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Abstract

In real-world settings, vision language mod-
els (VLMs) should robustly handle naturalis-
tic, noisy visual content as well as domain-
specific language and concepts. For example,
K-12 educators using digital learning platforms
may need to examine and provide feedback
across many images of students’ math work.
To assess the potential of VLMs to support
educators in settings like this one, we intro-
duce DrawEduMath, an English-language
dataset of 2,030 images of students’ handwrit-
ten responses to K-12 math problems. Teachers
provided detailed annotations, including free-
form descriptions of each image and 11,661
question-answer (QA) pairs. These annotations
capture a wealth of pedagogical insights, rang-
ing from students’ problem-solving strategies
to the composition of their drawings, diagrams,
and writing. We evaluate VLMs on teachers’
QA pairs, as well as 44,362 synthetic QA pairs
derived from teachers’ descriptions using lan-
guage models (LMs). We show that even state-
of-the-art VLMs leave much room for improve-
ment on DrawEduMath questions. We also
find that synthetic QAs, though imperfect, can
yield similar model rankings as teacher-written
QAs. We release DrawEduMath to support
the evaluation of VLMs’ abilities to reason
mathematically over images gathered with edu-
cational contexts in mind.

drawedumath.org

allenai/DrawEduMath

Heffernan-WPI-Lab/DrawEduMath

1 Introduction

As AI models demonstrate growing proficiency in
mathematical reasoning, there is a corresponding
rise in AI-powered tools designed to enhance math
education (Khan Academy, 2024; Gates Founda-
tion, 2024; Google, 2023; Microsoft News Center,
2024). For example, AI systems have the potential

*Both authors contributed equally to this research.

to provide immediate feedback on students’ work
(Botelho et al., 2023), or shed insight on common
misconceptions (Gurung et al., 2023). These trends
prompt critical questions about the ability of cur-
rent models to handle real-world math problems,
such as those encountered in classrooms and tutor-
ing sessions, as opposed to curated problems found
in popular benchmarks like GSM8k (Cobbe et al.,
2021) and MATH (Hendrycks et al.). We present

DrawEduMath, a collection of 2,030 images of
K-12 math problems paired with images of hand-
written, hand-drawn responses to these problems
by real student users of an online learning plat-
form. This collection encompasses a diverse array
of mathematical concepts, educational standards,
and problem types. We supplement all images with
the following:

1. Detailed descriptions provided by teachers,
capturing all elements of the student’s hand-
written responses, including the students’ ap-
proach, possible misconceptions, and mis-
takes made during problem-solving.

2. Question-answer (QA) pairs, some of which
are written by teachers and some generated
through an LM-based pipeline. The latter in-
volves identifying key facets in teachers’ de-
scriptions and restructuring them into ques-
tions and answers.

3. Metadata for each image, encompassing the
type of problem, corresponding educational
standards or grade level, topical categories,
and other relevant information.

In this work, we detail our benchmark creation
process (§3), which aims to balance educators’
expertise and the scalability of LM-based data
generation and judgement (§4). We then use

DrawEduMath to evaluate the capabilities of
current VLMs to interpret the content of students’
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LM Rewrites 
Descriptions into QA

Teachers Describe Students’ Responses

Q: What word did the student 
write on the left-hand side of the 
image?

A: Syrup

Q: How are the two number lines 
arranged in the image?

A: On top of each other

Q: Does each number line have 
arrows at the ends?

A: Yes

Q: What are the labels on the tick 
marks of the bottom number line?

A: 0, 6, 9, 12, 14

Q: Which tick mark has the 
student drawn a circle around on 
each number line?

A: The second tick mark

Q: Does the recipe 
maintain the ratio of 9 
cups of seeds to 6 
tablespoons of syrup?

A: The recipe doesn't 
maintain the ratio of 9 
cups of seeds to 6 
tablespoons of syrup.

Q: Is the recipe smaller 
than 9 cups of seeds 
and 6 tablespoons of 
maple syrup?

A: The recipe is smaller 
than 9 cups of seed and 
6 tablespoons of maple 
syrup.

Q: What recipe did the 
student come up with?

A: The recipe the 
student came up with 
is 6 cups of seed and 3 
tbsp of maple syrup. 

Q: What type of 
diagram did the 
student include to 
support their answer?

A: The diagram used 
to support their 
answer is a double-
number line.

Q: What are the labels on the tick 
marks of the top number line?

A: 0, 3, 6, 9, 12

Teachers Write QA

This is a natural handwritten image. On the left-hand side of the image, the student wrote the word 
syrup. Next to that, there are two horizontal number lines which are arranged on top of each other. 
Each number line has arrows at each end and has tick marks that are aligned between the two 
numbers, between the two number lines. The numbers on the top of the number, the tick marks on 
the top of the number line are labeled 0, 3, 6, 9, 12, and the tick marks on the bottom number line are 
labeled 0, 6, 9, 12, and 14. The student has drawn a circle around the second tick mark on each 
number line.

