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Abstract

Simultaneous Machine Translation (SiMT) gen-
erates target translation before receiving the
whole source sentence and faces a serious hallu-
cination problem. In contrast, traditional offline
machine translation (OMT) models exhibit sig-
nificantly fewer hallucinations. Motivated by
this disparity, we propose Knowledge Distil-
lation for SiMT (KD-SiMT), a simple yet ef-
fective method that utilizes the OMT model to
mitigate hallucinations in SiMT. Experiments
on Zh→En and De→En tasks demonstrate that
KD-SiMT effectively reduces hallucinations
and enhances the SiMT performance. Further-
more, we systematically investigate the defi-
ciencies in SiMT models related to serious hal-
lucinations and the effect of KD-SiMT. Specif-
ically, we design targeted tasks and metrics
to quantitatively evaluate the components in
SiMT models from the perspectives of model
structure and knowledge acquisition. Our anal-
yses reveal that inaccurate source representa-
tions and imbalanced cross-attention are more
likely to occur in SiMT models when generat-
ing hallucinations, while KD-SiMT alleviates
these issues. Besides, we find that KD-SiMT
equips SiMT models with sufficient faithful-
ness knowledge in training, thus reducing hal-
lucinations.

1 Introduction

Simultaneous Machine Translation (SiMT) aims
to generate target translation before receiving the
whole source sentence, which acquires models to
learn both translation ability and a read/write policy
that decides between outputting a target word and
waiting for a new source word (Ma et al., 2019;
Elbayad et al., 2020b; Liu et al., 2021; Miao et al.,
2021b; Wang et al., 2022).

However, this complex training objective hin-
ders the SiMT models from learning translation
ability, thus triggering serious hallucinations (Han
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Figure 1: Percentage of hallucination sentences for each
SiMT model and OMT model. We choose wait-k (Ma
et al., 2019) and MMA (Ma et al., 2020) as representa-
tive SiMT models.

et al., 2022), which means SiMT models generate
fluency but unfaithful translation. This is extremely
harmful to translation quality and disturbs user trust
(Lee et al., 2018; Guerreiro et al., 2023).

In contrast, with the focused training objective,
traditional offline machine translation (OMT) mod-
els generate fewer hallucinations (Dale et al., 2022;
Guerreiro et al., 2023). For a clear comparison, we
conduct a manual analysis of hallucinations1. As
shown in Figure 1, the percentage of hallucinations
in SiMT is 20%, while in OMT is only about 3%.

This observed performance gap motivates our
approach. In this paper, we propose Knowledge
Distillation for SiMT (KD-SiMT), a simple yet
effective method that utilizes OMT models to re-
duce hallucinations in SiMT models. KD-SiMT en-
hances the SiMT model by incorporating additional
supervised signals derived from the hidden rep-
resentations and output probabilities of the OMT
model. Experiments on Zh→En and De→En SiMT
tasks indicate that KD-SiMT significantly reduces
hallucinations and improves translation quality.

Furthermore, we decouple SiMT models into

1We train two typical SiMT models (Ma et al., 2019, 2020)
and an OMT model with the same training set on Zh→En
SiMT task. Then we randomly select 100 sentences under
various latency levels to count the proportion of hallucination
sentences in their translations manually. All models are based
on Transformer (Vaswani et al., 2017).
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distinct components for individual analysis to iden-
tify deficiencies in SiMT models associated with
hallucinations and to understand how KD-SiMT
reduces these hallucinations. Specific tasks and
metrics are designed for quantitative assessment.
Our analyses involve examining the SiMT models
from two primary perspectives: model structure
and knowledge acquisition. From the perspective
of model structure, we introduce the Auto-Encoder
task and our defined Contribution Standard Devi-
ation (CSD) to evaluate the encoder and decoder
in SiMT models separately. Our evaluation reveals
that inaccurate source representations and imbal-
anced cross-attention assignment are more likely
to occur in SiMT models, and KD-SiMT effec-
tively addresses these issues within the respective
components. From the perspective of knowledge
acquisition, we categorize the acquired knowledge
into fluency knowledge and faithfulness knowledge.
We find that SiMT models acquire adequate flu-
ency knowledge but limited faithfulness knowledge,
which is crucial for faithful translation. KD-SiMT
can provide sufficient faithfulness knowledge for
SiMT models during training. Our contributions
can be summarized as follows:

• We propose KD-SiMT to reduce hallucina-
tions in SiMT models with the aid of OMT
models. Our proposed method is simple and
compatible to various SiMT models. Experi-
mental results on Zh→En and De→En SiMT
tasks prove the effectiveness of KD-SiMT.

• We design specific tasks and metrics to quan-
titatively evaluate the components in SiMT
models from the perspectives of model struc-
ture and knowledge acquisition. Our analy-
ses identify deficiencies related to hallucina-
tions in different components of SiMT models
and demonstrate the enhancements KD-SiMT
brings to these components.

2 Background

Prefix-to-Prefix Framework We consider a source
sentence as x = (x1, ..., xM ) and its corresponding
target sentence y = (y1, .., yN ). When the SiMT
model generates yn in the SiMT process, only a
prefix of source sentence is available (Ma et al.,
2019). We denote the source prefix as x≤gn , where
gn is the number of tokens in x≤gn . Therefore, the
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Figure 2: The overview of our proposed KD-SiMT.
"HRD" means Hidden Representation Distillation, and
"OPD" means Output Probability Distillation.

decoding probability of y is calculated as:

p (y | x) =
N∏

n=1

p(yn | x≤gn ,y<n) (1)

SiMT Model Structure Existing SiMT models are
commonly based on Transformer (Vaswani et al.,
2017), which are formalized as:

el = Encoder(el−1)

sl = Decoder(eL, sl−1), l = 1, 2, ..., L
(2)

where L is the number of layers in the encoder and
decoder. It is noted that SiMT models typically em-
ploy unidirectional encoders to simulate streaming
source inputs in the training process (Elbayad et al.,
2020a; Ma et al., 2020; Zhang and Feng, 2022b).

