: Train-Test split of our preference dataset.
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4.3 Preference Learning Phase
In this work, we use four preference learning algo-
rithms: PPO, DPO, KTO, and CPO. Among these,
only PPO requires explicit feedback from a reward
model. For the other methods, we apply the prefer-
ence optimization using πSFT as a reference model
and the preference data D′.

Explicit Reward Modelling. We use the dataset
D′ to train the Electra model (Clark et al., 2020) to
learn to predict reward values.

Implicit Reward Modeling. Methods like DPO,
KTO, and CPO employ contrastive loss to derive
implicit rewards from preference datasets. Note
that CPO (Xu et al., 2024) is a reference-free
method that does not require a reference policy.
The different methods are detailed in Appendix B.

4.4 Fallacy-Informed Preference
Optimization (FIPO)

Despite the preference optimization, models per-
sistently generate specific types of logical falla-
cies, particularly faulty generalization and false
causality arguments (Tab. 5). This can be at-
tributed to the fact that the models do not explicitly
learn about the fallacy types. Hence, we propose
FIPO, which uses a classification head attached
to the generative model to calculate a weighted
cross-entropy loss for the preferred and dispre-
ferred samples. Recall the preference dataset D′=
{t(i), s(i), y(i)w , y

(i)
l , k(i)}Mi=1 where k ∈ [1, 13] is

the fallacy type of yl. We also label the preferred
samples yw as ’Not a Fallacy’ (k = 0). Secondly,
after a forward pass through the language model
πθ, we extract the hidden state for the last token
from the last hidden layer, defined as:

hθ(y|t, s) := πθ(y|t, s)L,T (2)

where L represents the total number of layers in the
base model and T denotes the position of the last
token. This hidden state is fed into the classification
head using a linear layer, and the resulting output
defines the probability for fallacy type k:

Pk
hθ
(y|t, s) = Softmax(Whθ(y|t, s) + b)k (3)

where W is the linear layer’s weight matrix, and
b is the corresponding bias term. To avoid penaliz-
ing the model equally for misclassifying different
types of fallacies, we propose to guide the model to
prioritize the most frequent fallacy types. This ap-
proach ensures that the model accurately identifies

the most occurring fallacies. We define weights
wk for each fallacy type k as its frequency in D′,
and w0 as the minimum value of these frequencies,
which is designed to let the model focus more on
the fallacies in the less preferred samples rather
than the non-fallacy samples during the preference
optimization process: wk =

1
M

∑M
i=1 1{k(i)= k}

and w0 = mink wk where 1 is the indicator func-
tion. Using these weights, and the definitions of
Equation 2 and 3, we define the fallacy-informed
classification loss as a weighted cross-entropy loss:

LCLF(πθ)=−E(t,s,yw,yl,k)∼D′
[
w0 logP0

hθ
(yw|t, s) + wk logPk

hθ
(yl|t, s)

]
(4)

The resulting loss function, termed Fallacy
Informed Preference Optimization loss, combines
the loss from the preference optimization with our
classification loss (LCLF). In our work, CPO (Xu
et al., 2024) is the method with which we combine
our loss since it has the best trade-off between win-
rate and fallacy-rate (see Fig. 5 & 6, Tab. 5). The
resulting loss is:

LFIPO(πθ) = LCPO(πθ) + λLCLF(πθ) (5)

where λ is a weighting parameter to adjust the
fallacy-informed loss with respect to the preference
optimization loss. A more detailed description of
LFIPO is described in Appendix F.

5 Experimental Setup

We denote the policies obtained after the SFT phase
and the alignment phase as πSFT and πθ, respec-
tively. The policy πθ is aligned using one of the
following methods: PPO (Schulman et al., 2017),
DPO (Rafailov et al., 2023), CPO (Xu et al., 2024),
KTO (Ethayarajh et al., 2024), and FIPO.

5.1 Datasets and Base Models

Datasets. We evaluate argument generation
based on the EXPLAGRAPHS dataset (Saha et al.,
2021) where samples contain a Topic, a Stance, and
short Arguments (5-20 words), spanning a wide
range of topics. We augment this dataset by gen-
erating equivalent short arguments in the form of
fallacies using ChatGPT as described in Section 4.2
and illustrated in Fig. 2. The LOGIC dataset also
contains short-length fallacies. Based on the length
of arguments and fallacies, our study focuses only
on short argumentative texts. The final dataset size
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is provided in Tab. 2. We also perform out-of-
domain analysis on a subset of samples from the
Debatepedia dataset (Cabrio and Villata, 2012).

Base Models. We use Llama-2 (7B) (Touvron
et al., 2023) and Mistral (7B) (Jiang et al., 2023)
as our base models. For each alignment method,
we leverage Low-Rank Adaptation (LoRA) (Hu
et al., 2021). This drastically reduces the number
of parameters that need to be fine-tuned, from 7B to
8.3M ( ≈0.12%). For both base models, we obtain
a reference policy πSFT and an aligned policy πθ
for every alignment method. More details about
hyperparameters, including training and decoding
parameters, are described in Appendix C.1.

5.2 Evaluation

Metrics. We use two metrics to evaluate the argu-
ments generated by the aligned models compared
to the baseline SFT model: the win-rate and the
fallacy-rate. The win-rate measures the proportion
of instances where one argument is judged to be
of higher quality than the other, while the fallacy-
rate represents the proportion of logical fallacies
detected in the generated arguments.

