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Abstract

In the current era of rapidly growing digital
data, evaluating the political bias and factual-
ity of news outlets has become more important
for seeking reliable information online. In this
work, we study the classification problem of
profiling news media from the lens of politi-
cal bias and factuality. Traditional profiling
methods, such as pre-trained language mod-
els (PLMs) and graph neural networks (GNNs)
have shown promising results, but they face no-
table challenges. PLMs focus solely on textual
features, causing them to overlook the complex
relationships between entities, while GNNs of-
ten struggle with media graphs containing dis-
connected components and insufficient labels.
To address these limitations, we propose Me-
diaGraphMind (MGM), an effective solution
within a variational Expectation-Maximization
(EM) framework. Instead of relying on limited
neighboring nodes, MGM leverages features,
structural patterns, and label information from
globally similar nodes. Such a framework not
only enables GNNs to capture long-range de-
pendencies for learning expressive node repre-
sentations, but also enhances PLMs by integrat-
ing structural information and thus improving
the performance of both models. The exten-
sive experiments demonstrate the effectiveness
of the proposed framework and achieve new
state-of-the-art results. Further, we share our
repository1 which contains the dataset, code,
and documentation.

1 Introduction

The rise of the Internet has offered many opportuni-
ties to publish information and to express opin-
ions (Mehta and Goldwasser, 2023b). Concur-
rently, this easy means of distribution has accel-
erated the spread of misinformation and disinfor-
mation online which resembles news in form but

*Equal contribution.
†Corresponding author.
1https://github.com/marslanm/MGM_code

lacks the journalistic standards that ensure its qual-
ity (Fairbanks et al., 2018). Vosoughi et al. (2018)
has found that “fake news” spreads six times faster
and reaches much farther than real news. Any delay
in profiling in rapidly evolving digital landscapes
can lead to unchecked distribution of misleading
content (Liu et al., 2022). Profiling news outlets
through NLP pipelines offers a proactive approach
by enabling the early detection of potentially un-
reliable sources as soon as they publish content.
Since outlets with a history of biased or false in-
formation are more likely to do so again, profiling
the media in advance allows us to quickly identify
probable “fake news” by evaluating the reliability
of the source itself. (Nakov et al., 2024).

Early studies on automatic media profiling re-
lied solely on text characteristics (Battaglia et al.,
2018; Pérez-Rosas et al., 2017), which has proven
particularly challenging. The complexity increases
when the text features contain indeterminate noise,
leading to classification errors (Baly et al., 2018,
2020a). Moreover, traditional methods struggle to
capture the intricate relationships between entities,
such as media outlets, content they publish, and au-
diences. Panayotov et al. (2022) constructed media
graphs: nodes represent media, and edges represent
audience overlap between media. They proposed
a framework that captures both inherent and im-
plicit information about media through interactive
learning within the media ecosystem, addressing
the limitations of relying solely on textual features.

We analyze these media graphs and identify two
key challenges: disconnected components and la-
bel sparsity. Disconnected components prevent
GNNs from capturing long-range dependencies,
limiting their ability to learn expressive node rep-
resentations for classification tasks (Longa et al.,
2024; Zhang et al., 2024). Prior studies (Yin et al.,
2024; Tang et al., 2024) address similar issues by
using memory-based approaches that store global
information throughout the graph using external
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memory modules. However, these methods require
significant memory to store all node embeddings.

To tackle these challenges, we present MGM, a
novel method based on a variational Expectation-
Maximization (EM) framework that augments ex-
isting GNNs to capture and exploit global informa-
tion in media graphs. MGM seamlessly integrates
local and global patterns, node features, and la-
bels from globally similar nodes to enhance perfor-
mance. Unlike Graph Attention Networks (GATs)
(Veličković et al., 2018), which focus solely on
local neighborhoods, MGM employs an external
memory module to store precomputed node rep-
resentations of all nodes. This approach not only
reduces computational costs (Fey et al., 2021) but
also facilitates efficient node embedding retrieval.
Furthermore, MGM optimizes memory usage by
focusing on a small set of candidate nodes, guided
by a Dirichlet prior distribution (He et al., 2020).

The experimental results show that MGM sub-
stantially enhances the performance of baseline
GNNs, delivering a 10% increase across all eval-
uation measures on the Media Bias/Fact Check
(MBFC)2 data feature in the ACL-2020 (Baly et al.,
2020b) and the EMNLP-2018 (Baly et al., 2018)
datasets. Despite the lack of rich node features
in the media graph, we enhance the dataset by
scraping Articles and Wikipedia descriptions for
ACL-2020. Pre-trained language models (PLMs)
such as BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019b), DistilBERT (Sanh et al., 2019), and
DeBERTaV3 (He et al., 2021) are fine-tuned to pre-
dict political bias and factuality. Where textual data
of media are inaccessible, MGM’s representation-
based probabilities compliment the gap. Moreover,
integrating MGM’s probabilities with PLMs en-
hance the performance for both tasks. Our contri-
butions are as follows:

• We introduce MGM, an efficient and expres-
sive approach that enhances GNNs for reliable
news media profiling by leveraging global in-
formation and minimizing memory require-
ments via a sparse distribution.

• We illustrate that MGM consistently outper-
forms vanilla GNNs for the detection of factu-
ality and political bias across all baselines.

• We validate that integrating the MGM fea-
tures with the PLMs enhances performance
and yields state-of-the-art results.

2www.mediabiasfactcheck.com

2 Related Work

2.1 Political Bias and Factuality of Media

Early research on political bias detection focused
on the analysis of textual content (Afroz et al.,
2012; Battaglia et al., 2018; Pérez-Rosas et al.,
2017; Conroy et al., 2015). To improve the perfor-
mance, subsequent research added contextual in-
formation (Baly et al., 2020b; Hounsel et al., 2020;
Castelo et al., 2019; Fairbanks et al., 2018), includ-
ing the nuances of multimedia production (Huh
et al., 2018), the associated infrastructure (Houn-
sel et al., 2020), and the social context (Baly et al.,
2020b). Guo et al. (2022) used BERT (Devlin et al.,
2019) to model the linguistic political bias in news
articles. Fan et al. (2019) used annotated media
from Budak et al. (2016), analyzing articles for
political bias using distant supervision. Various
methods measured political bias, including analyz-
ing Twitter interactions (An et al., 2012; Stefanov
et al., 2020), often using small datasets only in En-
glish (Da San Martino et al., 2023; Nakov et al.,
2023a,b; Barrón-Cedeño et al., 2023a,b; Azizov
et al., 2023; Spinde et al., 2022).

Lei et al. (2022) improved political bias detec-
tion through discourse structures, Liu et al. (2019a)
detected frames in gun violence reporting, and Lee
et al. (2022) proposed framework for neutral sum-
maries. Bang et al. (2023) proposed a polarity
minimization loss to reduce framing bias in multi-
document summarization. Liu et al. (2023) ad-
dressed framing bias in event understanding with
a neutral event graph induction framework us-
ing graph-based approaches. Maab et al. (2024)
and Lin et al. (2024) leveraged LLMs and vector
databases for adaptability and explainability. Con-
tributions include frameworks for detecting politi-
cal bias (Trhlik and Stenetorp, 2024), media cred-
ibility via retrieval-augmented generation (RAG)
(Schlichtkrull, 2024), and scalable LLM bias as-
sessment (Bang et al., 2024). Demszky et al. (2019)
examined polarization on social media, Das et al.
(2024) and Zhao et al. (2024) analyzed event rela-
tionships in media narratives, and Kameswari and
Mamidi (2021) introduced a corpus quantifying
media bias. Kim and Guerzhoy (2024) showcased
LLMs role in analyzing U.S. cultural patterns and
media-driven behaviors.