3 Knowledge Distillation Solution

We propose KD-SiMT, which utilizes the OMT
model as the teacher and the SiMT model as the
student to reduce hallucinations in SiMT. Figure
2 provides an overview of our method. Further
details are introduced below.

3.1 Hidden Representation Distillation
For the hidden representations, KD-SiMT intro-
duces Hidden Representation Distillation (HRD)
to make SiMT models learn the representations of
encoder and decoder layers in OMT model. The
cosine similarity is chosen as distillation loss:

LHRD =
∑

l∈{2,4,6}
(2− cos(elt, e

l
s)− cos(slt, s

l
s))

(3)

where elt,s
l
t are hidden representations of the l-th

encoder and decoder layer in the teacher model,
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and els,s
l
s are counterparts in the student model.

Notably, we focus on distillation on even layers to
reduce computation overhead during training.

3.2 Output Probability Distillation
Hinton et al. (2015) proposed that knowledge could
be transferred by allowing student models to learn
from soft labels provided by teacher models. To
transfer the acquired knowledge from the OMT
model to the SiMT model, we use KL-divergence
loss to perform the Output Probability Distillation
(OPD) as follows:

LOPD =
N∑

i=n

pnt log
pnt
pns

(4)

where N is the length of the target sequence, pnt and
pns describe the output probabilities of OMT and
SiMT models at the n-th decoding step. Through
OPD, SiMT models are encouraged to learn to gen-
erate more faithful translations.

3.3 Joint Training Framework
Due to the task gap between OMT and SiMT, using
a pre-trained OMT as a teacher directly is adverse
to KD (Zhang et al., 2021). To mitigate this chal-
lenge, we jointly train both teacher and student
models. The embeddings of OMT and SiMT mod-
els are shared to reduce training overhead. Since
the parameters of OMT model are not utilized in
the inference process, KD-SiMT does not require
additional computational resources for application.

The objective of the translation task is defined
as cross-entropy loss for both teacher and student
models, which are denoted as LTCE and LSCE.
The total loss is calculated in the following manner:

L = LTCE + LSCE + λ1LHRD + λ2LOPD (5)

where λ1 and λ2 are the super parameters.

4 Experiments

4.1 Settings
Implemented Model SiMT models are catego-
rized into two groups based on their policies: fixed
policies and adaptive policies (Zhang and Feng,
2022a,c). Following the setting in Ma et al. (2020),
we validate the effectiveness of KD-SiMT on both
fixed and adaptive policies:

• wait-k (Ma et al., 2019): A fixed policy that
initially reads k tokens, followed by alternat-
ing between writing and reading one token.

• multipath-wait-k (m-wait-k) (Elbayad et al.,
2020a): A fixed policy, which randomly sam-
ples different k during training and is similar
to wait-k during inference.

• MMA (Ma et al., 2020): An adaptive policy
that employs monotonic attention (Arivazha-
gan et al., 2019) to make read/write decisions.

• ITST (Zhang and Feng, 2022b): An adaptive
policy that quantifies the information weight
of each source token and makes the read/write
decisions based on the received information.

• HMT (Zhang and Feng, 2023): An adaptive
policy, which models the read/write decision-
making process as the Hidden Markov Model.

Most existing SiMT models are still based on
the encoder-decoder Transformer architecture
(Vaswani et al., 2017). Therefore, we believe that
choosing the OMT model with a similar structure
to SiMT models allows for a fairer comparison
and a more accurate components analysis. We set
λ1 = 0.1 and λ2 = 1 in our experiments. More
details are provided in Appendix A.

Datasets For Zh→En SiMT task, we utilize LDC
corpus (2.1M) for training, NIST 2008 for valida-
tion and NIST 2003,2004,2005,2006 for test. Byte-
pair encoding (BPE) (Sennrich et al., 2016) is used
in both Chinese and English, with a vocabulary size
of 30k and 20k. For De→En SiMT task, we choose
WMT15 (4.5M) as the training set, newstest 2013
as the validation set and newstest 2015 as the test
set. A joint 32K vocabulary is applied.

Evaluation Metric We utilize BLEU (Papineni
et al., 2002) to measure the translation quality, and
Average Lagging (AL) (Ma et al., 2019) for latency.
Besides, we use the Hallucination Rate (HR) (Chen
et al., 2021) for analyzing hallucinations.

4.2 Main Results

Translation Quality We present the translation
quality under various latency levels of different
SiMT models in Figure 3. For fixed policies, KD-
SiMT enhances translation quality across all la-
tency settings. In Zh→En task, KD-SiMT yields
an average improvement of 2.65 BLEU for wait-k
and 2.25 BLEU for m-wait-k. Similarly, in De→En
task, the improvements are 0.99 BLEU and 1.57
BLEU respectively. For adaptive policies, SiMT
models with KD-SiMT also achieve higher BLEU
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Figure 3: Translation quality against latency of different SiMT models with/without KD-SiMT on Zh→En and
De→En SiMT tasks.
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Figure 4: Hallucination Rate (%, ↓) against latency of different SiMT models with/without KD-SiMT on Zh→En
and De→En SiMT tasks.

scores, especially for MMA. Additional numerical
results are provided in Appendix B.