Human Evaluation. We conduct a human evalu-
ation to compute the win-rate to validate the rele-
vance and quality of the generated arguments. We
select 200 samples from the set of generated ar-
guments by the aligned models, along with the
corresponding topics, stances (either supporting or
counter) and the equivalent arguments generated by
the SFT model. Annotators perform a comparative
evaluation between the SFT and aligned models by
determining which argument is superior or whether
both are equally good or bad. Despite the sub-
jective nature of this task, as specific arguments
may appeal differently to different individuals, we
provide instructions to annotators, including select-
ing the argument that most clearly addresses the
topic and stance. Refer to Fig. 8 for more details.
We also perform an annotation task where workers
agree or disagree with GPT-4’s fallacy predictions.
This allows us to validate GPT-4 as a judge for com-
puting the fallacy-rate. Annotators are recruited
from Amazon Mechanical Turk (mturk.com) for
this task. We limit our selection to native English
speakers residing in the United States. The eligibil-
ity criteria for annotators include a HIT approval
rate of at least 97% and a minimum of 10,000 ap-
proved HITs. We present more details, including

the annotating instructions in Appendix C.4. The
annotators were fairly compensated.
Additionally, we conduct an in-depth analysis of
fallacy classification by classifying 200 arguments
ourselves, aiming to provide an unbiased compari-
son between human evaluation and GPT-4’s clas-
sifications. Since identifying logical fallacies re-
quires domain knowledge and can be particularly
challenging, our annotations helps assess GPT-4’s
ability to classify and identify fallacies. This analy-
sis sheds light on the model’s capacity to generate
logical arguments. Our annotation is depicted in
Fig. 4 where the rows are our predictions and the
columns are GPT-4’s predictions.

Automatic Evaluation with GPT-4. We perform
a pairwise comparison between the samples gener-
ated by πSFT and its counterparts generated by πθ
using the win-rate and fallacy-rate. For the win-
rate, we prompt GPT-4 to decide which argument
is superior, or if both are equally good. For the
fallacy-rate , we prompt GPT-4 to evaluate the ar-
gument and detect whether the argument is any of
the fallacy types out of all the ones listed in Tab. 9,
if one is present. A description of the GPT-4 evalu-
ation and prompts is detailed in Appendix A.2.

GPT-4’s Reliability in Detecting Fallacies. We
rely on GPT-4 to compute the fallacy-rate since Li
et al. (2024) show GPT-4 performs well on logi-
cal fallacy detection, achieving 86% accuracy. To
validate GPT-4’s reliability for fallacy classifica-
tion, we use human annotators and ask them to
agree or disagree with the predictions. We collect
three annotations for each sample, consisting of
“Agree” or “Disagree” responses. We compute the
percentage agreement rate to assess the agreements
between annotators and GPT-4, reflecting how of-
ten the majority vote matches GPT-4’s prediction.
This directly assesses GPT-4’s competence in clas-
sifying fallacies, making it reliable for computing
the fallacy-rate. We also compute the agreement
among annotators using Randolph’s κ (Randolph,
2005), which is well-suited for scenarios with rat-
ing imbalances (e.g., frequent “Agree” responses)
by reflecting pure agreement, not assuming an ex-
pected distribution of categories. Randolph’s κ is
computed as κ = Po−Pe

1−Pe
where Po is the observed

agreement:

Po =
1

Nn(n− 1)

N∑

i=1

∑

k∈{A,D}
n2ik −Nn (6)
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where N is the number of samples annotated, n
is the number of annotators per sample (3 in our
case) and niA is the number of agreements and
niD the number of disagreements in each sample.
Pe = 0.5, is the expected agreement for the two
categories (’Agree’ and ’Disagree’). The agree-
ment rates are displayed in Tab. 3, and the results
demonstrate the effectiveness and reliability of us-
ing GPT-4 for classifying fallacies, showing sub-
stantial agreement among annotators (0.64) and a
high majority agreement ratio (0.955). More details
are provided in Appendix E.

Agreement Metric Value
Randolph’s-κ 0.640
Majority agreement ratio 0.955

Table 3: Agreement scores. Randolph’s-κ reflects agree-
ments among annotators and majority agreement com-
putes the agreement rate between annotators and GPT-4.

Additionally, to verify GPT-4’s reliability, we
(the authors) perform a fallacy classification task on
a set of 200 generated arguments at inference as an
in-depth analysis of differences with GPT-4. The
heatmap in Fig. 4 shows the overlap between our
classifications (y-axis) and GPT-4’s (x-axis). The
heatmap entries are normalized to show the degree
of alignment between our annotations and GPT-4’s
predictions. We observe that most classifications
cluster around the first few fallacy types—faulty
generalization, false causality, and fallacy of rele-
vance. The most significant disparity arises in the
fallacy of relevance, where we identify this fallacy
more frequently. Additionally, the heatmap shows
notable overlap between faulty generalization and
false causality-when we classify an argument as
false causality, GPT-4 often predicts it as a faulty
generalization instead. This suggests that the model
may struggle to distinguish between broad overgen-
eralization and causal misattributions, likely due to
subtle linguistic differences in argument structure.
Although the overall disagreement is limited, these
findings highlight the difficulty of fallacy classifica-
tion. Even with a solid understanding of logical fal-
lacies, arguments can be ambiguous and complex,
making misclassification a frequent challenge.