The veracity of the news media has been ex-
plored using PLMs to estimate the reliability of
the source, correlated with the ratings of human
experts (Yang and Menczer, 2023). Mehta and
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Goldwasser (2023a) introduced a framework that
combines graph-based models, PLMs, and human
experience to profile news media, effectively iden-
tifying “fake news” with minimal human input. Re-
cent approaches, such as Baly et al. (2020b), used
gold labels and various English sources as features
to profile media with PLMs. Azizov et al. (2024)
conducted a cross-lingual evaluation of political
bias and factuality. Although the features of the
aforementioned studies are obtained from various
sources, they neglect the inherent relationships be-
tween the media.

To bridge this gap, graphs emerged as a compre-
hensive and effective framework for representation
learning (Mehta et al., 2022). However, this study
focused solely on the factuality task, despite hav-
ing available political bias labels and generalizing
only R-GCN. Mehta and Goldwasser (2023a) intro-
duced a model that combines graphs, LLMs, and
human input for profiling. Panayotov et al. (2022)
constructed a graph based on the principle of ho-
mophily, suggesting that similar media sources at-
tract similar audiences. The framework leveraged
the audience overlap of media outlets to build a
huge graph that models the interactions between
media and to learn expressive representation for
the nodes using GNNs. However, media graphs
are characterized by disconnected components and
scarce labels. To overcome these limitations, we
propose MGM to effectively capture the informa-
tion across the entire graph.

2.2 Graph Neural Networks
The current design of GNNs follows the message-
passing framework (Yang et al., 2022; Chen et al.,
2024; Zeng et al., 2024), where they learn node rep-
resentations by aggregating information from local
neighbors. However, media graphs suffer from
challenges such as multiple disconnected compo-
nents and limited labels, making it difficult for
GNNs to capture long-range dependencies and to
learn effective node representations (Longa et al.,
2024; Zhang et al., 2024). Recent efforts to inte-
grate external memory modules to store the em-
beddings of all nodes allow GNNs to capture long-
range dependencies across graphs (Yin et al., 2024;
Tang et al., 2024). In addition, relational GNNs
(Zhang et al., 2024) and event relation graphs (Lei
et al., 2022) improve the detection and analysis of
political bias. However, these methods typically re-
quire storing embeddings for all nodes in the graph,
resulting in high memory costs and low efficiency

during testing. Unlike previous approaches, MGM
focuses on a small set of candidate nodes, which are
more likely to be selected as global similar nodes
based on a Dirichlet prior distribution applied to
the training nodes (Sethuraman, 1994).

3 Methodology

In this section, we present the problem formulation
and provide a detailed description of the proposed
framework, which leverages features, structural pat-
terns, and label information from globally similar
nodes to enhance GNNs performance. Further-
more, MGM integrates with PLMs to overcome
the limitations of existing textual features to detect
factuality and political bias.

3.1 Problem Formulation
We formulate the news media profiling task as a
node classification problem in the semi-supervised
graph learning setting (Kipf and Welling, 2016;
Veličković et al., 2018), where each node repre-
sents a news media outlet, the edges capture rela-
tionships such as audience overlap, and the node
label indicates political bias or factuality, which
are available only for a small subset of nodes.
Specifically, let G = {V, E ,X,Yl} represents a
partially-labeled graph, where V = {vi}Ni=1 is a
set of nodes, E is a set of edges, and N is the total
number of nodes. The node features are denoted
as X ∈ RN×F , where F is the feature dimension.
Since most nodes are unlabeled, V can be divided
into labeled nodes V l with labels Yl, and unlabeled
nodes Vu. The labels Yl ∈ RNl×C are in a one-
hot form, where Nl and C represent the number of
labeled nodes and the number of classes, respec-
tively. The goal of semi-supervised learning is to
learn the model parameters θ by maximizing the
marginal distribution of the overall labeled nodes,
i.e., pθ(Yl | X, E) = ∏

n∈Vl pθ(yn | X, E) on the
training graph.

3.2 The MGM Framework
Following (Qu et al., 2019, 2021), we adopt a prob-
abilistic framework for node classification, treating
node representations Z as latent variables deter-
mined by a GNN. To improve the performance of
the model, we propose to augment the GNNs with
information about global similar nodes, i.e., nodes
in the entire graph that have similar node features
and local geometric structures. Specifically, we
denote the set of global similar nodes of node n as
tn ∈ {0, 1}Nl , where tnm = 1 indicates that node
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Figure 1: Key components of our proposed approach. The sections highlighted with a grey background represent
the architectural contributions introduced by our framework. GNNs store the representation of the media graphs
in an external global memory (Mg). A Dirichlet prior is used to select the distribution of sparse candidate nodes,
which are stored in the sampled memory (Ms). The parameters K and η control the number of candidate nodes
and their influence, balancing local and global information. Since PLMs miss some of the media representation,
they leverage MGM representation-based probabilities for the classification task. The detailed pipeline of MGM
integration with PLM can be seen in Figure 3 (Appendix D).

m is a global node similar to n. Similarly to node
representations, we also regard the similar node
indicator tn as a latent variable. Therefore, the
joint probability distribution of global information-
enhanced method can be factorized as follows:

pθ(Y
l,T,Z | X, E) = (1)

= pθ(Z | X, E)pθ(T | Z)pθ(Yl | Z,T) ,

where T = [tn]
⊤
n∈Vl are the global similar nodes

of all nodes.
However, finding global similar nodes with node

representations requires computing representations
for all nodes, which is expensive in terms of space
and time (Fey et al., 2021). To alleviate this, we
propose to store the embeddings of the labeled
nodes in the memory and to use them to find global
similar nodes. Consequently, the distribution of
T can be replaced by pθ(T | Ẑ), where Ẑ is the
embeddings of the labeled nodes in the memory,
i.e., V̂ l. In this case, we can directly retrieve the
representation from memory without computing
representations for all nodes, thus making it more
efficient to obtain the distribution of global similar
nodes for both training and prediction.

To reduce the memory size, we select global
similar nodes from a small set of candidate nodes,
which are a subset of the training nodes. As a re-
sult, only the embeddings of these candidate nodes
are stored in memory for prediction. To achieve
this, we assume that pθ(T | Ẑ) is a sparse dis-
tribution, concentrated on a few candidate nodes.
Since the candidate set is not known, we intro-
duce a latent variable ω for each node n, where
ωi ∈ [0, 1], s.t.

∑Nl
i=1ωi = 1. Here, ωi represents

the probability that the i-th node in the labeled
node is a candidate node. Inspired by (He et al.,
2020), we introduce a prior over ω, i.e. pα(ω) with

parameter α. This prior is designed to encourage
a sparse distribution over ω. Therefore, the joint
distribution of the method is now defined as:

pθ(Y
l,T,Z,ω | X, E , Ẑ) = pα(ω) (2)

pθ(Z | X, E) pθ(T | ω, Ẑ) pθ(Yl | T,Z) .