Figure 1: Each image in our dataset is a concatenation of a math problem on the left with a student response on
the right. Teachers describe the student’s response to the problem, and then a model, such as GPT-4o shown here,
writes QA pairs extracted from facets of the description. More example images, along with teacher-written QA, are
shown in Figure 3.

handwritten responses (§6). We find that though
models can identify superficial aspects of images
such as paper type and drawing medium, they strug-
gle on questions related to the correctness of stu-
dents’ responses. In addition, closed models such
as Claude and GPT-4o tend far outperform open-
weight Llama 3.2-11B. Overall, we hope that this
work will facilitate further research on VLMs’ abil-
ities to support students’ math learning in diverse,
real-world educational settings.

2 Related Work

AI for Math Education. The advent of language
models (LMs) has transformed online learning plat-
forms (Anderson et al., 1995; Ebert, 2014; Vider-
gor and Ben-Amram, 2020; Heffernan and Hef-
fernan, 2014) by introducing automated tools for
error identification (Gurung et al., 2023; Ruan et al.,
2020; Pardos and Bhandari, 2024), feedback provi-
sion (Matelsky et al., 2023), student response scor-
ing (Baral et al., 2021), and curriculum adaptation
(Malik et al., 2024), primarily for typed answers.
However, most math instruction in traditional class-

rooms still relies on handwritten problem-solving,
posing challenges due to the unstructured nature
of handwritten content and a lack of annotated
datasets (Baral et al., 2023). Existing math datasets,
such as GSM8k (Cobbe et al., 2021) or MATH
(Hendrycks et al.), focus on K-12 content but of-
ten lack input from educators, leaving a gap in
aligning AI research with the classroom realities.
While the recent advancements in multimodel LM
capabilities allow for the interpretation of complex
images (Zhang et al., 2024), their effectiveness in
understanding student handwritten math remains
uncertain. This paper aims to address this gap by
contributing a benchmark created by real students
and teachers.

Vision-language Evaluation and Benchmarks.
The growth of pretrained VLMs accompanies
the growth of vision-language benchmarks, e.g.
MMMU (Yue et al., 2024), DocVQA (Mathew
et al., 2021b), and VQA (Goyal et al., 2017).
Within the domain of math, notable examples in-
clude MathVista (Lu et al., 2024), GeoQA (Chen
et al., 2021), Geometry3k (Lu et al., 2021), and
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MathVerse (Zhang et al., 2024). Many of these
prior visual math benchmarks, however, focus on
images where mathematical information is shown
in a standardized or typed manner. In contrast,
the images in our dataset consist mostly of hand-
writing and drawings across different paper, light-
ing, and digitization types. In addition, our fo-
cus on problem solving strategies and pedagogy
allows our annotations to go beyond optical charac-
ter recognition emphasized in previous handwritten
datasets (Cohen et al., 2017; Marti, 2002; Liwicki
and Bunke, 2005; Zhou et al., 2010; Mouchere
et al., 2011; Mathew et al., 2021a; Gervais et al.,
2024).

3 The DrawEduMath Dataset

Our dataset begins by sampling images of K-12
students’ responses to math problems, followed
by two rounds of annotation by teachers. During
annotation, we ask teachers to both describe stu-
dents’ responses and write a few QA pairs for each
image. Overall, teachers’ annotations mention a
variety of K-12 mathematical concepts and repre-
sentations (Table 1). In total, this process yields
2,030 described images and 11,661 teacher-written
QA pairs (Table 3, Table 6).

3.1 Sampling Students’ Math Images

Our dataset consists of 2,030 images of U.S.-based
students’ handwritten math responses to 188 math
problems spanning Grade 2 through high school
(Table 2). These images were initially collected on
an online learning platform ASSISTments, where
students receive feedback from teachers on as-
signed work. The problems that accompany each
student response are drawn from three overlapping*

open educational resources (OER): Eureka Math,
Open Up Resources, and Illustrative Math. Meta-
data linked to these problems include Common
Core State Standards (CCSS) labels, which indi-
cate specific K-12 math skills or concepts targeted
in problems (Porter et al., 2011). Initially, the data
provided by the learning platform comprised ap-
proximately 60,000 images across 188 problems,
with an average of 300 images per problem. From
this, we randomly sampled 15 images per problem.
To ensure student privacy, undergraduate research
assistants cropped the images to include only the

*OER materials may reuse or adapt problems from each
other; hence, some problems in our dataset appear across more
than one content source.

Figure 2: For some annotators, their recorded descrip-
tions of images are longer or require less time than typed
ones. Annotation length is calculated based on white-
spaced-separated tokens.

math content and removed any personally identifi-
able information, such as students’ hands, by cov-
ering them with dark rectangles. Our use of these
images was deemed exempt from review by our
institution’s institutional review board; see more
discussion in §9.