5.3 Ablation Study

To validate the effectiveness of our method, we
conducted two ablation studies:
Dataset Uniformity: The first study involves modi-
fying the training dataset to include an equal num-

Figure 4: Heatmap for our classification compared to
GPT-4’s predictions. Rows are the authors’ classifica-
tions and the columns GPT-4’s.

ber of samples for each fallacy type. For this study,
we created a uniformly distributed dataset by down-
sampling, resulting in a dataset comprising 2,522
samples (194 per fallacy type).
Unweighted Cross-Entropy: The second study ex-
amines the impact of applying FIPO with un-
weighted cross-entropy. This study uses un-
weighted cross-entropy to demonstrate the justifica-
tion for our design, as the fallacy misclassification
rates are higher with unweighted cross-entropy.

Table 4 shows a sharp increase in fallacy rates,
underscoring the importance of accounting for the
natural distribution of fallacy types and incorporat-
ing a weighted cross-entropy classification loss.

Fallacy Rates

Dataset Uniformity 37.5%

Unweighted Cross-Entropy 29%

FIPO 17%

Table 4: Ablation study proving the effectiveness of
imbalanced fallacy types and weighted cross-entropy.

6 Experimental Results

As outlined in Section 5.2, our evaluation of the
generated arguments focuses on two primary as-
pects: (i) pairwise comparison of argument quality
between the reference policy πSFT and the aligned
policies πθ, which is detailed in Section 6.1; and
(ii) the analysis of fallacy-rate across different pref-
erence optimization methods in Section 6.2.

6.1 Pairwise Comparison of Different
Preference Optimization Methods

We perform a pairwise comparison to compute the
win-rate between arguments generated by the SFT
baselines and all the aligned models. Each argu-
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ment undergoes a manual and automatic (GPT-4-
based) comparative evaluation, whose results are
shown in Fig. 5 and Tab. 8. For the human evalua-
tion, each sample receives three assessments. Sam-
ples lacking majority consensus among annotators
are excluded from further analysis. From the hu-
man annotated win-rate depicted in Fig. 5, we ad-
dress the following research questions:

Tie Lose (SFT win)Win

50%

39.5%

40.5%

46.5%

14%

28.8%

30.7%

DPO PPO

100%

9.4% 35%

50.3%
37%

40.3%
28%

CPO KTO FIPO

31%

46%

23%

Figure 5: Human evaluation results comparing argu-
ments generated by different preference optimization
strategies using Llama-2 as the base model. The win-
rate indicates how often each policy outperforms the
SFT baseline regarding argument quality.

RQ1: Are preference optimization methods bet-
ter than SFT? The aligned policies outperform
πSFT in terms of win-rate, indicating an improve-
ment in overall argument quality. DPO, CPO and
FIPO are the only methods achieving over 40%
win-rate, demonstrating a better ability to gener-
ate qualitative arguments. πCPO stands out as it
has the highest percentage of wins (50.3%), fol-
lowed closely by πDPO (46.5%). We observe simi-
lar results in the automatic win-rate evaluation with
GPT-4 (Fig. 6), where DPO, CPO and FIPO have
the highest win-rates.

DPO PPO CPO KTO FIPO

Fallacy-Rate

Win-Rate

Figure 6: GPT-4 evaluation of win-rate and fallacy-rate,
for arguments generated by Llama-2. The win-rate rep-
resents the frequency with which the aligned policy out-
performs SFT. The fallacy-rate measures the proportion
of the detected fallacies. The best-performing policy
is our proposed FIPO method that achieves the lowest
fallacy-rate (17%) and the highest win-rate (63.5%).

RQ2: Does FIPO improve from existing pref-
erence methods? FIPO uses the classification

loss defined in Section 4.4 on top of CPO’s loss.
This is because CPO achieves the best trade-off
between win-rate and fallacy-rate despite having
a higher loss-rate (Fig. 5). We denote this pol-
icy as πFIPO. Although the win-rate of πFIPO is
slightly lower at 46% compared to CPO’s 50.3%,
it is essential to note the significant decrease in
loss-rate—from 40.3% to 23%. This reduction in-
dicates that πSFT wins against πFIPO less frequently,
suggesting that πFIPO produces arguments that are
more qualitative compared to the baseline and to
πCPO. This improvement highlights the benefits
of including more fine-grained details in FIPO’s
loss, making models more aware of logical falla-
cies, as FIPO now yields outcomes that are not only
equivalent but often superior to those generated by
the πSFT. Similar observations are drawn from the
automatic win-rate evaluation in Appendix D.2,
where GPT-4 served as the judge to evaluate the
arguments and only CPO achieved over 50% for
both Llama-2 and Mistral, as shown in Tab. 8.

6.2 Results for Fallacy-Rate and Types
Evaluating text segments to identify logical falla-
cies poses inherent challenges for humans. De-
tecting such fallacies demands an extensive under-
standing of logical principles and argumentative
structures. Without a robust grasp of logical fal-
lacies, differentiating between valid and flawed
reasoning becomes difficult. Additionally, personal
biases and preconceptions can also cloud judgment,
leading to overlooked fallacies or biased interpreta-
tions of arguments. We report GPT-4’s evaluations
in Tab. 5. Based on the results, we address the
following research questions:

RQ3: Do preference optimization methods mit-
igate logical fallacy errors? The aligned poli-
cies produce fewer fallacies compared to the SFT
baselines. Specifically, every alignment method
outperforms πSFT for Llama-2. For Llama-2 and
Mistral, DPO is the method that improves the least,
and even produces more fallacies than πSFT with
Mistral, having a higher fallacy-rate. The other
methods (PPO, CPO and KTO) consistently out-
perform SFT and produce fewer fallacies.