Next, we introduce the parameterization of our
probabilistic framework.
Prior distribution over ω. We use the Dirichlet
distribution as the prior distribution over ω, i.e.,
pα(ω) ∝ ∏N

i=1ω
αi−1
i , where αi is the concentra-

tion parameter of the distribution. The concentra-
tion parameter α is a positive value and a smaller
value of α prefers a sparser distribution over ω (He
et al., 2020). In our experiments, we set α < 1 to
encourage the sparse nodes distribution.
Prior distribution over node representations Z.
We model the prior distribution over node repre-
sentations as Gaussian distributions (Bojchevski
and Günnemann, 2018), which are obtained with
GNNs due to their effectiveness in graph-learning
tasks. Therefore, the prior distribution over Z is
defined as follows:

pθ(Z | X, E) = N (Z | GNNθ(X, E), σ21I), (3)

where σ21 is the learned variance of the prior and
GNNθ is an L-layer GNN with parameter θ.
Prior distribution over T. To obtain global simi-
lar nodes of node n, we define a prior distribution
over T as follows:

pθ(T | ω, Ẑ) = Mul(T | K, fθ(ω, Ẑ)), (4)

where Mul(·) represents the multinomial distribu-
tion, K denotes the predefined number of global
similar nodes, and fθ is designed as a parameter-
ized function that outputs the parameters of the
multinomial distribution.
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Prediction of label Y. Finally, we use node rep-
resentation Z and information from global similar
nodes to predict the label. Specifically, we leverage
the labels of global similar nodes and first predict
the label based on its representation:

pθ(Y | Z) = Cat(Y | Z) , (5)

where pθ(Y | Z) is formulated as a categorical
distribution. Then, we predict the label using the
labels of global similar nodes:

pθ(Y | T) ∝
∑

N,M∈V̂l

TNM ·YM , (6)

where TNM represents the indices of global similar
nodes for the predicted nodes set N. Furthermore,
YM denotes the one-hot labels of the nodes in
M, where M is the set of global similar nodes.
Finally, the predicted label distribution is defined
as follows:

pθ(Y | Z,T) = η pθ(Y | Z)
+ (1− η) pθ(Y | T) , (7)

where η ∈ [0, 1] is a trade-off hyper-parameter.
When η = 1, our model only uses local represen-
tations of nodes for prediction, which degrades to
vanilla GNNs. In contrast, when 0 < η < 1, our
model predicts the labels of the nodes using in-
formation from both local neighbors and global
similar nodes.

3.3 Training Process of MGM
Next, we explain how to learn the model param-
eters θ based on the graph. Ideally, the marginal
likelihood should be optimized during training:

pθ(Y
l | X, E , Ẑ) = (8)

=

∫

ω

∫

Z

∑

T

pθ(Y
l,T,Z,ω | X, E , Ẑ)dZdω .

However, the computation of maximizing the
marginal likelihood is intractable due to the
marginalization of latent variables. As a result, we
develop a variational Expectation-Maximization
(EM) algorithm (Qu et al., 2019) to optimize its
evidence lower bound (ELBO) instead:

LELBO(Y
l; θ, ϕ, α, λ) = −DKL(qλ(ω) || pα(ω))

−DKL

[
qϕ(Z | T,Yl) || pθ(Z | X, E))

]

−DKL

[
qϕ(T | Yl) || pθ(T | ω, Ẑ)

]

+ Eqϕ(T|Yl)qϕ(Z|T,Yl)

[
log pθ(Y

l | T,Z)
]
, (9)

Algorithm 1 The proposed approach for the node classifica-
tion task in news media profiling.

Input: A training graph with labeled nodes
G = {V, E ,X,Yl} and a test graph G̃ = {Ṽ, Ẽ , X̃}.
Output: Predicted labels Ỹ for the unlabeled nodes in G̃.

1: Pre-train pθ according to the message-passing framework.

2: while no converge do
3: ⊡ E-step
4: Calculate qϕ based on qϕ(T | Yl) and qϕ(Z | T,Yl).

5: Calculate qλ(ω) based on
∏Nl

i=1 ω
λi−1
i .

6: Update qϕ and qλ(ω) based on Equation 9.
7: ⊡ M-step
8: Calculate pθ based on Equation 2.
9: Update pθ based on pθ(Y

l,T,Z,ω | X, E) under the
distribution qϕ.

10: end while
11: Select the top M nodes that occupy 90% of the probabil-

ity mass and their corresponding memorized embeddings
as Ẑω .

12: Classify each unlabeled node in graph with pθ and mem-
ory Ẑω based on Equation (7).

where DKL[·||·] is the Kullback-Leibler (KL) diver-
gence, q represents the variational distribution to
approximate the model posterior distribution and
adheres to the following factorization form:3

qλ(ω)qϕ(T,Z,ω | Yl)qϕ(T | Yl)qϕ(Z | T,Yl) ,

where ϕ and λ are variational parameters.
Note that we use the mean-field assumption to

approximate the posterior of ω to simplify the
variational distributions. For computational conve-
nience, we assume that the variational distributions
of these latent variables have the same distribution
form as their prior distributions. Hence, we define
the variational distributions of ω, T and Z to be
Dirichlet, multinomial, and Gaussian distributions,
respectively.

Note that the KL divergence in Equation (9) has
a closed-form solution, and we approximate the ex-
pectation using a Monte Carlo method by sampling
from the variational distributions. In variational
EM, the variational parameters ϕ and the model
parameters θ are learned alternately. In the E-step,
we fix θ and update ϕ by minimizing the KL di-
vergence to approximate the true posteriors. In the
M-step, we fix ϕ and update θ by maximizing the
expected log-likelihood.

3.4 Prediction Process of MGM
After training, we expect to obtain a sparse distri-
bution qλ(ω), allowing us to select a subset of the

3We omit the dependence of variational distributions on
node features X, edges E and memory Ẑ for brevity.
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Model Fact-2020 Bias-2020