3.2 Collecting Teachers’ Annotations

We hired three NYC-based math teachers from a
nonprofit professional learning organization, Teach-
ing Lab, to describe each image. We paid teachers
over $50 USD or more per hour. Each teacher had
at least 6 years of experience in math education,
with two teachers specializing in middle school
and one teacher in grades 5-12. Teachers annotated
images on a custom website, and were asked to
describe an image as thoroughly as possible so that
another teacher could recreate it without viewing
it. The annotation website presented an image con-
catenating the original problem with a student’s re-
sponse, followed by a text box for typed notes and
a speech recording module. Teachers also noted
whether an image is too blurry for annotation and
flagged any PII, adding an extra security layer to
our initial PII removal process §3.1.

Some annotations were obtained by transcribing
recordings of teachers’ spoken descriptions using
OpenAI’s Whisper (Radford et al., 2023), while
others were typed into a text box. We offered the
option of both annotation modalities because spo-
ken descriptions are sometimes faster to obtain and
result in longer annotations (Pont-Tuset et al., 2019;
Deitke et al., 2024), but typing gives teachers the
flexibility to annotate in noisy environments and
reduces the risk of transcription errors; see compar-
ison in Figure 2. We obtained similar amounts of
typed and recorded image descriptions (Table 3).

6904



Math Domain Images Example Words or Phrases in Teachers’ Annotations of Images
Ratios & Proportions 29.9% proportional relationship, cups, proportional reasoning, 4x, equivalent ratios, corresponding

values, scoops, double number, multiplicative relationship, proportional line
Geometry 24.4% xyz, x’y’z’, isosceles triangle, perpendicular bisector, rigid transformation, equilateral

triangle, original triangle, two quadrilaterals, equilateral triangles, original image
Expressions &
Equations

14.7% negative infinity, connected rectangles, x+1, 5x, x., number line, arrow pointing, horizontal
rectangle

The Number System 9.5% vertical number, shaded sections, five sections, negative integers, negative numbers, algo-
rithm subtraction, incorrect representation, positive numbers, rectangular model, division
algorithm

Number & Operations,
Fractions

6.6% fraction strips, whole numbers, fractional parts, rectangular fraction, equivalent fractions,
mark, identical rectangles, horizontal rectangle, equivalent fraction, tick

Table 1: The top five most frequent math domains, as defined by CCSS, that appear DrawEduMath. Example
words or phrases were obtained by applying the phrasemachine text analysis tool (Handler et al., 2016) on teachers’
descriptions and answers. The examples shown have the highest TF-IDF scores within each domain and occur across
at least two problems’ images. Percentages show the relative frequency of each domain across all annotated images.

Students’ Math Images

# of annotated images 2,030
# of math problems 188
Avg # of images per problem 12.64
% of problems in Grades 2-5 34.6
% of problems in Grades 6-8 55.3
% of problems in High School 10.1
# of math standards covered 86
# of math domains covered 12

Table 2: Key data statistics pertaining to students’ math
images included in DrawEduMath.

Full annotation instructions, a screenshot of our
setup, and additional details on our data collection
process can be found in Appendix A.1.

Over the course of two months, teachers anno-
tated 2,376 images of students’ responses. After
removing images that were deemed too blurry or
failed a secondary PII check, our final dataset con-
sists of 2,030 images paired with math teachers’
descriptions.

3.3 Revising and Augmenting Annotations

During a second data collection phase, teachers
augmented and revised existing annotations. This
second phase of annotation required twice as much
time per example than the first one (Table 3). So,
to complete this phase, we recruited five additional
teachers from the same professional learning orga-
nization as we did in §3.2. Each of these additional
teachers had at least 9 years of experience in math
education spanning the UK and several U.S. states,
including two from the NYC area. Grade level ex-
pertise among these five teachers include one in
9-12, one in 5-12, two in K-8, and one in K-12.

Teachers’ Annotations

First round

Avg minutes spent per image 2.0
Total words in descriptions 228k
Avg description length 111.1
% of descriptions typed 46.7
% of descriptions transcribed 53.3

Second round

Avg minutes spent per image 4.3
Total words in descriptions 222k
Avg description length 109.5
% of descriptions left unchanged 94.2
Median edit distance of changed descriptions 48.5
# of teacher-written QA pairs 11,661
Avg # of teacher-written QA per image 5.74
Avg length of teacher-written questions 12.7
Avg length of teacher-written answers 16.2

Table 3: Key data statistics pertaining to the collection of
teachers’ language for DrawEduMath. Word counts
and text lengths are determined using white-space de-
lineated tokens.

Revising Teachers’ Initial Descriptions. During
reannotation, teachers were allowed to revise the
image’s description, to correct possible transcrip-
tion errors or other clarity issues that arose during
initial annotations. The vast majority (>90%) of
image descriptions were not edited, and when edits
were made, the Levenshtein distance between old
and new descriptions was typically small (Table 3).
Through qualitative inspection of edits, most were
typo corrections, e.g. rose → rows or three four →
three fourths.