RQ4: Does FIPO further reduce logical fal-
lacy errors? The least fallacy producing pol-
icy is πFIPO, achieving a fallacy-rate of 17% for
Llama-2, outperforming the previous best of 26%
(PPO). For Mistral, FIPO has a fallacy-rate of
19.5%, outperforming the previous best of 27.75%
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Llama-2 (7B) Mistral (7B)

Fallacy Types SFT DPO PPO CPO KTO FIPO SFT DPO PPO CPO KTO FIPO

Faulty Generalization 27.5 21 17.5 19.25 21 7 23 24 22.25 22.25 21 9.5
False Causality 2.5 5 4.25 4.75 4.5 3.5 5.25 5.75 5 4 3.5 4
Appeal To Emotion 1 1.25 0.75 1.75 - 2.5 1.25 1.75 0.25 1.5 1.75 3
Equivocation 1 1 1.25 0.25 0.75 - 0.75 - 0.5 0.25 0.25 -
Fallacy of Relevance 0.5 0.25 0.75 0.25 0.25 - - 0.5 - 0.75 0.25 0.5
Circular Reasoning 1 - 1.25 - 0.75 1.5 0.75 0.25 - - - 0.5
Ad Populum - 1.25 - 0.5 - - 0.25 0.25 0.25 1 0.25 1
False Dilemma 1 1.25 - 1 0.25 2.5 1 1 0.5 0.25 0.75 1
Ad Hominem - - 0.25 0.25 0.25 - 0.25 0.25 0.25 - - 0.5
Not A Fallacy 65.5 69 74 72 72.25 83 67.5 66.25 71 70 72.25 80.5

Fallacy-Rate ↓ 34.5 31 26 28 27.75 17 32.5 33.75 29 30 27.75 19.5

Table 5: Fallacy-rate (in percentages) of each policy, as detected by GPT-4. We omit other fallacy types as none of
them were reported by GPT-4. FIPO is the top-performing method, producing the least amount of fallacies.

(KTO) (Tab. 5). More specifically, FIPO, based on
CPO, beats CPO by 11% and 10.5% for Llama-2
and Mistral, respectively. This highlights the utility
of the classification loss, indicating that the policies
have a better understanding of logical fallacies than
regular preference optimization.

RQ5: What is the most observed fallacy type?
The most frequently observed fallacy produced
across all policies is Faulty Generalization. For
πFIPO, the occurrence for this type is only 7%,
effectively integrating the concept of generaliza-
tion. An example of this occurrence is illustrated
in Tab. 7. As Faulty Generalization is the most fre-
quent fallacy type in our preference dataset (18%,
Fig. 3), the weight assigned to this fallacy type in
Equation 4 is the largest. Consequently, a higher
classification loss is incurred if these fallacies are
misclassified, enhancing the language model’s abil-
ity to accurately identify and reduce occurrences
of Faulty Generalization. We also observe that of
the 13 fallacy types, GPT-4 never classifies argu-
ments in the following classes: Fallacy of logic,
credibility, extension and intentional.

6.3 Out-of-Domain Analysis

To showcase the effectiveness of alignment meth-
ods in argument generation, we sample a test-set of
100 different topics from the Debatepedia dataset
(Cabrio and Villata, 2012), and perform inference
using the models previously trained on our pref-
erence dataset. Using GPT-4 as an evaluator, we
compute the win-rates and fallacy-rates, presented
in Tab. 6. Using Llama-2 as the base model, re-
sults show that πFIPO is the second-best policy in
terms of minimizing fallacies (55%), slightly be-

hind πKTO (56%). We also find that FIPO achieves
the highest win-rate, winning 62% of the times
against πSFT. Interestingly, our results reveal that
FIPO helps to reduce False Causality and Fallacy
of Relevance fallacies.

Fallacy Types SFT DPO PPO CPO KTO FIPO

Faulty Generalization 17 20 17 24 17 18
False Causality 9 7 6 8 8 5
Appeal To Emotion 7 16 13 13 7 12
Fallacy of Relevance 12 6 6 10 3 -
Ad Populum 3 4 2 1 1 -
False Dilemma 6 6 6 4 6 7
Equivocation - - 2 1 1 2
Circular Reasoning 4 2 - 2 1 1

Fallacy-Rate ↓ 58 61 52 63 44 45

Win-Rate vs. SFT ↑ - 59 54 43 55 62

Table 6: Fallacies generated by different alignment
methods in the out-of-domain setting, detected by GPT-
4. We omit the other fallacy types, as none of them
were reported as such by GPT-4. We also evaluate the
win-rate and observe that FIPO achieves the highest one
and is the second-best policy at not generating fallacies.

7 Conclusion

In this work, we investigate the impact of logi-
cal fallacies on argument generation and introduce
FIPO, a novel framework designed to improve the
logical soundness of arguments by including a clas-
sification loss during the preference optimization
phase. Both human and automatic evaluations show
that our method produces higher-quality arguments
and achieves lower fallacy-rates. These findings
underscore the importance of addressing logical
fallacies in improving argument generation.