Macro-F1 Accuracy Average Recall Macro-F1 Accuracy Average Recall

Majority class 22.93 ± 0.00 52.43 ± 0.00 33.33 ± 0.00 19.18 ± 0.00 40.39 ± 0.00 33.33 ± 0.00
GCN 25.55 ± 0.94 52.55 ± 0.28 34.74 ± 0.49 38.58 ± 5.13 42.90 ± 4.81 41.48 ± 5.11
+ MGM 43.05 ± 2.03 53.37 ± 1.00 43.42 ± 1.53 42.77 ± 1.09 45.23 ± 1.70 43.80 ± 3.19
GAT 33.75 ± 3.12 54.18 ± 0.77 39.26 ± 2.12 41.22 ± 1.79 50.34 ± 0.78 48.06 ± 1.05
+ MGM 43.63 ± 2.80 55.11 ± 1.44 43.54 ± 2.71 50.41 ± 2.86 54.06 ± 1.98 51.96 ± 0.79
GraphSAGE 42.68 ± 2.55 58.02 ± 1.18 45.70 ± 1.25 39.35 ± 1.07 50.00 ± 1.32 49.09 ± 1.06
+ MGM 46.67 ± 1.58 59.00 ± 1.00 47.40 ± 1.67 46.77 ± 1.82 51.04 ± 0.67 50.18 ± 0.92
SGC 22.73 ± 0.07 51.39 ± 0.28 33.10 ± 0.18 35.37 ± 0.60 45.34 ± 0.97 45.80 ± 0.76
+ MGM 41.28 ± 1.42 53.95 ± 0.77 41.32 ± 1.22 39.11 ± 0.51 46.74 ± 0.78 47.10 ± 0.74
DNA 22.75 ± 0.03 51.74 ± 0.00 33.33 ± 0.00 24.27 ± 3.02 40.69 ± 0.73 35.03 ± 1.02
+ MGM 34.04 ± 1.60 50.81 ± 1.30 36.56 ± 1.98 33.22 ± 1.13 42.55 ± 2.50 38.59 ± 1.81
FiLM 43.32 ± 2.25 57.09 ± 0.77 44.46 ± 1.40 39.33 ± 2.76 47.55 ± 1.12 47.85 ± 1.07
+ MGM 49.68 ± 1.62 57.90 ± 2.39 49.94 ± 1.68 45.33 ± 2.76 48.25 ± 2.65 48.61 ± 2.84
FAGCN 24.77 ± 7.52 47.04 ± 3.71 36.12 ± 5.30 19.69 ± 0.65 39.88 ± 0.28 33.71 ± 0.31
+ MGM 48.77 ± 0.00 53.14 ± 1.66 49.19 ± 0.00 45.02 ± 3.00 45.69 ± 2.88 45.07 ± 3.00
GATv2 51.42 ± 2.32 61.13 ± 1.04 55.36 ± 1.74 48.48 ± 1.68 55.11 ± 1.85 53.07 ± 1.75
+ MGM 54.50 ± 2.55 62.72 ± 1.01 57.36 ± 1.06 52.41 ± 2.85 55.46 ± 2.45 54.00 ± 2.61

Table 1: Performance of GNN baselines and their MGM enhanced versions for the factuality and political bias tasks
on the ACL-2020 dataset, with the majority class baseline and SVM included as naïve and non-graphical methods.
The higher performance is highlighted in bold.

candidate nodes. In this case, we can select can-
didate nodes over a certain probability threshold,
thus reducing the memory size and improving the
efficiency for prediction. Specifically, we calculate
the expected value of qλ(ω) for each node i, which
is given by Eqλ(ω)[ωi] = λi/

∑Nl
j=1 λj , and then

we select the top-M nodes that occupy 90% of the
probability mass as candidate nodes.

We then leverage the embeddings of the mem-
orized candidate nodes Ẑω and pθ to predict the
labels of the test nodes ñ based on Equation (7).
We also provide an overview of the optimization
process of the MGM model for the news media
profiling in Algorithm 1.

3.5 Enhancing PLMs Predictions with MGM

Next, we demonstrate how MGM improves the
performance of PLMs by incorporating information
from global similar nodes. Given textual features
S, such as those from Articles and Wikipedia pages
for the media outlet, we first fine-tune the PLMs
using the cross-entropy loss. Then, we concatenate
the predicted label distribution from the PLMs with
MGM to obtain the final label distribution:

pψ,θ(Y | S,Z,T) = (10)

= Softmax(⊕(pψ(Y | S), pθ(Y | Z,T))W + b) ,

where ψ are the parameters of the fine-tuned PLMs,
⊕ is the concatenation operation, pψ(Y | S) is the
label distribution predicted by the fine-tuned PLMs,
pθ(Y | Z,T) is the label distribution predicted by

MGM, which is based on Equation (7), W and b
are the parameters of the linear classifier. More
details are given in Figure 3 and Appendix D.

4 Experiments

4.1 Research Questions
We explore the following research questions
(RQs):

• (RQ1) Can MGM tackle disconnected com-
ponents and label sparsity in media graphs for
factuality and political bias detection tasks?

• (RQ2) How do the number of global similar
nodes K and the trade-off hyper-parameter η
affect the performance of MGM?

• (RQ3) How does the memory module affect
the performance of MGM?

• (RQ4) How does MGM elevate the perfor-
mance of PLMs when faced with the chal-
lenge of missing text in Wikipedia or Articles?

4.2 Dataset
The dataset for factuality and political bias of news
media introduced by Baly et al. (2020b) comprises
859 media sources4, their domain names and cor-
responding gold labels. These labels are sourced
from MBFC, a platform supported by independent
journalists. Factuality is given on a three-point
scale: high, mixed, and low. Political bias is also

4https://github.com/ramybaly/
News-Media-Reliability
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Model Fact-2020 Bias-2020

Macro-F1 †/ § Average Recall †/ § Macro-F1 †/ § Average Recall †/ §

GCN 42.04 ± 1.91 / 43.05 ± 2.04 41.97 ± 1.77 / 43.42 ± 1.53 42.77 ± 1.10 / 42.37 ± 2.09 43.72 ± 3.15 / 43.80 ± 3.19
GAT 40.63 ± 3.28 / 43.63 ± 2.81 40.23 ± 2.88 / 43.54 ± 2.71 50.41 ± 2.86 / 47.12 ± 1.69 51.96 ± 0.79 / 49.39 ± 2.02
GraphSAGE 45.11 ± 1.44 / 46.68 ± 1.59 45.69 ± 1.42 / 47.40 ± 1.67 44.96 ± 1.72 / 46.78 ± 1.83 49.78 ± 0.66 / 51.04 ± 0.67
SGC 41.29 ± 1.42 / 39.65 ± 2.00 41.32 ± 1.22 / 40.04 ± 1.50 38.32 ± 1.41 / 39.12 ± 0.51 46.74 ± 0.56 / 47.10 ± 0.74
DNA 33.48 ± 3.69 / 34.05 ± 1.60 35.99 ± 2.24 / 36.56 ± 1.98 33.22 ± 1.13 / 32.25 ± 4.14 38.59 ± 1.81 / 36.63 ± 4.53
FiLM 45.12 ± 3.38 / 49.68 ± 1.62 45.58 ± 2.78 / 49.94 ± 1.68 43.98 ± 2.57 / 45.33 ± 2.76 47.86 ± 1.46 / 48.61 ± 2.84
FAGCN 48.77 ± 0.00 / 46.88 ± 2.88 49.19 ± 0.00 / 48.05 ± 2.65 45.02 ± 3.00 / 44.36 ± 1.24 45.07 ± 3.00 / 44.47 ± 1.36
GATv2 54.13 ± 2.93 / 54.50 ± 2.55 56.82 ± 1.94 / 57.36 ± 1.06 52.41 ± 2.85 / 50.44 ± 0.95 54.00 ± 2.61 / 52.02 ± 1.29

Table 2: Summary of the MGM results detailing the performance variation the use of between using full memory
(†) and a reduced (90%) memory allocation (§) for each GNN.