Adding Teacher-written QA. The main part of
our second annotation round focuses on augment-
ing descriptions with questions teachers may ask
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The error the student made 
in their response is marking 
each part 1/4.

What errors does the student make in their response?

The error the student made 
was labeling the parts 1/4 
and not shading.

The error the student made 
is representing this problem 
with 1/2.

Figure 3: Examples of teachers’ answers to a question asking about possible errors in students’ responses to math
problems. All three examples of students’ hand-drawn responses are for the same math problem asking students to
draw and shade units on fraction strips to show 4 thirds, shown on the left.

about students’ responses. We asked teachers to
come up with questions that they would naturally
ask when examining student responses and were
provided with example topics, such as whether the
student demonstrated a mathematical concept or
made a common error for a problem type. This top-
down data collection approach in this second round
complements the bottom-up, description-based ap-
proach emphasized in the first round §3.2, and may
cater more towards potential uses of VLM-based
systems for educators.

First, teachers propose questions based on math
problems in our dataset. Given a problem, teach-
ers write up to five questions they may have about
any student’s response to that problem (Figure 1).
Then, we present teachers with images of students’
responses annotated in §3.2, and ask them to write
answers to each problem-specific question based
on what they observe in each student’s response.
Two additional questions, What errors does the stu-
dent make in their response? and What strategy
does the student use to solve the problem? were an-
swered for all problems and student responses (Fig-
ure 3), and teachers also had the option to add up
to two additional image-specific question-answer
pairs. Across all 2,030 images, teachers augmented
our DrawEduMath with 11,661 QA pairs.

4 Scaling Data with Synthetic QAs

Writing numerous QA pairs for visual benchmark
creation is more time-intensive than describing im-
ages in a free-form manner (Table 3). Inspired by
Changpinyo et al. (2022), who introduce a scalable
workflow for generating VQA benchmarks from
image captions, we use LMs to transform teachers’
descriptions into synthetic QAs.

Descriptions → Synthetic QA pairs

# of Claude-generated QA pairs 21,089
Avg # of Claude’s QA per image 10.3
Avg length of Claude’s questions 10.6
Avg length of Claude’s answers 2.2

# of GPT-4o-generated QA pairs 23,273
Avg # of GPT-4o’s QA per image 11.5
Avg length of GPT-4o’s questions 10.4
Avg length of GPT-4o’s answers 3.0

Table 4: Key data statistics pertaining to synthetic QA
pairs in DrawEduMath. Word counts for determining
lengths are based on white-space delineated tokens.

Transforming Descriptions to QA Pairs. We
prompt Claude-3.5 Sonnet and GPT-4o to first de-
compose captions into “facets”, or atomicized snip-
pets of information, and rewrite these facets into
question-answer (QA) pairs (Changpinyo et al.,
2022) (Figure 1). The prompts were iteratively re-
fined with input from an expert teacher to enhance
the quality of the generation responses. Specif-
ically, the models were instructed to generate
self-contained facets and corresponding QA pairs,
avoiding open-ended questions or those with mul-
tiple correct answers. The full prompt we used
for this data transformation step can be found in
Appendix B.

We obtain a total of 44,362 synthetically created
QA pairs (Table 4). On average, LM-generated QA
had much shorter answers than those written by
teachers, due to instructions preferring conciseness
included in our description-to-QA prompt. Shorter
answers are more suitable for reference-based eval-
uation with lightweight metrics such as string or
ngram matching, but longer answers by teachers
contain more rich and detailed information.

Quality Assessment of Synthetic QA. Two an-
notators examined a sampled set of QA pairs out-
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Can this Q be answered? Is the provided A correct?

A B A B
Yes 50 41 Yes 47 43
No 0 9 No 3 7

Table 5: Quality assessment of questions (Q) and an-
swers (A) extracted by Claude & GPT-4o from teachers’
descriptions of students’ responses.

putted from our description-to-QA pipeline to as-
sess their quality. These annotators have comple-
mentary backgrounds, both of which are valuable
for examining the application of VLMs for edu-
cation: one has worked as a K-12 math teacher
(Evaluator A), and another has worked on technol-
ogy applications for educators (Evaluator B). For
each image and QA pair, we ask: 1) Can this ques-
tion be answered by the provided image? and 2) Is
the provided answer correct? 100 QA pairs were
randomly sampled, evenly split between GPT-4o
and Claude 3.5, with annotators each reviewing 50
pairs. Instructions for synthetic QA assessment can
be found in Appendix D.1.