Hallucination Rate The HR of different SiMT
models are shown in Figure 4. With the applica-
tion of KD-SiMT, HR notably decreases across
all models under various latency levels, especially
for wait-k (0.78 on Zh→En, 1.04 on De→En) and
MMA (0.76 on Zh→En, 0.67 on De→En). These
results indicate that KD-SiMT effectively reduces
hallucinations in both fixed and adaptive policies.

5 Components Analysis for SiMT Models

To further investigate hallucinations in SiMT, we
decouple the SiMT model into components and
analyze their performances on Zh→En SiMT task.
From the perspective of model structure, we sep-
arately evaluate the encoder and decoder in the
SiMT model. From the perspective of knowledge
acquisition, we categorize the knowledge obtained
in the SiMT model into fluency knowledge and
fluent knowledge for individual analysis. For each
component, specific tasks and metrics are designed.
With these metrics, we can identify the specific
deficiencies in each component when the SiMT
model generates hallucinations (Sec.5.1) and ana-

lyze the impacts of KD-SiMT on these components
(Sec.5.2). Besides, ablation studies and case stud-
ies are also conducted to further validate the effec-
tiveness of KD-SiMT in reducing hallucinations of
SiMT models (Sec.5.3 and 5.4).

5.1 Deficiencies in Each Component

We assess each component in SiMT models in the
following. To investigate the association between
the performance of these components and halluci-
nations, we divide samples into hallucination sam-
ples and non-hallucination samples for SiMT mod-
els2, evaluating each group separately.

5.1.1 Source Representations in Encoder

Motivation The source representations from the
encoder contain semantic information of source
inputs, and inaccurate representations can trigger
hallucinations (Weng et al., 2020). Hence, it is valu-
able to assess the quality of source representations
in SiMT encoders when generating hallucinations.

2We categorize samples according to Hallucination Rates
(HR) (Chen et al., 2021). Those with HR exceeding 20% are
classified as hallucination samples, while the rest are consid-
ered non-hallucination samples.
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Model
BLEUAE ↑ CSD ↓ Sfluency ↑ Sfaith ↑

All H. N.H. All H. N.H. All H. N.H. All H. N.H.

SiMT

wait-k (Ma et al., 2019) 91.61 81.92 95.05 7.19 9.97 6.50 -138.64 -167.61 -131.39 -107.58 -215.05 -80.71
m-wait-k (Elbayad et al., 2020a) 89.97 80.83 94.62 8.48 10.64 7.94 -149.06 -165.64 -144.92 -99.80 -187.20 -77.95
MMA (Ma et al., 2020) 86.67 74.82 93.05 8.29 11.97 7.37 -140.36 -151.52 -137.57 -108.52 -214.45 -82.04
ITST (Zhang and Feng, 2022b) 90.84 79.74 96.60 8.26 10.37 7.73 -152.95 -158.75 -151.53 -111.52 -213.03 -86.14
HMT (Zhang and Feng, 2023) 89.10 77.73 91.94 7.97 11.34 7.21 -145.83 -154.52 -142.39 -102.64 -151.18 -90.33

OMT(Vaswani et al., 2017) 96.03 − − 5.67 − − -149.95 − − -86.65 − −

Table 1: Evaluation of existing SiMT models and OMT model on Zh→En SiMT task about the source representations,
cross-attention assignment and acquired knowledge. "All" means the evaluation results on the complete test samples.
"H." and "N.H." mean the corresponding evaluation results on hallucination samples and non-hallucination samples.
"BLEUAE" means the BLEU on AE task. Note that all values of "CSD" in the table are in units of ×10−3.

Source 在参加比赛的八十个国家中 ,南韩是第二十二个、
北韩是第二十三个入场 的国家。

Reference
among the 80 nations participating in competitions , south ko-
rea was the 22nd and north korea the 23rd nation to enter
the stadium .

AE 在参加比赛的八十个国家中 ,南韩是第二十二个入
场 的 (missing: 北韩是第二十三个入场 的)国家。

SiMT south korea is the twenty-second and the 23rd place to com-
pete in 80 countries .

Table 2: Example illustrating the quality source
representations when hallucinations happen. The
"reconstruction errors" in AE, "hallucinations" in
SiMT, and corresponding "correct tokens" for AE and
SiMT are marked.

Evaluation Due to poor interpretability, directly
assessing the semantic information contained in the
source representations is challenging. Therefore,
we employ the Auto-Encoder (AE) task to verify
whether these representations accurately convey the
information of source tokens. Specifically, we ex-
tract the source representations from a well-trained
SiMT model, and then train an additional decoder
to reconstruct the source inputs from the source rep-
resentations. The perfect reconstruction of source
sentences indicates high-quality source representa-
tions. Conversely, incomplete or incorrect recon-
struction suggests that semantic information is in-
accurate in these source representations. We argue
that the quality of source representations is corre-
lated with hallucinations in SiMT. Taking Table 2
as an example, when reconstruction errors arise, the
corresponding part in the translation from the SiMT
model also exhibits hallucinations. Therefore, we
employ BLEU (Papineni et al., 2002) to assess the
AE performance of various SiMT encoders, thus
evaluating the source representations.

Results The results (BLEUAE) are presented in
Table 1. It is evident that reconstructing the original
source sentences from the source representations
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Figure 5: Attention visualization for SiMT and OMT on
hallucination case. We choose wait-k as a representative
of SiMT models, and the attention weights are from the
top decoder layer of both models.

of SiMT encoders is more challenging than from
those of the OMT encoder. This indicates a more
severe information inaccuracy of the source repre-
sentations in SiMT models. Besides, the AE perfor-
mance on hallucination samples is inferior, while
on non-hallucination samples, it is notably better,
even closely approximating OMT. This suggests
that SiMT models produce worse source represen-
tations when generating hallucinations.