7304



Limitations

Although various preference optimization strate-
gies have shown improvement over the SFT base-
line in reducing fallacious arguments, the margin
remains modest. This may be attributed to several
factors: our assumption that the original dataset
(Saha et al., 2021) was free of fallacies, the in-
herent complexity and diversity of fallacies which
complicates effective detection, and the variability
in model performance, particularly the weaker re-
sults from the Mistral model compared to Llama-2.
Additionally, the limited size of our dataset and the
brevity of arguments present further challenges, as
the lack of contextual cues can hinder the models’
ability to identify and avoid fallacies consistently.

Ethics Statement

In this paper, we experiment with well-
acknowledged datasets. Our framework improves
argument generation in LLMs, which may encode
biases related to race, gender, and other attributes
(Weidinger et al., 2021; Sheng et al., 2020). As our
work does not mitigate these biases, the models
may still reflect harmful behaviors. We recommend
users deploying our model off-the-shelf evaluate
potential harm to protected groups and apply
appropriate mitigation. While improving argument
generation is valuable, it poses risks if misused.
Bad actors could exploit these capabilities to
amplify disinformation, manipulate public opinion,
or influence democratic processes by spreading
persuasive yet harmful narratives. To address
this, robust safeguards, such as usage policies,
monitoring, and detection tools, are critical.
Finally, our annotation task relied on AMT
workers evaluating model-generated arguments,
particularly for logical fallacies, which are complex
to assess. Workers were English-speaking and paid
adequately for their time to ensure fairness.
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A Data Augmentation and Evaluation with LLMs

A.1 Generating Arguments with ChatGPT
Our prompt design for ChatGPT to generate fallacies follows a similar heuristic to (Liu et al., 2023), by
introducing the task, defining the fallacy type it must generate, along with two examples of that particular
fallacy type. Following the distribution in Fig. 3, we generate four fallacies for the same topic and feed
the following prompt to ChatGPT to generate fallacies as negative preference data:

You are given a topic T. Your task is to generate a {’supporting’ or ’counter’} argument in the form
of a f-typea logical fallacy in the context of the topic. It should not be longer than 25 words.
f-type fallacy is defined as: {definition}
examples of f-type are:
{example 1}
{example 2}
Here is an example of f-type fallacy argument:
{example of an argumentative fallacy}
return {
"topic": T, "fallacy": f-type, "argument": <...>
}

aFallacy type that can be any of the thirteen types described in Table 9

Some examples of generated logical fallacies include: "I know someone who smoked cannabis and became
successful. Therefore, everyone who smokes cannabis will be successful.", "I know a few people who
spend too much time on social media and have no real-life friends. Therefore, social media is terrible
for society.". Tab. 10 presents examples of samples in our preference dataset. Our augmented fallacy
argument dataset consists of the train-test split in Tab. 2.

A.2 Prompting GPT-4 for Evaluation
To evaluate whether πθ for a given method θ generates logical arguments compared to πSFT, we use GPT-4
and evaluate the win-rate (e.g., how often does πθ produce better arguments) by prompting GPT-4 with:

Which of these arguments is better for the topic t and stance s:
1. πSFT(y|t, s)
2. πθ(y|t, s)
If both arguments are equally good, return 3 (Tie). The better argument is: <response>

We also evaluate how often models produce logical fallacies, which we call fallacy-rate, by prompting
ChatGPT with:

Consider the following topic t, stance s {supporting or counter} and argument a = πθ(y|t, s):
Topic: t
Argument: a
Out of all the following logical fallacy types {list of types from Tab. 9}
would you qualify a as one of these logical fallacies? If not - return "None".
If yes, which logical fallacy type is it? Let f-type be your answer. Return
{"topic": t, "text": a, "fallacy type": f-type }

B Preference Optimization

Preference optimization is a crucial step in aligning language models to generate outputs that meet user
preferences and objectives effectively. It involves the process of ensuring that the goals and preferences
of AI systems align with those of their human users. To demonstrate models are capable of learning
to distinguish logically sound text from logical fallacies, we assess the performance of four different
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preference optimization techniques, including PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023),
CPO (Xu et al., 2024) and KTO (Ethayarajh et al., 2024).

PPO. One widely used reinforcement learning optimization algorithm within RLHF is Proximal Policy
Optimization (PPO). PPO (Schulman et al., 2017) is particularly favored due to its stability and efficiency.
It iteratively updates the model’s policy parameters by maximizing the expected cumulative reward while
constraining the policy updates to a proximity threshold, preventing large policy changes that could
destabilize learning.

DPO. More recently, Rafailov et al. (2023) introduced Direct Preference Optimization, which skips
the reward modelling part that is necessary for PPO. DPO leverages an analytical mapping from reward
functions to optimal policies, to transform a loss function over reward functions into a loss function over
policies and avoids fitting a reward model, while still optimizing under given preferences.

CPO. Another recently introduced method is Contrastive Preference Optimization (CPO). Xu et al.
(2024) introduced CPO as a derivation of DPO, to address some shortcomings of DPO, including memory
and speed inefficiencies. (Xu et al., 2024) focuses mainly on machine translation, but the method can also
be adapted to regular preference optimization for other tasks. They also incorporate a behaviour cloning
regularizer to ensure that the policy does not deviate from the preferred data distribution.