Despite some variability in annotators’ judg-
ments, the majority of QA pairs are answerable
and correct (Table 5). From qualitative inspection,
unanswerable questions tend to be those where the
referent of mentions is ambiguous without addi-
tional context. For example, a question may ask,
Where does the second arrow point?, but it may
be unclear which of the overlapping arrows in the
image is the “second” one. So, “unanswerability”
relates to the extent to which one infers ambigu-
ous referents through pragmatic convention; for
example, the first piece in a row of rectangles may
be the one furthest left, and the first triangle in a
geometric transformation may be the preimage. As
for incorrect answers, Evaluator B marked some
answers as incorrect due to the question being unan-
swerable. A few incorrect answers emerged from
what appeared to be genuine annotation mistakes.
For example, in one case, the annotator excluded
the label on one tick mark in their annotation, and
so the extracted QA’s answer missed one value.
Overall, we hope our inclusion of teachers’ origi-
nal descriptions in DrawEduMath can facilitate
future improvements to the scaling of VQA bench-
mark creation.

5 Building a Taxonomy of Question Types

To document what types of questions show up
in DrawEduMath and better understand which

questions may be more difficult for models than
others, we group questions into several categories.
We defined question categories in an iterative man-
ner mixing qualitative and quantitative approaches,
akin to Nelson (2020), who reframe content anal-
ysis into pattern detection, refinement, and confir-
mation steps. During pattern detection, we qual-
itatively code a combined pool of generated and
teacher-written questions. To efficiently observe a
range of common yet distinctive question patterns
during this coding step, we sampled ten questions
from clusters of questions’ sentence embeddings
(Reimers and Gurevych, 2019).† We obtained these
clusters using k-means with k=30, and embed ques-
tions after masking out their nouns,‡ so that we can
examine problem-agnostic question patterns shared
across different math domains. For example, ques-
tions that start with How many..., Into how many...,
and What is the total... would occur in the same
embedding cluster.

Next, for category refinement and confirmation,
we recoded our observations into possible question
types for GPT-4o to categorize. We iterated over
question types and categorization prompts by run-
ning GPT-4o on smaller samples of 500 to 2000
questions. Proposing more fine-grained or more
numerous question categories led to less cleanly
delineated outputs, and so we aimed for category
definitions that led to reasonable groupings. Our
final prompt can be found in Appendix B.

Our resulting taxonomy of questions separates
them into seven categories: 1) higher-level under-
standing of math content, 2) low-level content com-
position & positioning, 3) writing & labels, 4) prob-
lem solving steps, strategy, & solution, 5) counting
content, 6) image creation & medium, and 7) cor-
rectness & errors (Table 6). In particular, the first
two categories are designed to separate out ques-
tions that involve some mathematical reasoning
from those that do not. For example, What is the
slope of the line requires knowing what a slope is
and how it’s depicted in a graph, while questions
that differentiate left from right pertain to more
basic spatial understanding.

As shown in Table 6, (1) we find little differ-
ence in QA generation behavior between our two
choices of LM, and (2) teachers’ questions focus
more on students’ problem-solving steps and re-
sponse correctness, while synthetic questions have

†Specifically, the all-mpnet-base-v2 embedding model.
‡Nouns were detected using a spaCy part-of-speech tagger.
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Question Type Claude GPT-4o Teacher Examples
Higher-level
understanding
of math

26.7% 25.7% 18.8% What type of mathematical representation has the student drawn on the
paper? What is the slope of the line passing through (0,-5) and (4,-4)? Is
the student’s image a third or a half of the original ratio to get 1 batch of
light yellow paint?

Low-level
composition
and positioning

21.9% 20.0% 11.4% In the third row, where does the student place the number 3? Does the
tens place in 15,420 line up beneath the tens place in 1542? Are the two
pieces in the student’s tape diagram equal or unequal in size?

Writing and
labels

14.6% 16.1% 17.3% What number is written in front of Pam’s rectangle, after the label ‘Pam’?
What range of numbers is labeled on each number line? What did the
student label the top of the rectangle?

Problem solving
steps, strategy,
and solution

9.2% 10.5% 23.2% How does placing 26 directly above 25 help the student? Does the
student start solving the problem with exact calculations or estimations?
What method is the student using to prove that 3/50 equals 0.06?

Counting
content

10.5% 9.1% 5.7% What is the total number of shaded-in pieces? How many tick marks are
in between 2 and 3? How many rows and columns does the array have?

Image creation
and medium

15.0% 16.0% 0.0% Is the student work drawn on graph paper or blank paper? On what
surface is the image drawn? Are both triangles in the image pre-printed
or is one drawn by the student?

Correctness and
errors

1.7% 1.5% 23.0% Does the student get the correct or incorrect answer when adding 30
and 15 together? Did the student keep track of where all the vertices are
supposed to be after rotation? Did the student correctly apply the scale
factor of 1/2?

Table 6: The most common question types in our visual QA benchmark, along with examples of questions
categorized within each type. The percentages shown are the proportion of questions across all images within each
QA-writing (Claude-generated, GPT-4o-generated, or teacher-written) workflow.

a different emphasis.§ An eighth category, “Other”,
which we asked GPT-4o to use if a question fits
into none of the provided categories, only makes up
0.4%, 1.1%, 0.6% of Claude, GPT-4o, and teacher-
written questions, respectively.