5.1.2 Cross-attention Assignment in Decoder
Motivation The cross-attention mechanism is
widely applied in decoders to choose suitable infor-
mation from source input for generating tokens at
each step. Existing studies (Lee et al., 2018; Yan
et al., 2022) indicate through qualitative analysis
that imbalanced attention assignments in transla-
tion models will exacerbate the hallucinations. As
illustrated in Figure 5, during the SiMT model gen-
erating hallucination tokens, the cross-attention is
imbalanced, consistently assigning higher attention
scores to some meaningless tokens and failing to
select appropriate information. In contrast, infor-
mation from each token is equally selected in the
OMT model and faithful translation is produced.
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Figure 6: Comparison of different components in SiMT models with/without KD-SiMT.

Evaluation We introduce a metric to quantita-
tively evaluate the imbalance in cross-attention,
thus assessing the performance of various SiMT de-
coders. For each source token xm (1 ≤ m ≤ M ),
we denote its contribution score as cm, which is
calculated as follows:

cm =
max
n

{cmn}
∑M

m′=1max
n

{cm′n}
, 1 ≤ n ≤ N (6)

where cmn is the attention score on xm when gen-
erating the n-th target token yn. When cross-
attention is imbalanced, attention scores are con-
centrated on a few source tokens, causing signif-
icant contribution score disparities among them,
while balanced attention maintains uniformity
among them. Consequently, we define the Con-
tribution Standard Deviation (CSD) as the metric,
which is computed as follows:

CSD =

√∑M
m=1(cm − c̄)2

M
(7)

where c̄ is the mean of cm. A larger CSD means
more imbalanced attention assignment.

Results The results (CSD) in Table 1 demon-
strate that cross-attention in SiMT models is gener-
ally more imbalanced compared to the OMT model.
Similarly, CSD values on hallucination samples are
obviously higher, which means the imbalance in
cross-attention is more acute when SiMT models
generate hallucinations. These results indicate that
imbalanced cross-attention is a deficiency in SiMT
models associated with hallucinations.

5.1.3 Knowledge Acquisition Analysis
Motivation During training, models extract
knowledge necessary for tasks from the provided
training data. In translation tasks, such as OMT or

SiMT, the knowledge that models need to learn can
be categorized into two types:

• fluency knowledge: Models need to learn how
to generate fluent and natural sentences with-
out syntax errors. This type of knowledge is
also crucial for Language Modeling (LM).

• faithfulness knowledge: The target sentences
produced by translation models should keep
semantic consistency with their corresponding
source sentences.

To that end, hallucinations in SiMT may stem
from acquiring sufficient fluency knowledge but
inadequate faithfulness knowledge. To verify this
view, we separate these two types of knowledge
and conduct a quantitative assessment respectively.

Evaluation Existing studies (Hinton et al., 2015)
show that the knowledge gained in models is re-
flected in output probabilities, which we select as
our evaluation metric. For fluency knowledge, we
initially train a language model on the same cor-
pus used for the translation task. In this way, the
language model acquires the same fluency knowl-
edge as translation models, while not including any
faithfulness knowledge. We denote the sentence
generation probabilities from the language model
as plm, which can effectively score the fluency of
the output from translation models, thereby serv-
ing as a suitable measure for evaluating fluency
knowledge. To evaluate faithfulness knowledge,
we utilize pmt, the probability that a translation
model accurately decodes the reference. Under
these grounds, we define Sfluency and Sfaith to
assess fluency knowledge and faithfulness knowl-
edge, which are calculated as follows:

Sfluency = logplm

Sfaith = logpmt
(8)
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For both Sfluency and Sfaith, larger values indicate
more acquired knowledge.

Results The results in Table 1 indicate that
Sfluency of SiMT models and OMT model are com-
parable in both hallucination and non-hallucination
samples. This suggests that SiMT models possess
adequate fluency knowledge, even when generat-
ing hallucinations. However, all SiMT models gain
lower Sfaith than the OMT model, with a more
pronounced gap in hallucination samples. In con-
trast, on non-hallucination samples, SiMT mod-
els achieve Sfaith comparable to the OMT model.
This reveals that SiMT models lack the correspond-
ing faithfulness knowledge for correctly translating
the sentences in hallucination samples.

5.2 Impact of KD-SiMT

To validate the impact of KD-SiMT on these com-
ponents, we compare the performance of compo-
nents in SiMT models with and without KD-SiMT.
The results are shown in Figure 6.

For the source representations, the results
(BLEUAE) are presented in Figure 6(a). All SiMT
encoders with KD-SiMT achieve higher AE perfor-
mance, which means that KD-SiMT improves the
quality of source representations in SiMT models.

For the cross-attention assignments, the results
(CSD) in Figure 6(b) demonstrate that CSD of
SiMT models with KD-SiMT are lower than those
without KD-SiMT. This proves that KD-SiMT
makes the attention assignment in SiMT decoders
more balanced, rather than only focusing on a small
portion of source information.

For acquired knowledge, the results in Figure
6(c) show that all SiMT models with KD-SiMT
archive higher Sfaith. This indicates that SiMT
models with KD-SiMT can learn more faithfulness
knowledge. In contrast, Sfluency (Figure 6(d)) of
SiMT models with or without KD-SiMT are even
the same, which means there is no extra fluency
knowledge from the OMT model. These results
further reveal SiMT models’ preference for fluency
knowledge and lack of faithfulness knowledge.