Model 60% labels 80% labels 100% labels

GAT 37.90 ± 0.41 39.22 ± 0.71 33.75 ± 3.12
+MGM 40.80 ± 3.83 41.99 ± 1.44 43.63 ± 2.80
FiLM 39.89 ± 1.69 38.59 ± 4.30 43.32 ± 2.25
+MGM 42.93 ± 4.00 38.62 ± 2.73 49.68 ± 1.62
FAGCN 24.32 ± 3.18 22.73 ± 0.00 24.77 ± 7.52
+MGM 34.10 ± 7.36 39.89 ± 4.04 48.77 ± 0.00
GATv2 40.54 ± 1.47 42.14 ± 2.76 51.42 ± 2.32
+MGM 42.98 ± 2.51 44.35 ± 2.14 54.50 ± 2.55

Table 3: The impact of different proportions of training
labeled data on the performance (Macro-F1) of MGM
for the Fact-2020 task.

on a three-point scale: left, center, right. Panay-
otov et al. (2022) used Alexa Rank5 tool to create
a graph based on audience overlap, using the 859
media as seed nodes. Media sources that shared
the same audience, as determined by Alexa Rank,
were connected with an edge. Alexa Rank returned
a maximum of five similar media sources for each
medium, which could be part of the initial seed
nodes or newly identified media. As depicted in
Figure 1, BBC, MSNBC, and Reuters are listed as
media sources in the MBFC dataset. The Alexa tool
identified five related media for BBC and MSNBC,
with an edge connecting them due to their shared
audience overlap. In the resulting graph, the nodes
represent the media sources, and the edges repre-
sent the percentage of audience overlap between
two media. We use these publicly available graph
data (the only one of its kind) to train GNNs for
the factuality and political bias of the news media.
More details are given in Appendix A.

4.3 Baselines

For evaluation, we consider two categories of
baselines, including GNN-based and PLM-based

5http://www.alexa.com/siteinfo

Model Macro-F1 †/ § Average Recall †/ §

GCN 47.20 ± 1.54 / 46.52 ± 1.52 48.13 ± 1.19 / 47.60 ± 1.16
GAT 54.99 ± 4.14 / 53.65 ± 2.79 57.15 ± 4.05 / 55.85 ± 2.27
GraphSage 46.54 ± 1.65 / 47.86 ± 1.38 49.09 ± 0.87 / 50.91 ± 1.07
SGC 44.60 ± 2.41 / 45.16 ± 2.29 45.82 ± 0.73 / 46.03 ± 1.80
DNA 34.93 ± 3.95 / 33.88 ± 1.52 36.71 ± 3.83 / 35.35 ± 1.68
FiLM 51.06 ± 2.24 / 51.47 ± 2.47 51.35 ± 2.16 / 52.13 ± 2.01

Table 4: Summary of the MGM results detailing perfor-
mance variations between using full memory (†) and
a reduced 90% memory allocation (§) for each GNN
across Fact-2018 task. The best performance per base
model is marked in bold.

models. For GNN models, we select eight well-
known models, including GCN (Kipf and Welling,
2016), GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), SGC (Wu et al., 2019),
DNA (Fey, 2019), FiLM (Brockschmidt, 2020),
FAGCN (Bo et al., 2021) and GATv2 (Brody et al.,
2022). More details on these GNN baselines are
provided in the Appendix B. For PLMs, we use four
state-of-the-art encoder models, including BERT,
RoBERTa, DistillBERT, and DeBERTaV3. Next,
we compare our results with state-of-the-art results
for the factuality and political bias of the news me-
dia (Panayotov et al., 2022; Mehta et al., 2022).

5 Discussion

5.1 Overall Performance

To answer RQ1, we conduct factuality and po-
litical bias classification experiments in a semi-
supervised setting. The experimental results re-
ported in Table 1 demonstrate that MGM can im-
prove the performance of existing GNNs in almost
all cases. For example, when applied to the Fact-
2020 dataset, MGM improves the Macro-F1 perfor-
mance of GCN, GAT, SGC, and DNA by 17.5%,
9.8%, 18.5%, and 11.4%, respectively. Similarly,
for Bias-2020, we can observe that GNNs equipped
with MGM consistently outperform the correspond-
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Model Macro-F1 Average Recall

Majority class 22.47 ± 0.00 33.33 ± 0.00
SVM 41.78 ± 0.00 48.89 ± 0.00

GCN 48.63 ± 2.19 48.16 ± 2.49
+ MGM 49.21 ± 1.54 51.13 ± 1.19
GAT 46.63 ± 3.53 52.25 ± 4.20
+ MGM 54.99 ± 4.14 57.15 ± 4.05
GraphSAGE 41.77 ± 0.22 48.65 ± 0.22
+ MGM 47.86 ± 1.38 50.91 ± 1.07
SGC 41.06 ± 0.35 44.91 ± 0.43
+ MGM 45.16 ± 2.29 46.03 ± 1.80
DNA 28.24 ± 1.23 33.26 ± 1.03
+ MGM 34.93 ± 3.95 36.71 ± 3.83
FiLM 46.75 ± 0.79 50.92 ± 1.36
+ MGM 51.47 ± 2.47 52.13 ± 2.01

Table 5: Performance of GNN baselines and their MGM
enhanced versions on the Fact task of EMNLP-2018,
with the majority class baseline and SVM included as
naive and non-graphical methods. The highest perfor-
mance is highlighted in bold.

ing base models in all evaluation measures.
We conducted a series of experiments using dif-

ferent proportions of training labels to assess the
performance of MGM as shown in Table 3. The
results indicate a clear trend: as we increase the per-
centage of training labels, the model performance
improves significantly compared to the baseline.
Due to limited data, using a smaller percentage
of training labels results in modest improvements
over the baseline, constraining the model’s ability
to generalize well to unseen data. MGM effectively
addresses RQ1 by leveraging global similar nodes
in media graphs with disconnected components and
label sparsity for the detection of factuality and po-
litical bias. Our evaluation extends to Fact-2018
and depicts MGM’s stable performance across dif-
ferent datasets presented in Table 5. The results
show that MGM is able to consistently improve
all the baselines. Given the reasons described in
Appendix A, experiments are not conducted on the
political bias task of the EMNLP-2018.

5.2 Impact of the Number of Global Similar
Nodes

Next, we turn to RQ2 to understand the impact
of the number of global similar nodes K. Specif-
ically, we investigate the performance of MGM
with different values of K. As shown in Figures
2(a) and 2(b), leveraging a few global similar nodes
can improve the performance of the base GNNs.
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Figure 2: MGM performance across all GNNs for both
tasks, evaluated for different values of K (global similar
nodes) and η (trade-off hyper-parameter).

For example, both GCN and SGC exhibit similar
patterns, peaking in performance atK=3 on the fac-
tuality task. The performance of GNNs enhanced
with MGM decreases when K exceeds a certain
threshold. This is attributed to the introduction of
noise by incorporating excessive information from
numerous global similar nodes.

5.3 Impact of the Trade-off Hyper-Parameter
Recall that in Section 3.2, we introduced a hyper-
parameter η that influences the predicted label dis-
tribution. When η = 1, MGM only relies on lo-
cal node representations for prediction, degrading
to a vanilla GNN. In contrast, when η < 1, our
model incorporates information from both local
neighbors and global similar nodes to predict the
node labels. To further investigate the impact of
the trade-off hyper-parameter η, we analyze the
sensitivity of MGM to its value. The experimental
results are shown in Figures 2(c) and 2(d). We find
that compared to η = 1, MGM yields improved
performance when η < 1 in most cases. For ex-
ample, GCN achieves its best performance when
integrated with MGM using an η value of 0.8. As
a result, the effectiveness of incorporating informa-
tion from global similar nodes highlighted in the
results validates the RQ2.