6 Evaluating Vision Language Models
with DrawEduMath

Experimental Setup. To assess the capability of
recent visual language models (VLMs) in interpret-
ing students’ handwritten math work, we run sev-
eral VLMs on DrawEduMath. We experiment
with four VLMs: three commercial models—GPT-
4o, Claude 3.5 Sonnet (Anthropic, 2024), and Gem-
ini 1.5 Pro (Reid et al., 2024)—alongside open-
weight Llama 3.2-11B Vision (Meta AI, 2024).
To select a prompt for running our experiments,
we iterated over three possible prompts for each
model on samples of data and selected the best-
performing prompt across them. Our final prompt
asks a model to succinctly answer a given question
based on the student’s response in a provided image
(Appendix C).

§The percentages for teacher QA shown in Table 6 do not
include the two questions answered across all images.

Automatic Evaluation. To compare VLMs’ an-
swers against gold ones, we explore three auto-
matic metrics: (i) ngram matching via ROUGE-L
(Lin, 2004), (ii) answer embedding similarity via
BERTSCORE¶ (Zhang et al., 2020), and (iii) LM-
based similarity judgements using Mixtral 8x22B
(Jiang et al., 2024). Our prompt for the latter can
be found in Appendix C, and asks models to rate
the level of similarity between two answers given
a question on a scale of 1 (Quite different answers)
to 4 (Basically the same). When reporting results,
we binarize these outputs so that 1-2 is counted as
incorrect, and 3-4 are counted as correct.

Human Evaluation. To validate our use of
reference-based automatic metrics, 5 authors anno-
tated a random sample of 500 QA responses, where
50% are teacher-written QA, 25% are Claude-
generated QA, and 25% are GPT-4o-generated QA.
We stratify sample examples across all four VLMs.
Then, annotators complete two tasks. First, given
a question and a VLM’s answer, we ask: Is the
provided answer correct? Second, given the gold
answer and the VLM’s answer, we ask: Do these
two answers match? Full instructions can be found
in Appendix D.2. We ask these questions to iden-

¶With distilbert-base-uncased embedding model.
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Synthetic QA Teacher QA
Model BERT ROUGE-L LM Human BERT ROUGE-L LM Human

(n=62) (n=63)
GPT-4o 0.839 0.573 0.723 0.710 0.752 0.199 0.628 0.524

Claude 3.5 Sonnet 0.870 0.574 0.715 0.806 0.754 0.202 0.657 0.587
Gemini 1.5 Pro 0.821 0.489 0.647 0.677 0.711 0.118 0.490 0.365

Llama 3.2-11B V 0.730 0.175 0.390 0.355 0.785 0.253 0.296 0.127

Table 7: Overall evaluation results for models across different VQA datasets, evaluated using Synthetic and Teacher-
generated questions. The table presents evaluations using automated metrics (BERTSCORE, ROUGEL), as well as
assessments from LMs and human evaluators. Bold is the max score across each metric. The disaggregated results
for Synthetic QA by GPT-4o and Claude are detailed in Table 9.

GPT-4o Claude 3.5 Sonnet Gemini 1.5 Pro Llama 3.2-11B V Overall

Question Type &

Correctness & errors 0.525 0.559 0.491 0.610 0.601 0.440 0.402 0.276 0.477
Counting content 0.642 0.671 0.516 0.667 0.602 0.578 0.247 0.265 0.541
Writing & labels 0.711 0.606 0.647 0.620 0.615 0.499 0.338 0.216 0.574

Low-level characteristics 0.674 0.624 0.635 0.660 0.566 0.457 0.402 0.369 0.580
Higher-level understanding 0.696 0.599 0.642 0.605 0.632 0.484 0.333 0.350 0.585
Problem strategy & solution 0.758 0.719 0.660 0.740 0.716 0.539 0.406 0.307 0.619

Image creation & medium 0.886 -∗ 0.805 -∗ 0.795 -∗ 0.589 -∗ 0.770

Table 8: Comparison of model performance across various question types for GPT4o, Claude3.5 Sonnet, Gemini1.5
Pro, and Llama3.2-11B V. Values shown include the average scores from our LM evaluator across QA pairs
generated synthetically by GPT4o and Claude3.5 combined ( ) or by teachers ( ). The max score is bolded and
the min is underlined across each QA and VLM. The “Overall” column consists of averages across all models, to
show which question types are generally more difficult than others. *For teacher-written QA, this question type had
too few examples for robust performance estimates.

tify cases where VLMs give correct answers that
differ from gold standards, which we find only oc-
curs in 36 out of 500 examples (7.2%).