Based on these analyses, it is evident that SiMT
models exhibit serious deficiencies in different
components when hallucinations happen, includ-
ing inaccurate source representations, imbalanced
cross-attention assignment, and insufficient faith-
fulness knowledge. Concurrently, KD-SiMT en-
hances these components, thus improving the trans-
lation quality and reducing hallucinations.

0 2 4 6 8
AL

28

30

32

34

36

38

40

BL
EU

KD-SiMT
w/o HRD-E
w/o HRD-D
w/o OPD

(a) m-wait-k

6 8 10 12 14 16
AL

30

32

34

36

38

40

42

44

BL
EU

KD-SiMT
w/o HRD-E
w/o HRD-D
w/o OPD

(b) MMA

Figure 7: Effect of distillation modules about translation
quality against latency on Zh→En task. "w/o HRD-E"
and "w/o HRD-D" respectively mean without the hidden
representation distillation in encoder and decoder. "w/o
OPD" means without output probability distillation.

Model BLEUAE CSD Sfaith HR

m-wait-k + KD-SiMT 93.58 6.92 -95.76 5.40
-w/o HRD-E 91.16 6.90 -96.93 5.74
-w/o HRD-D 93.34 7.47 -95.70 5.63
-w/o OPD 93.49 5.79 -98.40 5.79

MMA + KD-SiMT 88.33 6.65 -90.77 4.29
-w/o HRD-E 87.87 6.77 -91.41 4.81
-w/o HRD-D 89.12 8.48 -89.62 4.53
-w/o OPD 88.05 6.40 -101.89 4.56

Table 3: Effect of each knowledge distillation module
in ability improvements on Zh→En task. Note that all
values of "CSD" in the table are in units of ×10−3.

5.3 Ablation Study

To explore the effect of each distillation module,
we conduct ablation studies on Zh→En SiMT task
using m-wait-k and MMA, representing fixed and
adaptive policies respectively. The results are pre-
sented in Figure 7 and Table 3.

In Figure 7, it is evident that models with all dis-
tillation modules consistently exhibit the highest
performance across various latency levels, indicat-
ing the effectiveness of each distillation module.
For m-wait-k, each module has a roughly equiva-
lent impact on model performance. For MMA, the
influence of OPD is most significant. The effect
of these distillation modules on hallucinations is
shown in Table 3. We can see that all modules
alleviate hallucinations in SiMT.

Table 3 also presents the effect of each distil-
lation module on the abilities of different compo-
nents in SiMT models. Models without HRD in
the encoder ("w/o HRD-E") exhibit inferior perfor-
mance on the AE task. Conversely, models without
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Figure 8: Attention Visualization for MMA and MMA
with KD-SiMT on hallucination case.

HRD in the decoder ("w/o HRD-D") exhibit the
highest CSD, while models without OPD acquire
the least faithfulness knowledge. Therefore, each
distillation module contributes to improving spe-
cific components in SiMT models, aligning with
our expectations. Besides, HR scores in Table 3
also reveal that all distillation modules contribute
to reducing hallucinations in SiMT models.

5.4 Case Study
Figure 8 displays the cross-attention visualization
for MMA with and without KD-SiMT. MMA ex-
hibits imbalanced cross-attention, focusing too
much on the token "就" (means "on") and lead-
ing to hallucinations. In contrast, MMA with
KD-SiMT demonstrates a more balanced cross-
attention. Intriguingly, we observe that MMA with
KD-SiMT performs a more effective read/write pol-
icy to decide when to continue translating, avoiding
the generation of tokens lacking supporting evi-
dence from the current source inputs. Specifically,
as depicted in Figure 8, when "就" is fed, MMA
with KD-SiMT chooses to wait for the subsequent
source tokens until it encounters the source token
"决定" (means "decision"), while MMA continues
to generate text, eventually producing hallucina-
tion tokens "early start of the debate". This phe-
nomenon may offer insights into how imbalanced
cross-attention disrupts SiMT models and triggers
hallucinations, which we intend to explore in future
research. More cases can be found in Appendix C.

5.5 Manual Analysis
To further evaluate the effect of KD-SiMT on re-
ducing hallucinations in SiMT, we conduct a man-
ual evaluation on Zh→En SiMT task. Specifically,

4 2 0 2 4 6 8 10 12
AL

10

20

30

40

50

%

wait-k
wait-k+KD-SiMT
MMA
MMA+KD-SiMT

Figure 9: Percentage of hallucination sentences in SiMT
models with/without KD-SiMT on Zh→En.

we randomly sample 100 sentences respectively in
the outputs of wait-k and MMA and calculate the
percentage of sentences exhibiting hallucinations.
Figure 9 presents the results, indicating an average
reduction of 8.8% for wait-k and 14.0% for MMA.
Consequently, we can conclude that KD-SiMT ef-
fectively mitigates the hallucination issue across all
latency levels in both fixed and adaptive policies.