5.4 Effectiveness of the Memory Module
Recall that in Section 3.4, MGM leveraged a Dirich-
let prior to select a small set of candidate nodes
and stored their node embeddings in the sampled
memory (MS) for prediction. To compare the ef-
fectiveness of the sampled memory module to the
full memory module (MG), which stores all the
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Model

Fact-2020 Bias-2020

Articles Wikipedia Articles Wikipedia

Macro-F1 Accuracy Avg Recall Macro-F1 Accuracy Avg Recall Macro-F1 Accuracy Avg Recall Macro-F1 Accuracy Avg Recall

STAGE 1

BERTBase 38.27 63.37 39.65 34.64 59.30 37.98 65.38 68.02 64.01 58.70 62.79 58.69
RoBERTaBase 33.55 62.79 37.65 25.29 59.30 33.36 63.34 65.70 62.41 58.73 62.78 58.71
DistilBERTBase 35.27 62.21 37.65 25.27 61.01 33.30 65.04 67.44 63.91 58.71 62.85 58.72
DeBERTaV3Base 25.28 61.02 33.35 40.81 61.05 40.75 58.72 62.80 58.69 59.65 63.37 59.15

STAGE 2

BERTMGMGATv2 76.18 81.98 71.86 73.69 81.40 70.92 83.74 84.30 83.88 82.25 82.56 81.40
RoBERTaMGMGATv2 69.89 80.23 66.85 72.73 79.65 70.52 85.51 86.05 85.38 81.32 81.98 80.71
DistilBERTMGMGATv2 74.55 81.40 71.48 73.03 80.23 70.84 87.20 87.79 86.90 80.68 81.40 80.25
DeBERTaV3MGMGATv2 64.87 77.91 62.97 74.56 81.98 73.20 87.71 88.37 87.70 80.26 80.81 79.28

Table 6: Stage 1: Performance of logistic regression (meta-learner) on PLM probabilities with missing media
attributed as probabilities (0.0, 0.0, 0.0). Stage 2: Performance of the logistic regression (meta-learner) on PLMs
probabilities + MGMGATv2 probabilities for missing media for factuality and political bias of the ACL-2020 dataset.

Model Fact-2020 Bias-2020

Macro-F1 Accuracy Avg Recall Macro-F1 Accuracy Avg Recall

Node classification (NC) (Mehta et al., 2022) 68.90 63.72 - - - -
InfOP Best Model (Mehta et al., 2022) 72.55 66.89 - - - -
GRENNER (Panayotov et al., 2022) 69.61 74.27 - 91.93 92.08 -

STAGE 3 DeBERTaV3MGMGATv2 + BERTMGMGATv2 78.43 83.04 75.03 92.64 92.98 92.67

STAGE 4
DeBERTaV3MGMGATv2 + BERTMGMGATv2 + MGMFiLM 79.72 ± 0.00 84.21 ± 0.00 76.54 ± 0.00 93.04 ± 0.26 93.45 ± 0.23 93.19 ± 0.26
DeBERTaV3MGMGATv2 + BERTMGMGATv2 + MGMFAGCN 75.69 ± 3.49 81.29 ± 3.09 72.24 ± 3.35 93.08 ± 0.24 93.45 ± 0.23 93.15 ± 0.34
DeBERTaV3MGMGATv2 + BERTMGMGATv2 + MGMGATv2 77.96 ± 0.30 82.69 ± 0.29 74.84 ± 0.16 92.71 ± 0.46 93.10 ± 0.44 92.72 ± 0.52

Table 7: Previous studies (Mehta et al., 2022; Panayotov et al., 2022) and our best results. Stage 3: We concatenate
the probabilities of the best PLMs from Wikipedia and Articles and use logistic regression to make predictions.
Stage 4: We use probabilities from the Stage 3 model and concatenate with the probabilities of three GNNs
(MGMFiLM, MGMFAGCN and MGMGATv2).

training node embeddings, we conducted a perfor-
mance comparison between the two memory mod-
ules. The experimental results are given in Table 2,
and they answer RQ3 that MGM using sampled
memory achieves a performance comparable to
MGM when using full memory. For example, for
the GAT model, the performance is higher when us-
ing sampled memory compared to when using full
memory. This suggests that the sampled memory
effectively captures sufficient information, allow-
ing MGM to maintain its performance even with
limited memory. The experimental results on the
Fact-2018 dataset reported in Table 4 also show
consistent trends which validate the versatility of
the memory module for media graphs.

5.5 Impact of Integrating MGM with PLMs

To answer RQ4, we integrate the MGM probabil-
ities with those from deep learning models based
on textual features, and we observe that this sub-
stantially enhances the performance. Initially, with
zero probabilities for missing textual features, we
achieved accuracies of 68.02% for political bias in
Articles, 63.37% for Wikipedia, 63.37% for factual-
ity in Articles, and 61.05% for Wikipedia, respec-
tively (see Table 6). Replacing the zero probabili-
ties with the best MGMGATv2 improve the perfor-
mance by up to 30%. Further concatenating the

best model probabilities in stage three led to addi-
tional gains, and in stage four, our models outper-
formed previous state-of-the-art results in political
bias and factuality (Panayotov et al., 2022; Mehta
et al., 2022) (can be seen in Table 7).

6 Conclusion & Future Work

Our study focused on the underexplored problem
of profiling news media in terms of factuality and
political bias. To address the shortcomings of ex-
isting media graphs, we introduced MediaGraph-
Mind (MGM), an innovative EM framework that
significantly enhances the performance of GNNs
by leveraging globally similar nodes. The external
memory module of MGM efficiently stores and
retrieves node representations, addressing the chal-
lenge of test-time inefficiency by selecting global
similar nodes from a smaller candidate set based
on a sparse node selection distribution. Our exper-
iments demonstrate that the integration of MGM
features with PLMs consistently improves over ex-
isting baselines and establishes a new state-of-the-
art results.

In future work, we plan to explore multi-graph
fusion, multi-task learning, and ordinal classifica-
tion for diverse graph structures in media profiling.
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Limitations

Media graphs originated from the ACL-2020 me-
dia and constructed using the Alexa Rank siteinfo
tool, which is currently unavailable. Although the
graphs aid in the task by capturing the inherent and
hidden relationships between media, building such
graphs is complex and resource-intensive. The re-
search largely relies on U.S.-centric definitions of
political bias (left/center/right), which may not ac-
curately capture the ideological biases present in
news outlets from other cultural or political con-
texts. Moreover, the available graphs are limited to
the 2020 dataset. We are actively working on con-
structing graphs for the latest benchmarks, which
include a larger number of media sources and up-
dated MBFC rankings. Moreover, we faced limi-
tations in collecting Articles and Wikipedia texts
from media sources from the ACL-2020 dataset
due to the inaccessibility of their websites.

Ethical Statement

Optimizing model architectures to enhance energy
efficiency in training and inference operations is
crucial to reducing environmental impact. Instead
of relying on extensive computational resources to
train complex models, which significantly increase
carbon emissions, we propose improving model
performance with less computational power. The
Articles from the news media pages were compiled
in strict compliance with legal and ethical standards.
We carefully reviewed the terms of use for all web-
sites to ensure that our data collection processes
adhered to them. Our compilation focused solely
on publicly available data, avoiding paywalls and
subscription models. Transparent data collection
methods were designed to minimize the impact
on source websites, including limiting the access
frequency to prevent resource strain.
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Appendix

A GNN Data & Task Statistics

Table 8 describes the statistics of the graph data.
The factuality is given on a three-point scale: high,
mixed, and low. Political bias is also on a three-
point scale: left, center, right. Panayotov et al.
(2022) used the Alexa Rank6 (down temporarily) to
create a graph based on audience overlap, using 859
media from ACL-2020 (Baly et al., 2020b) as seed
nodes. Media sources that shared the same audi-
ence, as determined by Alexa, were connected with
an edge, provided they met a specific score thresh-
old. Alexa Rank was set to return a maximum of
five similar media sources for each medium; these
could be part of the initial seed nodes or newly iden-
tified media. The primary graph constructed using
ACL-2020 dataset media as seed nodes is desig-
nated as level-0. In this graph, the nodes represent
the media sources that publish news or informa-
tion, and the edges represent the audience overlap
for a pair of nodes. The procedure was repeated
five times, leading to the formation of five distinct
graph levels. With every subsequent iteration, the
graph expanded, encompassing media sources pre-
viously identified by Alexa Rank. This iterative
expansion resulted in a progressive increase in both
the number of nodes and edges at each level.