Automatic vs Human Evaluation We compute
Spearman correlations between automatic and hu-
man estimates of models’ performance across
teacher-, Claude-, and GPT-4o-generated QA sets
and models. We find that LM-based judgments are
most similar to that of humans (ρ = 0.801). In fact,
across all 500 human-annotated model responses,
binarized LM-based judgements achieve a high ac-
curacy of 0.896 and F1 score of 0.907 with respect
to matching the human judgment.|| On the other
hand, ROUGE-L (ρ = 0.472) and BERTSCORE (ρ
= 0.348) do not correlate well with humans. Fur-
thermore, we find they produce a narrow range of
scores such that we cannot easily distinguish dif-
ferent VLMs when evaluating on teacher-written
QA (see Table 7). As such, we will rely only on
LM-based judgments for automatic evaluation.

||Generally, false positives (n = 46) are more common
than false negatives (n = 6).

Teacher-written vs Synthetic QA sets Accord-
ing to our LM-based evaluator, both teacher-written
and synthetic QA sets produce similar rankings of
VLMs, despite different distributions over question
types in these QA sets (Table 8). Thus, though
synthetic QA can be noisy (§4), it can be a useful
tool for scaling evaluation of models’ abilities for
certain question types, thereby freeing up human
annotation budget to focus on more difficult-to-
generate question types.

Evaluation Results From Table 7, we observe
a notable a gap in overall performance between
Llama 3.2 and closed alternatives. Also, teacher-
written questions are systematically more difficult
for all models. In Table 8, we see questions pertain-
ing to the correctness and errors tend to be most
challenging for models, across both synthetic and
teacher-written QA, which can explain the higher
difficulty of the teacher-written QA set. Within
each question category, Gemini and Llama perform
better on synthetic questions than teacher-written
ones, while GPT-4o and Claude do not show this
systematic preference for synthetic questions.
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Qualitative Findings Our human evaluation of
models’ responses surfaced a few additional ob-
servations around why and how models made er-
rors: First, models struggled to interpret both dark
images as well as images containing poor hand-
writing, even though their contents were visible or
interpretable by human annotators. Second, models
exhibited a strong bias for solving math problems
rather than assessing and interpreting the students’
math work. Models struggled with diagnosing stu-
dents’ errors, often hallucinating a lack of error.
Also, models would answer a question correctly
mathematically, but incorrectly with respect to in-
terpreting the students’ response. For example, to
the question Which whole number corresponds to
18/6 on the number line?, all VLMs responded with
3, even though the students’ number line shows
18/6 aligned with 2. This bias towards solving
math problems was more prominent in Gemini and
Llama and less so in Claude and GPT-4o.

7 Conclusion and Future Work

Our work introduces DrawEduMath, a new
dataset and benchmark for evaluating vision-
language models’ ability to interpret K-12 students’
handwritten math solutions. Drawing on teacher
expertise, our dataset combines rich descriptions of
student work with diverse question-answer pairs,
while demonstrating a scalable approach using lan-
guage models to generate additional high-quality
QA pairs. Our experiments validate the effective-
ness of language model-based evaluation metrics
and reveal current VLMs’ limitations in analyzing
student work, particularly in assessing correctness
or errors in students’ solutions.

Future work could explore streamlining DrawE-
duMath’s expert-guided annotation process, includ-
ing identifying which tasks can be delegated to
crowdworkers (e.g., describing low-level visual el-
ements) versus those requiring teacher expertise
(e.g., analyzing problem-solving strategies), and
how to further automate synthetic QA generation
while maintaining pedagogical quality. These im-
provements would enable efficient dataset expan-
sion beyond our current 2,030 images while pre-
serving the value of teacher insights. Overall, we
hope our work will inspire further research for
improving VLMs’ capabilities in interpreting and
supporting students’ math learning in diverse real-
world educational settings.

8 Limitations

QA Quality and Utility. Our paper involves the
lengthy and careful collection of data from teach-
ers, with the goal of creating a benchmark to assess
VLMs’ abilities to interpret students’ handwritten
work. However, every benchmark has a ceiling,
and ours is no exception. The synthetic QA we
created from teachers’ descriptions can contain er-
rors (§4), and ensuring that teachers’ annotations
are completely typo-free would require additional
rounds of time-intensive proofreading. In addition
to these issues, we made two qualitative observa-
tions that speak towards potential limitations of

DrawEduMath for assessing models’ visual un-
derstanding of students’ handwritten work. First,
we observed that some questions extracted from
teachers’ descriptions did not target content spe-
cific to the students’ response, and instead may test
for general mathematical knowledge, e.g. What is
a right angle? Second, models’ performance on
some questions, such as the strategy the student
used to solve a problem, should be weighed more
heavily than performance on other questions, such
as the type of paper used. We mitigate this concern
by proposing a taxonomy of question types, to al-
low for more nuance than simply reporting model
performance on aggregate. However, we encourage
future work to aim for finer-grained categories to
yield richer and more useful insights into model
performance.