6 Related Works

Simultaneous Machine Translation According to
the used read/write policies, existing SiMT meth-
ods can be divided into fixed policy and adaptive
policy. For fixed policy, Ma et al. (2019) proposed
wait-k, which reads k tokens before starting trans-
lation. Elbayad et al. (2020a) proposed multipath
wait-k, which enhances wait-k by randomly sam-
pling k during training. Zhang et al. (2021) utilized
knowledge distillation to guide the SiMT encoders
mapping accurate source representations. Zhang
and Feng (2021) used the mix-of-experts structure
to realize the universal SiMT model across different
latency levels. For adaptive policy, Gu et al. (2017)
used reinforcement learning to make read/write de-
cisions. Ma et al. (2020) utilized multi-head mono-
tonic attention to guide the SiMT model in learning
an adaptive policy. Miao et al. (2021b) proposed
a generative framework with a latent variable to
dynamically decide between "read" and "write".
Zhang and Feng (2022b) added a module mea-
suring the received information and proposed an
information-based policy. Zhang and Feng (2023)
used Hidden Markov Model to realize an adaptive
policy based on the hidden state probability. Never-
theless, the hallucination problem in existing SiMT
models is still serious.
Hallucinations in Machine Translation For OMT
model (Vaswani et al., 2017; Ma et al., 2023; Liang
et al., 2024; Zhang et al., 2025), there are fewer
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hallucinations when the inputs are in-domain and
are not disturbed (Dale et al., 2022; Guerreiro et al.,
2023). Consequently, existing studies about halluci-
nations in OMT mainly focus on out-of-domain and
noised scenarios. Weng et al. (2020) used multi-
task learning to enhance the faithfulness of OMT.
Miao et al. (2021a) pointed out that one reason
for hallucinations is the overconfidence of the lan-
guage model mechanism in the decoder. Yan et al.
(2022) found that the deficient encoder and vulner-
able cross-attentions are to blame. Ji et al. (2023)
summarized the causes of hallucinations from per-
spectives of data and model architecture. In SiMT,
few researches are proposed. Chen et al. (2021)
found that using training corpus with fewer reorder-
ing could alleviate hallucinations. Guo et al. (2023)
used reinforcement learning to create tailored ref-
erences for SiMT to reduce hallucinations. Wang
et al. (2023) proposed two-stage beam search to
create monotonic reference translations. However,
to our best knowledge, there is still no research that
systematically investigates hallucinations in SiMT.

7 Conclusion

In this paper, we focus on investigating serious
hallucinations in SiMT. We propose KD-SiMT to
reduce hallucinations in SiMT models. Experi-
ments show that KD-SiMT is effective and achieves
significant improvements. Furthermore, we con-
duct component analysis to explore the deficiencies
in SiMT models related to hallucinations and the
effect of KD-SiMT on the SiMT models. From
the perspective of model structure, we find that
KD-SiMT enhances the source representations and
cross-attention assignments in SiMT models. From
the perspective of knowledge acquisition, our anal-
yses suggest that KD-SiMT equips SiMT models
with sufficient faithfulness knowledge during train-
ing, thus improving translation quality.

Limitations

In this paper, we propose KD-SiMT to reduce hallu-
cinations in SiMT models. We also conduct a quan-
titative analysis to investigate the performances of
each component in SiMT models when generating
hallucinations. However, there is still room for
improvement. For example, the efficiency of KD-
SiMT might be further improved. Due to the task
gap between SiMT and OMT, the effectiveness of
KD-SiMT could also be affected. It is worth explor-
ing a more efficient and effective training paradigm

for SiMT models to reduce hallucinations. Besides,
our analyses can be further refined, which may
lead to insightful conclusions. For instance, when
hallucinations occur, fixed policies and adaptive
policies may exhibit distinct characteristics, and
the representations across different layers may also
follow different patterns. We will leave these for
our future work.
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Hyper-parameter

encoder layers 6
encoder attention heads 8
encoder embed dim 512
encoder ffn embed dim 1024
decoder layers 6
decoder attention heads 8
decoder embed dim 512
decoder ffn embed dim 1024
dropout 0.1
optimizer adam
adam-β (0.9, 0.98)
clip-norm 1e-7
lr 5e-4
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-7
weight decay 0.0001
label-smoothing 0.1
max tokens 4096

Table 4: Hyper-parameters of our experiments.

A Hyper-parameters

The hyper-parameters of our experiments are
shown in Table 4.

B Numerical Results

Table 5, 6, 7, 8 9 show the numerical results on
Zh→En SiMT task. Table 10 shows the numerical
results on De→En SiMT task. Table 11 shows the
numerical results of hallucination rate on differ-
ent SiMT models. Table 12 shows the numerical
results of manual evaluation on hallucinations. Ad-
ditionally, we also provide the COMET scores of
the Zh→En task in Table 13.

C Hallucination Cases

Table 14 shows the additional hallucination cases
in SiMT models.
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03 04 05 06 AVERAGE
AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

wait1 -0.53 23.23 -0.49 25.49 -0.74 22.75 -0.65 22.19 -0.60 23.42
+KD 0.26 26.76 0.20 27.92 0.12 25.95 0.24 26.40 0.20 26.76
wait3 3.17 32.58 3.20 34.06 2.74 30.38 3.02 31.50 3.03 32.13
+KD 2.46 34.40 2.02 34.10 2.02 32.88 1.88 31.96 2.09 33.34
wait5 5.08 35.53 5.12 37.76 4.81 34.19 4.84 34.82 4.96 35.58
+KD 5.11 38.22 5.17 39.97 4.71 37.50 4.86 36.07 4.96 37.94
wait7 7.08 38.19 7.03 39.84 6.64 35.85 6.75 36.78 6.88 37.67
+KD 7.37 42.89 7.08 41.34 6.86 38.84 6.87 40.62 7.05 40.92
wait9 9.06 39.22 8.96 41.17 8.68 37.04 8.58 38.40 8.82 38.96
+KD 9.20 43.35 9.05 43.32 8.81 40.21 8.63 41.30 8.92 42.05

Table 5: The numerical results of waitk on Zh→En SiMT task.