KTO. Finally, the last method we evaluate is Kahneman-Tversky Optimization (KTO) (Ethayarajh et al.,
2024). The authors introduce the concept of human-aware loss functions (HALOs), which implicitly
model human biases and have been shown to perform better than non-HALOs. Their approach directly
maximizes the utility of generations instead of maximizing preference likelihood, as is commonly done.

C Details of Experimental Setup

C.1 Hyperparameters

Training Parameters. For both base models, we train πSFT and πθ on 2 A100 GPUs for 3 epochs, using
an Adam optimizer, with a learning rate of 2−4. For the LoRA configuration, we select a rank r = 16,
α = 32 and a dropout of 5−2. Regarding the specific training details of each method, we use β = 0.25
for DPO (Rafailov et al., 2023), which controls how much πθ deviates from the reference model πSFT.
For both CPO (Xu et al., 2024) and KTO (Ethayarajh et al., 2024), we use β = 0.1, which controls the
implicit reward. Regarding the reward model for PPO (Schulman et al., 2017), we use a binary logical
fallacy classifier we trained using the chosen responses as non-fallacies and the rejected responses as
fallacies. The classifier achieves accuracy and F1 over 95% in the detection of fallacy arguments, which
makes us confident in using the model as a reward model for this particular task and we use the logits as
rewards.
Decoding Parameters. At inference time, we generate arguments with the aligned models using the
same decoding strategy. We use nucleus-sampling with p = 0.75 and top-k sampling with k = 10.
Hyperparameter Selection for FIPO. To optimize our custom loss function, defined in Equation 5,
we conduct a series of experiments manipulating the hyperparameter λ (Equation 5) and the weights for
the cross-entropy loss (Equation 4). Our initial step involved tuning the weights for the loss function.
Given that our dataset consists of n pairs of preferred and dispreferred arguments as logical fallacies, it is
crucial to differentiate different fallacy classes. It is thus more suitable to set the weights for each fallacy
type as their frequency in the dataset, given by Equation 4 and the weight for the preferred responses as
little as possible, which we set as the minimum of all the fallacy frequencies. We also evaluate different
settings of λ, testing values of 0.1, 0.3, and 0.6. Our findings indicate that a higher λ effectively reduced
the number of fallacies produced by the policies but adversely impacted the argument quality (win-rate ).
Conversely, a λ of 0.1 had minimal impact on improving the fallacy-rate . After assessing the trade-offs,
we determined that a λ value of 0.3 provided the optimal balance between minimizing fallacies and
maintaining a reasonable win-rate .
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C.2 Context for Retrieval Augmented Generation (RAG)

We use the wiki-dpr database to add contextual information to prompts. RAG (Lewis et al., 2020) ensures
that arguments are grounded in factual accuracy and contextually relevant information by retrieving
relevant information from pre-existing knowledge sources. We retrieve relevant documents with the topics
and add them to the prompts as context. For example, given the topic Factory farming should not be
banned, the knowledge extracted includes "The practice of dairy production in a factory farm environment
has been criticized by animal welfare activists. The U.S. Food and Drug Administration states that no

’significant difference’ has been found between milk from treated and non-treated cows. [...]"

C.3 Licenses of Artifacts

The artifacts we employ, including datasets, packages, and models, are detailed in Tab. 11. Our usage of
these artifacts is consistent with their intended purposes.

C.4 Detailed Setup of Human Annotations in Amazon Mechanical Turk

The privacy of these collected annotations for the pairwise comparison is under the university policy, and
we use Amazon Mechanical Turk’s services. The webpage we use for the comparative study by human
annotators is provided in Fig. 8. The workers are paid fairly for their annotating work.

D Additional Experimental Results

D.1 Detailed fallacy-rates in Zero-Shot Setting

Tab. 7 presents the distribution of fallacies detected with GPT-4 in the zero-shot setting using Llama-2
and Mistral in scenario S1: Prompting the models without any explicit instruction using logical fallacies-
Simply providing a topic and stance and asking the model to generate an argument – and scenario S2:
including a definition of logical fallacy in the prompt, as well as two examples of logical fallacies and a
clear instruction to not generate a logical fallacy.

Fallacy Types Llama-2 Mistral ChatGPT Llama-2-RAG Llama-2 Mistral ChatGPT Llama-2-RAG

Faulty Generalization 13 10 9 12 9 8 6 8
False Causality 3 4 4 5 4 3 3 3
Appeal To Emotion 2 1 1 2 1 2 1 1
Fallacy of Relevance 1 1 - 3 2 1 2 1
False Dilemma 1 1 2 3 - - 1 1
Circular Reasoning 29 21 3 12 5 2 - 5
Fallacy of Logic 6 - 2 - - 2 1 -

Fallacy-Rate 55 38 21 37 21 18 14 19
Not A Fallacy 45 62 79 63 79 82 86 81

Table 7: Fallacy-rate according to GPT-4 on arguments generated by Llama-2, Mistral, ChatGPT, and a Llama-2
based RAG model on scenario S1 ( ) and scenario S2 ( ).

D.2 Results Regarding Win-Rate

Tab. 8 presents the results of win-rates computed by GPT-4 by comparing the policies with the correspond-
ing SFT models and comparing which models win more often.