Upon analyzing the constructed graphs, we ob-
served several disconnected components, each sig-
nifying a unique sub-network of nodes. Naturally,
as the graph levels increased, the number of these
components decreased. This can be attributed to
the fact that an increase in nodes offers more op-
portunities for components to merge. We opt for
graph level 3 to train GNNs, as detailed in Table
8: it represents the most granular level publicly
accessible with fewer disconnected components for
both factual and bias tasks. The Alexa Rank tool
also generated features for each node in the graph,
which we treat as node attributes while training
the GNNs. These features include site rank, to-
tal sites linked in, bounce rate, and the daily time
users spend on the site. These features are the nu-
meric values that are described and normalized in
the study (Panayotov et al., 2022). We refer to the
GNN training tasks as Fact-2020 and Bias-2020 for
the factuality and political bias tasks, respectively,
since both tasks are derived using ACL-2020. As
graph-based data becomes increasingly accessible,

6http://www.alexa.com/siteinfo

Property Specification

Nodes 67,350
Edges 200,481
Features 5
Discon. comp. 44
Avg. nodes / comp. 1,500
labeled Nodes 859 (1%)
Unlabeled Nodes 66,492 (99%)
Tasks Fact-2020, Bias-2020
Factuality task dist. high (162), mix (249), low (453)
Political Bias task dist. left (243), center (272), right (349)
Training Split 687 (80% of 1%)
Test Split 172 (20% of 1%)

Table 8: Statistics about the level-3 graph constructed
from ACL-2020 (Panayotov et al., 2022).

we focus exclusively on the graph and its inherent
features, promoting an approach tailored to such
structures. In contrast, (Panayotov et al., 2022) op-
erates in a supervised setting and uses specialized
textual features (e.g., Articles, Wikipedia, Twitter,
and YouTube) that are not publicly available. The
proposed MGM addresses the unique challenges of
the media graph, offering solutions to the research
questions described in the designated section 4.1.

Table 9 describes the statistics of the level-3
graph constructed from EMNLP -2018 (Panayotov
et al., 2022) media in the same way explained in
Section 4.2. The EMNLP-2018 dataset comprises
1,066 news outlets, rated on a 3-point scale for fac-
tuality (high, mixed, low) and a 7-point scale for
political bias (extreme-left, left, center-left, center,
center-right, right, and extreme-right) (Baly et al.,
2018). A subsequent analysis (Baly et al., 2020b)
identified that the labels center-left and center-right
serve as vague intermediate categories, leading to
their exclusion. Furthermore, to minimize subjec-
tivity in the annotator decisions, the extreme-left
and extreme-right categories were amalgamated
into the left and right categories, respectively. This
adjustment resulted in a simplified 3-point politi-
cal bias scale (left, center, right) and reduced the
dataset to 859 outlets as shown in Table 8, pub-
lished in ACL-2020, which we consider as our
main dataset in section 4.2.

B Baselines

This section summarizes the baseline GNN models
that we use as the backbone for our proposed MGM
framework to enhance their learning capabilities in
the presence of sparsity challenges.
GCN (Kipf and Welling, 2016): GCN simplifies
the convolution operation to alleviate the problem
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Property Specification

Nodes 78429
Edges 232530
Features 5
Discon. comp. 88
Avg. nodes / comp. 911
labeled Nodes 1066 (1.35%)
Unlabeled Nodes 77363 (98.65%)
Tasks Fact-2018
Factuality task dist. high (265), mixed (268), low (542)
Training Split 852 (80% of 1.35%)
Test Split 214 (20% of 1.35%)

Table 9: Statistics about the level-3 graph constructed
from EMNLP-2018.

Property Specification

Tasks Fact-2020, Bias-2020
Factuality task dist. high (295), mix (119), low (58)
Political Bias task dist. left (152), center (181), right (139)
Training Split 387
Test Split 85

Table 10: Statistics about Articles and Wikipedia col-
lected from ACL-2020 (Panayotov et al., 2022) dataset.

Hyper-parameter BERT RoBERTa DistilBERT DeBERTaV3

Batch size 80 100 120 80
Max length 512 512 512 512
Epochs 3 4 5 5
Learning rate 2e-5 2e-5 2e-5 2e-5

Table 11: Experimental setup for PLMs.

of overfitting and introduces a renormalization trick
to solve the vanishing gradient problem. We set the
number of hidden neurons to 16, and the number
of layers to 2. ReLU (Nair and Hinton, 2010) is
used as the activation function. We do not dropout
between GNN layers.

SGC (Wu et al., 2019): SGC shows that the
graph convolution in GNNs is actually Laplacian
smoothing, which smooths the feature matrix so
that nearby nodes have similar hidden represen-
tations. SGC removes the weight matrices and
non-linearity’s between layers. In our experiments,
we set the number of hidden neurons to 256, the
number of layers to 2, and the number of hops at
2. We do not dropout between GNN layers.

GraphSAGE (Hamilton et al., 2017): Graph-
SAGE learns the embeddings of the nodes in the
network by sampling and aggregating features from
the local neighborhoods of the nodes. GraphSAGE
has different variants based on different feature ag-
gregators, and we adopt GraphSAGE with a mean-
based aggregator as our baseline. In our experi-
ments, we set the number of hidden neurons at 64,
and the number of layers to 2. ELU (Clevert et al.,

2016) is used as the activation function. We do not
dropout between GNN layers.

GAT (Veličković et al., 2018): GAT incorporates
the attention mechanism into the propagation step,
allowing each node to compute its hidden states by
attending to its neighbors using self-attention and
multi-head attention strategies. we set the number
of hidden neurons to 128 per attention head and
the number of layers to 3. The number of heads for
each layer is set to 4, 4 and 6. ELU (Clevert et al.,
2016) is used as the activation function. We do not
dropout between GNN layers.

DNA (Fey, 2019): DNA uses the jumping
knowledge network to enhance the performance of
GNNs. This approach enables selective and node-
adaptive aggregation of neighboring embeddings,
even when they have different localities within the
graph. We set the number of hidden neurons to 128,
the number of heads to 8, and the number of layers
to 4. ReLU (Nair and Hinton, 2010) is used as an
activation function. We set the dropout rate to 0.5
between GNN layers.

FiLM (Brockschmidt, 2020): FiLM learns em-
beddings of nodes in the network by training a
linear message function that is conditioned on the
features of neighboring nodes. This allows FiLM
to effectively capture and incorporate contextual
information from neighbors into node embeddings.
We set the number of hidden neurons to 320 and
the number of layers to 4. We set the dropout rate
to 0.1 between GNN layers.