03 04 05 06 AVERAGE
AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

m-wait1 0.81 29.19 0.87 30.06 0.42 26.43 0.80 27.54 0.72 28.31
+KD 0.91 30.94 0.91 30.88 0.78 29.25 0.92 29.57 0.88 30.16

m-wait3 3.01 33.33 3.03 34.33 2.46 30.50 2.72 32.33 2.80 32.62
+KD 3.22 36.14 3.20 36.00 2.94 33.79 2.99 34.26 3.09 35.05

m-wait5 4.92 35.72 5.02 37.43 4.49 32.77 4.66 35.11 4.77 35.26
+KD 5.11 38.20 5.18 38.60 4.91 35.70 4.93 37.08 5.03 37.40

m-wait7 7.00 37.53 7.01 39.09 6.58 34.44 6.65 36.26 6.81 36.83
+KD 7.13 39.94 7.08 40.06 6.80 36.54 6.75 38.62 6.94 38.79

m-wait9 8.84 38.41 8.86 39.94 8.40 35.43 8.46 37.43 8.64 37.80
+KD 9.02 40.48 8.97 40.54 8.81 38.21 8.58 39.79 8.85 39.76

Table 6: The numerical results of m-waitk on Zh→En SiMT task.

03 04 05 06 AVERAGE
AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

MMA-0.3 2.08 24.47 2.34 26.75 2.46 24.72 3.47 26.40 2.59 25.59
+KD 7.79 42.24 7.47 42.07 7.82 39.71 7.29 39.94 7.59 40.99

MMA-0.25 6.16 33.78 5.36 35.05 5.55 32.34 5.82 31.89 5.72 33.27
+KD 9.54 43.57 9.04 43.52 9.56 42.13 8.67 40.43 9.20 42.41

MMA-0.2 7.64 38.23 7.40 38.94 7.62 36.42 7.03 36.07 7.42 37.42
+KD 10.39 44.26 10.20 44.22 10.72 42.98 9.53 42.31 10.21 43.44

MMA-0.15 9.66 39.02 9.45 39.91 9.89 37.47 9.03 36.23 9.51 38.16
+KD 13.87 43.87 13.21 44.13 14.17 42.27 12.41 41.60 13.42 42.97

MMA-0.1 12.19 39.60 12.02 40.36 12.51 37.22 11.25 37.27 11.99 38.61
+KD 17.01 44.34 16.69 44.01 17.93 42.88 15.52 41.54 16.79 43.19

Table 7: The numerical results of MMA on Zh→En SiMT task. MMA-λ means the super parameter λ used in
MMA model, which is used to control latency.
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03 04 05 06 AVERAGE
AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

ITST-0.2 0.92 29.69 0.59 30.32 0.55 28.42 0.96 29.18 0.76 29.40
+KD 0.56 29.33 0.20 29.62 0.26 28.03 0.59 30.00 0.40 29.25

ITST-0.3 2.90 34.65 2.64 34.63 2.72 33.02 2.82 34.11 2.77 34.10
+KD 2.57 35.06 2.31 34.76 2.34 32.58 2.39 33.87 2.40 34.07

ITST-0.4 5.24 37.99 4.91 37.77 5.18 35.96 4.83 37.19 5.04 37.23
+KD 4.59 38.50 4.24 38.06 4.54 35.90 4.26 37.61 4.41 37.52

ITST-0.5 7.82 39.59 7.56 39.36 7.87 37.28 7.02 38.91 7.57 38.79
+KD 6.77 40.42 6.48 40.22 6.801 37.46 6.23 39.10 6.49 39.30

ITST-0.6 10.72 40.37 10.25 40.35 10.91 37.79 9.41 39.32 10.32 39.46
+KD 9.48 41.17 9.11 41.21 9.60 38.24 8.55 40.04 9.19 40.17

ITST-0.7 13.07 40.37 12.93 40.44 13.83 38.26 11.91 40.10 12.94 39.79
+KD 12.28 41.89 12.17 41.73 12.75 38.58 11.46 40.93 12.17 40.78

Table 8: The numerical results of ITST on Zh→En SiMT task. ITST-δ means the super parameter δ used in
inference, which is used to control latency.

03 04 05 06 AVERAGE
AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

HMT-(2,4) 3.12 35.65 3.17 37.07 2.55 33.95 2.90 35.70 2.93 35.59
+KD 3.13 37.73 2.90 38.04 2.59 34.71 2.88 37.38 2.88 36.97

HMT-(3,6) 4.74 38.22 4.55 38.98 4.48 36.75 4.33 37.28 4.52 37.81
+KD 4.55 40.13 4.24 40.33 4.07 37.58 4.12 39.77 4.25 39.45

HMT-(5,6) 6.42 40.21 6.11 40.34 6.05 38.17 5.90 38.95 6.12 39.42
+KD 6.00 41.04 5.83 41.70 5.63 38.60 5.47 40.36 5.73 40.43

HMT-(7,6) 7.93 41.22 7.77 41.48 7.71 38.62 7.36 40.00 7.70 40.33
+KD 7.75 42.36 7.53 42.20 7.35 40.12 7.19 41.18 7.46 41.47

HMT-(9,8) 10.01 41.92 9.70 41.87 9.68 40.25 9.17 41.45 9.64 41.37
+KD 9.71 43.00 9.56 43.30 9.45 40.62 9.18 42.11 9.48 42.26