Another interesting observation from Fig. 5 and Tab. 8 is the tie-rate. Annotating concise arguments to
determine superiority is challenging for humans, often leading to the simpler selection of Tie when both
arguments adequately address the topic. In fact, Tie was chosen more frequently in human evaluations
compared to the automatic evaluation by GPT-4.

D.3 Examples of Fallacies Produced during Inference

Tab. 7 shows a few examples of arguments and fallacies produced by the models on a set of three topics.

7310



Win-Rate πSFT πθ Tie πSFT πθ Tie

Llama-2 (7B) Mistral (7B)
πSFT vs. πDPO 35 61 4 49 48 3
πSFT vs. πPPO 38 49 13 48 49 3
πSFT vs. πCPO 43.5 52.5 4 46.75 51.5 1.75
πSFT vs. πKTO 40.5 46 13.5 44.5 51.5 4
πSFT vs. πFIPO 33 63.5 3.5 27 68 5

Table 8: Win-rate according to GPT-4. πθ is the aligned policy, where θ designates the respective alignment method
(e.g., when comparing πSFT with πDPO, then the value 61 means πDPO wins 61% of the time.

Acting takes children away from their 
education and normal activities.

Actors are rich and famous and should not be denied 
the opportunity to make more money. 

(Faulty Generalization)

School uniforms should not be allowed.
Schools uniform helps students to be more focused 

on their studies. 
(False Causality)

Executives are hard working.
Executive has access to money which 

makes them not hardworking. 
(False causality) 

Payday loans are risky.
Pay day loans are not good for people.

(Faulty Generalization)

Surrogacy Economics Education

Surrogacy is an advantage for people.

The surplus of babies will cause more crime. 
(Faulty Generalization)

France, German, Italy, and Spain all believe 
surrogacy is exploitation, and have it prohibited.
Surrogates are not exploited because they are paid. 

(Faulty Generalization)

It is important to have subsidized student 
loans, so that all students can go to college.

Student loan debt is a problem for many people.  
It should be stopped.

(False Dilemma)

Subsidizing journalism allows for efficient 
information.

By subsidizing journalists, they are being forced to 
tell us what we want to hear." 

(False Causality)

Wages LawReligion

It's impossible to abolish capital punishment.
Capital punishment is the only way to 

ensure that people who commit crimes are punished.
(false Dilemma)

People should be able to choose their lawyer.
People don't know the difference between a good 

lawyer and a bad one.
(Faulty Generalization)

Kids should not be exposed to prayer from other
religions.

Religion is a personal choice. Prayer in school
should be limited to the religion of the majority. 

(Ad Populum)

People should follow whichever religion they
choose.

Religion is not a good thing.  It is divisive.
(Faulty Generalization)

Figure 7: Examples of fallacious arguments generated at inference time by different models.

E Using Humans to Classify Arguments

We use annotators to compute agreement scores with GPT-4’s predictions, in order to justify the use of
GPT-4 and its reliability. Another annotation task was conducted prior, and involved annotators tasked
with classifying arguments into one of 13 fallacy types or as Not a Fallacy. Out Of 200 samples, each
annotated by three different workers, a majority agreement was reached in only 47% of cases. This is likely
due to the inherent difficulty of accurately identifying logical fallacies and leads to a loss of information
if no agreement is reached. As such, we believe the easiest way to involve humans in computing the
fallacy-rate is to task them with a binary decision instead.

F Fallacy-Informed Preference Optimization: Loss Definition

In our work, FIPO combines the CPO loss (Xu et al., 2024) for preference optimization with our
classification loss. We selected CPO because it achieves the optimal balance between win-rate and
fallacy-rate (Fig. 5, Tab. 5). Moreover, the CPO approach is designed to make the model learn rejections
more accurately, which fits our study.

CPO Loss CPO is a reference-free preference optimization method. It extends DPO (Rafailov et al.,
2023), modifying the DPO loss by using a Uniform model instead of a reference model. The DPO loss is
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defined as:

LDPO(πθ, πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]

The CPO loss first approximates the DPO loss using a uniform reference model:

L(πθ, U) = −E(x,yw,yl)∼D
[
log σ

(
β log πθ(yw|x)− β log πθ(yl|x)

)]

and defines the CPO loss as LCPO(πθ) = minθ

(
L(πθ, U)− E(x,yw)∼D[log πθ(yw|x)]

)
which combines

the preference loss with a negative log-likelihood (NLL) term. The min term ensures πθ does not deviate
from the preferred data distribution.

FIPO Loss Recall our preference dataset D = {t(i), s(i), y(i)w , y
(i)
l , k(i)}, with t the topic, s the stance,

yw the preferred valid argument, yl the dispreferred fallacious argument and k the fallacy type of yl.
Now recall the definitions for our classification loss in Section 4.4. We define the probability pk of each
fallacy type k as the output of the linear layer after we feed it the last hidden state after the forward pass
into the model πθ for both the preferred and dispreferred samples. That is, we perform a forward pass
with yw and yl and obtain the last hidden states from the last tokens: hθ(y{w,l}|t, s) = πL,Tθ (y{w,l}|t, s)
where L, T are the number of layers in the language model and the position of the last token respectively.
From the hidden states, we compute the probabilities using:

Pk
hθ
(y{w,l}|t, s) = Softmax(Whθ(y{w,l}|t, s) + b)k; with Softmax(zi) =

ezi
∑K

j=1 e
zj

(7)

where W is the linear layer’s weight matrix, b is the corresponding bias term. This way, we can compute
the log probabilities for the preferred and dispreferred samples ψ0(yw|t, s) = logP0

hθ
(yw|t, s) and

ψk(yl|t, s) = logPk
hθ
(yl|t, s) respectively. With these log probabilities, we can compute a cross-entropy

loss for both samples: {
Lw = −E(t,s,yw,yl,k) [ψ0(yw|t, s)]
Ll = −E(t,s,yw,yl,k) [ψk(yl|t, s)]

(8)

Additionally, we use weights in our classification loss defined as the frequency of the fallacy types in our
dataset to guide the model towards generating logical arguments by penalising fallacy errors more.

wk =
1

|D|

|D|∑

i=1

1{k(i) = k} For fallacy-types k; w0 = min
k
wk For the class ’Not a Fallacy’ (class 0)

Our method introduces a weighted cross-entropy loss which we use in addition to the preference loss:

LCLF = w0Lw + wkLl (9)

= −w0E(t,s,yw,yl,k)∼D
[
ψ0(yw|t, s)

]
− wkE(t,s,yw,yl,k)∼D

[
ψk(yl|t, s)

]
(10)

= −E(t,s,yw,yl,k)∼D
[
w0 logP0

hθ
(yw|t, s) + wk logPk

hθ
(yl|t, s)

]
(11)

FIPO is thus reference-free and the loss LFIPO is then defined with the following term:

LFIPO = LCPO + λLCLF

= −E(t,s,yw,yl,k)∼D
[
min
θ

log σ
(
β log πθ(yw|t, s)− β log πθ(yl|t, s)

)
+ log πθ(yw|t, s)

︸ ︷︷ ︸
LCPO term

+ λ
(
w0 logP0

hθ
(yw|t, s) + wk logPk

hθ
(yl|t, s)

)

︸ ︷︷ ︸
LCLF term

]
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Term Alternate Term (if any) Definition
Faulty Generaliza-
tion

N/A When a conclusion is drawn about all or many in-
stances of a phenomenon. It is an example of jump-
ing to conclusions.

False Causality N/A Statement that jumps to a conclusion implying a
causal relationship without supporting evidence.

Circular Reasoning N/A when the end of an argument comes back to the
beginning without having proven itself.

Ad Populum Appeal to Popularity an argument based on affirming that something is
real or better because the majority thinks so.

Ad Hominem Personal Attack Irrelevantly attack the person or some aspect of the
person making the argument.

Fallacy of Logic Logical Error An error in the logical structure of an argument.
Appeal to Emotion N/A Manipulation of the recipient’s emotions in order to

win an argument
False Dilemma Excluding Viable Alter-

natives
Presenting only two options or sides when there are
many options or sides.

Equivocation Use of Ambiguous Lan-
guage

When a key term or phrase in an argument is used in
an ambiguous way.

Fallacy of Extension Exaggerating Attacking an exaggerated or caricatured version of
your opponent’s position.

Fallacy of Rele-
vance

Irrelevant Argument Introducing premises or conclusions that have noth-
ing to do with the subject matter.

Fallacy of Credibil-
ity

Attacking the Character
of the Speaker

Attempts to disprove an argument by attacking the
character of the speaker.

Intentional Intentionally Wrong Ar-
gument

Some intentional (sometimes subconscious) action/-
choice to incorrectly support an argument

Table 9: Definitions of different types of logical fallacies.

Prompt Golden Fallacy
Generate a supporting argument for the
topic: Cannabis should be legal.

It’s not a bad thing to make marijuana
more available.

Why should we be worrying about legal-
izing cannabis when there are more im-
portant issues like poverty and hunger?
(Fallacy of Relevance)

Generate a supporting argument for the
topic: Urbanization is terrible for the
planet.

Urbanization increases pollution. Either we continue urbanization and de-
stroy the planet, or we stop urbaniza-
tion and hinder economic growth. (False
Dilemma)

Generate a supporting argument for the
topic: Research on embryonic stem cell
should not be tax subsidized because for
many it goes against their religious be-
liefs.

There are Christians who disagree with
doing research on embryonic stem cells.

Those who support tax subsidies for em-
bryonic stem cell research are godless
and immoral. (Ad Hominem)

Table 10: Examples of samples from the preference dataset used for preference optimization. Golden arguments are
retrieved from previous work (Saha et al., 2021), while fallacy arguments are generated using ChatGPT.
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Artifacts Citation Link License

LOGIC (Jin et al., 2022) https://github.com/causalNLP/logical-fallacy N/A
EXPLAGRAPHS (Saha et al., 2021) https://explagraphs.github.io/ CC BY-SA 4.0
Debatepedia (Cabrio and Villata, 2012) N/A N/A
PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2020) https://huggingface.co/docs/transformers/index Apache License 2.0
wandb N/A https://pypi.org/project/wandb/ MIT License
nltk (Bird and Loper, 2004) https://www.nltk.org/ Apache License 2.0
OpenAI API N/A https://platform.openai.com/docs/api-reference MIT License
scikit-learn (Pedregosa et al., 2011) https://scikit-learn.org/stable/ BSD License

Table 11: Licenses of the artifacts utilized in this work, including datasets and major software packages, along with
their respective licenses.

Figure 8: User interface used for human annotation on Amazon Mechanical Turk, where annotators compare pairs
of arguments generated by different models to determine the superior argument.
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