FAGCN (Bo et al., 2021): FAGCN adopts a self-
gating attention mechanism to learn the proportion
of low-frequency and high-frequency signals. By
adaptively modeling the frequency signals, FAGCN
achieves enhanced expressive performance in cap-
turing graph structure and features. We set the
number of hidden neurons to 16, and the number
of layers to 4. We set the dropout rate to 0.5 be-
tween GNN layers.

GATv2Conv (Brody et al., 2021): GATv2 in-
troduces a dynamic graph attention variant that
reorders internal operations, resulting in a signifi-
cantly higher level of expressiveness compared to
GAT. We set the number of hidden neurons to 64
per attention head and the number of layers to 3.
ELU (Clevert et al., 2016) is used as an activation
function. We do not dropout between GNN layers.
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C Experimental Settings

As mentioned in Section 3.3, MGM is trained using
the variational EM, which iteratively maximize the
ELBO and the expectation of log-likelihood func-
tion through an E-step and an M-step. To optimize
the model, we use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.001. The
early stopping strategy is implemented with pa-
tience in 10 epochs. In each experiment, we train
MGM for 50 iterations to obtain the results. In
order to encourage a sparse node selection distri-
bution, we set the Dirichlet hyper-parameter α to
0.1. The hyper-parameter K, which determines the
number of global similar nodes, is selected from
the range [1, 7] through a tuning process. Its value
is optimized to achieve the best performance in the
validation set for the node classification task. Simi-
larly, the trade-off hyper-parameter η, which strikes
a balance between the utilization of local repre-
sentations and the information from global similar
nodes is chosen from the range [0.6, 1] and is tuned
to obtain the optimal performance in the validation
set for the node classification task. The model is
trained for 5 epochs using different random seeds
and mean ± standard deviation is reported. We
use the GNN module implementations provided by
PyTorch Geometric7 (Fey and Lenssen, 2019).

We optimize hyper-parameters to achieve the
best performance on the validation set. In our exper-
iments, we randomly selected 70% of the dataset
as the training set, 10% as the validation set, and
20% as the test set. Due to the relatively small
size of the training set, we combined the training
and validation sets to create a larger final training
set. The trade-off hyperparameter eta manages the
balance between global and local information that
the model considers for the final prediction. Figure
2 shows the Macro-F1 achieved by MGM with dif-
ferent GNNs on the test set at different values of K
(number of global similar nodes) and eta (trade-off
between local and global similar nodes).

Evaluation Measures We evaluate our frame-
works using the mean of three key measures:
Macro-F1, Accuracy, and Average Recall. Macro-
F1 balance precision and recall for each class, ideal
for imbalanced datasets. Accuracy measures over-
all correctness, while Average Recall highlights the
model’s sensitivity to different classes. For GNNs

7https://github.com/pyg-team/pytorch_
geometric/tree/master/examples

experiment, we used an Nvidia 2080 Ti GPU, and
for PLMs experiment, we used an NVIDIA A6000
48GB GPU.

D Collecting Articles & Wikipedia

Articles.The article collection involves the follow-
ing steps: (i) We obtained media sources from the
ACL-2020 dataset. (ii) During the article link pars-
ing, we parsed front-page article links from these
media sources based on the criteria of selecting
only internal links with more than 65 characters
and excluding menu button links. (iii) In the article
collection stage, we use the selected article links to
retrieve the titles and full text of the articles, using
scripts and manual testing to ensure effective text
extraction, with up to 30 news articles per media.
(iv) Finally, the post-processing stage involved for-
matting the collected data in JSON format. In addi-
tion, we specifically targeted sections that focused
on political, economic, and social issues sections.

Wikipedia. We started by searching for the name
of the outlet on the Internet to find the Wikipedia
link. We ensure that the link leads to a Wikipedia
page specifically about the media outlet. We then
retrieved the text from the Wikipedia page using
its consistent HTML format. Finally, the post-
processing stage involved formatting the collected
data in the required JSON format.

In total, from 859 media sources, we have col-
lected data from 472 media sources with Articles
and Wikipedia. Table 10 provides detailed statistics.
Moreover, Figure 3 provides our detailed pipeline
for integrating MGM with PLMs.

E MGM on Lower Memory Allocation

We conduct experiments on 60% and 80% and com-
pared with existing results. The results in Table 12
show that MGM performance produces compara-
ble results even in 80% of total nodes, but worse in
60% due to fewer training samples.

F MGM Scales to Larger Graphs

We primarily focus on addressing the challenges
that GNNs face with media graphs containing
disconnected components and insufficient labels.
However, MGM also shows strong performance
when applied to large datasets. We conducted a
node classification experiment using the Ogbn-mag
(Hu et al., 2020) dataset, which includes 1,939,743
nodes. The experimental results in Table 13 show
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Figure 3: The pipeline of integrating MGM with PLMs. Stage 1: We use logistic regression (meta-learner) to
make predictions on probabilities obtained from PLMs on 472 media sources. For the remaining media sources,
we assign [0.0, 0.0, 0.0] probabilities. Stage 2: We use the probabilities produced by PLMs and, for the missing
ones, we integrate the probabilities from the best GNN MGMGATv2. The logistic regression is then used to make
the predictions. Stage 3: We concatenate the probabilities of the best PLM in Wikipedia and Articles and use
logistic regression to make predictions. Stage 4: We use the probabilities obtained from Stage 3, which involve
concatenating these probabilities with those generated by three GNNs (MGMFiLM, MGMFAGCN, and MGMGATv2)
across five different run seeds. Subsequently, logistic regression is employed to make predictions, and the scores are
calculated using the standard deviation.

GNN + MGM (Memory %) Fact Bias

FAGCN + MGM (60%) 39.07 43.09
FAGCN + MGM (80%) 41.31 46.02
FAGCN + MGM (90%) 46.88 44.36
FAGCN + MGM (100%) 48.77 45.02
Gatv2 + MGM (60%) 45.06 45.27
Gatv2 + MGM (80%) 49.77 52.44
Gatv2 + MGM (90%) 54.51 50.44
Gatv2 + MGM (100%) 54.13 52.41

Table 12: Performance comparison of GNN + MGM at
different memory allocations.

Model Ogbn-mag

GraphSAGE 46.32 ± 0.73
+ MGM 47.94 ± 0.65
GAT 44.54 ± 0.63
+ MGM 46.28 ± 0.25
FiLM 41.72 ± 0.22
+ MGM 43.32 ± 0.27
GATv2 45.41 ± 0.42
+ MGM 46.74 ± 0.36

Table 13: Performance comparison on Ogbn-mag.

that existing GNNs augmented with MGM can
achieve improved performance on large datasets.

G Training Time of MGM

We compare the training times of MGM and a
vanilla GNN, finding that while MGM requires
slightly more training time, the increase is within
an acceptable range. In particular, this marginal
increase in computational cost is justified by the
significant improvement in Macro-F1 scores in Ta-
ble 14, demonstrating that MGM significantly im-
proves model performance without imposing a con-
siderable training burden.

Model Task Cost Time (m) Macro-F1

GATv2 Fact 7.41 51.42
+ MGM Fact 13.04 54.50
FiLM Fact 4.73 43.32
+ MGM Fact 7.76 49.68
GATv2 Bias 4.50 48.48
+ MGM Bias 7.97 52.41
FiLM Bias 3.48 39.33
+ MGM Bias 6.03 45.33

Table 14: Training Times Comparison between Vanilla
GNN and MGM on ACL-2020.
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