Table 9: The numerical results of HMT on Zh→En SiMT task. HMT-(L,K) means the super parameter (L,K)
used in inference, which is used to control latency.
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k 1 3 5 7 9

waitk
AL -3.5 -0.274 3.452 5.774 7.953

BLEU 10.06 18.43 24.8 27.49 28.52

waitk+KD
AL -4.803 0.036 3.574 5.901 7.961

BLEU 7.9 20.2 25.66 28.25 29.08

m-waitk
AL -0.4852 1.899 4.065 6.23 8.21

BLEU 17.33 22.85 25.47 26.62 27.55

m-waitk+KD
AL -0.447 1.87 4.04 6.18 8.185

BLEU 18.93 24.5 27.07 28.29 28.89

λ 0.1 0.2 0.3 0.4 0.5

MMA
AL 9.23 6.29 5.59 5.24 4.876

BLEU 26.27 23.93 22.36 20.64 19.63

MMA + KD
AL 11.35 7.41 6.61 6.13 5.75

BLEU 27.61 26.55 25.08 24.54 23.66

δ 0.2 0.3 0.4 0.5 0.6

ITST
AL 1.91 2.76 3.7 5.26 7.4

BLEU 19.96 23.33 25.96 26.9 27.48

ITST+KD
AL 0.7 1.98 2.82 3.98 5.79

BLEU 18.88 23.14 25.46 26.71 27.41

(L,K) (2,4) (3,6) (5,6) (7,6) (9,8)

HMT
AL 2.20 3.58 4.96 6.58 8.45

BLEU 25.67 28.29 29.33 29.47 30.25

HMT+KD
AL 2.00 3.15 4.69 6.44 8.30

BLEU 26.3 28.55 29.11 29.81 30.37

Table 10: Numerical results on De→En SiMT task.
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Model Zh→En De→En

k=1 k=3 k=5 k=7 k=9 Avg. ∆ k=1 k=3 k=5 k=7 k=9 Avg. ∆

wait-k 7.61 6.62 5.87 5.52 5.07 6.90 4.17 2.68 2.59 2.61
+KD 7.05 5.41 5.22 4.51 4.63 −0.77 (12.7%) 4.94 2.68 2.49 1.88 1.79 −1.03 (26.1%)

m-wait-k 7.12 5.91 5.38 5.03 4.91 5.31 3.65 3.03 2.77 2.61
+KD 6.24 5.40 4.96 4.72 4.58 −0.43 (7.2%) 4.75 3.05 2.62 2.36 2.27 −0.47 (13.7%)

λ=0.3 λ=0.25 λ=0.2 λ=0.15 λ=0.1 Avg. ∆ λ=0.3 λ=0.25 λ=0.2 λ=0.15 λ=0.1 Avg. ∆

MMA 10.15 6.20 5.12 4.99 5.29 3.96 3.51 3.36 2.96 3.01
+KD 4.60 4.29 4.32 4.44 4.60 −1.90 (25.0%) 3.09 2.87 2.65 2.56 2.31 −0.62 (18.3%)

δ=0.2 δ=0.3 δ=0.4 δ=0.5 δ=0.6 Avg. ∆ δ=0.2 δ=0.3 δ=0.4 δ=0.5 δ=0.6 Avg. ∆

ITST 6.51 5.46 4.61 4.50 4.20 3.46 2.77 2.37 2.25 2.22
+KD 5.06 4.46 4.26 4.06 4.01 −0.68 (12.4%) 2.84 2.41 2.16 2.09 2.12 −0.29 (10.4%)

Table 11: Effect of KD-SiMT on Hallucination Rate (%, ↓) of SiMT models.

k 1 3 5 7 9

waitk
AL -0.60 3.03 4.96 6.88 8.82

PHS 52 26 20 14 14

waitk+KD
AL 0.20 2.10 4.96 7.05 8.92

PHS 34 16 14 8 10

λ 0.3 0.25 0.2 0.15 0.1

MMA
AL 2.59 5.72 7.42 9.51 11.99

PHS 39 26 17 14 10

MMA+KD
AL 7.59 9.20 10.21 13.42 16.79

PHS 10 8 7 5 4

Table 12: Proportion of hallucination sentences (PHS,%) in Zh→En SiMT task.

AL -0.65 3.02 4.84 6.75 8.58
wait-k

COMET 67.59 74.35 76.19 77.63 78.48

AL 0.24 1.88 4.86 6.87 8.63
+KD

COMET 70.36 74.49 77.50 78.67 79.28

AL 3.47 5.82 7.03 9.03 11.25
MMA

COMET 68.81 75.11 76.95 77.69 78.18

AL 7.29 8.67 9.53 12.41 15.52
+KD

COMET 78.65 79.68 79.99 79.80 79.78

Table 13: COMET scores on Zh→En task.

7130



Source
据了解 ,做小时工已经成了一些正在求职的毕业生积累工作经验、锻
炼工作技能、提高沟通技巧、增长社会阅历的重要途径。

Reference
it was learned that working at hourly positions has become an important approach for
some job - seeking graduates to accumulate work experience , practice work skills ,
enhance communication skills , and increase exposure to society .

MMA
it is understood that being small workers has become a result of some of the gradu-
ates who are seeking jobs in the past , a key way to improve their skills for work ,
communication skills , and a history of social experience .

+KD
it is learned that part-time workers have become important channels for graduates
seeking jobs to accumulate work experience , exercise work skills , enhance commu-
nication skills , and increase social experience .

Source 埃及是世界四大文明古国之一 ,它悠久的历史吸引着各地的游客。

Reference
for generations , danish people have been pursuing human rights , democracy , and
freedom beyond politics .

m-waitk
egypt is the only country in the world with the largest ancient civilization , the ancient
civilization that has attracted many visitors .

+KD
egypt is one of the four ancient civilizations of the world . its long history has attracted
tourists from all over the world .

Table 14: The instructions about KD reducing hallucinations in SiMT. The "hallucinations" are marked.
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