9 Ethical Considerations

Risks and Harms of AI in Education. In the
context of educational applications, AI models and
systems may be viewed as inherently beneficial or
for “social good.” However, given the high-stakes
nature of K-12 pedagogy, the deployment of VLMs,
and AI generally, in education should carefully con-
sider potential risks for harm (Kizilcec and Lee,
2022). For example, some pedagogical paradigms
may have disproportionate influence on data avail-
ability and the design of technologies, thus perpetu-
ating practices that may not cater towards a variety
of learners (Madaio et al., 2022). We acknowledge
that the images in our dataset, which is based on
U.S.-centric Common Core math problems, may
not cover the many varied ways in which students
practice or learn math. In addition, we advocate for
co-design of evaluative resources with in-domain
experts, such as the K-12 teachers in our work.
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Data Privacy and Use. Our research has been
overseen by our Institutional Review Board (IRB).
Since some students’ images might have PII (i.e.,
the students name might have been written on the
piece of paper), we conducted extensive rounds of
personally identifiable information (PII) removal,
detailed in §3.1. ASSISTments, our partnered on-
line teaching platform and the license owner of
the images, has a history of publishing data (with
PII removed) from the platform for academic use;
we worked closely with them to establish clear
boundaries on data usage and to develop our public
release strategy.
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A Annotation Details

A.1 First Round
Figure 4 shows our data collection interface. Our
instructions state:

Instructions: Please describe out loud the Stu-
dent Response on the right side of each image.

The Problem is provided on the left for context.
If the Student Response is for a subproblem of a
problem, the subproblem will be contained in a red
box.

If you encounter issues that severely affect the
quality of your recording, write "rerecord" in the
Notes space so we mark it for re-annotation.

Press "Record" to start your recording.
In addition to the description of the image, we

ask teachers to answer two binary yes-no questions:
Is the Student Response too blurry or unreadable?
and Does the Student Response include sensitive or
personally identifiable information? Examples of
this information include students’/teachers’ names,
emails, parts of people’s hands/faces, or parts of
homes/classrooms. Out of 2,376 annotated images,
334 images were deemed too blurry and 4 images
were removed by the secondary PII check. Other
descriptions were not included in our final set of
2,030 due to transcription errors and annotation
mistakes marked by teachers themselves.

The interface shown in Figure 4 evolved over the
course of our two-month annotation period. After
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Figure 4: A screenshot of our recording website, where teachers would view an image from our dataset and either
write or record a description of the student’s response. Typically, “unknown teacher ID” would include the currently
annotating teacher’s ID.

one week of annotations, we added the blurriness
and PII questions so that teachers could commu-
nicate such properties via the interface instead of
messaging project authors. In addition, we added a
timer at the bottom of the page to track how long
each annotation took, and added a notes box under-
neath the image. Initially, teachers were asked to
describe all images out loud and submit a recording.
Three weeks after starting annotations, we gave
teachers the option to either record or type their
description in the provided text box. Teachers re-
quested this flexibility because they sometimes an-
notated in noisy environments. All recordings were
transcribed automatically using OpenAI’s Whisper
(Radford et al., 2022).

A.2 Second Round

A.2.1 Writing Problem-specific Questions
For writing problem-specific questions, we re-
design our data collection website from Ap-
pendix A.1 with a different set of instructions:

Instructions: The image below shows a math
problem. If there are multiple problems in the im-
age, the focus on the one boxed in red.

What are some questions a teacher may ask
about students’ responses to this problem?

Propose five or fewer questions. Write one ques-
tion per line.

Questions should be self-contained. If you want
to add follow-up questions to a question, try to
write those follow-ups as standalone questions, if
possible.

Questions you ask might target:
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Figure 5: A screenshot of the interface teachers used to write answers to teacher-written questions about students’
responses. Typically, “unknown teacher ID” would include the currently annotating teacher’s ID.

• Words and numbers in the image (e.g., what
labels are on the student’s number line?)

• Lines and shapes drawn (e.g., did the student
redraw the triangles shown in the problem?)

• Mathematical concepts (e.g., what kind of
model is drawn in the image?)

• The student’s approach (e.g., did the student
use the standard algorithm?)

• Common errors that may arise (e.g. did the
student ____ correctly?)

Then, we present teachers a text box to in which
they may write their questions. There is no audio
recording option in this annotation step. Teachers

can see the total time they have spent so far on a
problem image at the bottom of the page, like they
did in the first phase.

A.2.2 Revising Annotations and Answering
Teacher-written QA

Figure 5 shows what our annotation interface looks
like for revising image descriptions and answering
teacher-written QA. Our instructions state:

Below is a description of the student’s response
written or spoken by a teacher. You may edit this
description to correct any information that does
not match the image.
{Text box}
Use the image of the student’s response to an-

swer the following questions in full sentences.
Please rephrase the question in your answer, so
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that it is understandable without knowing the origi-
nal question. Scroll to view more questions, as well
as the option to add more questions & answers.

At the end of the list of questions, four additional
boxes were available for teachers to optionally add
two image-specific questions and answers (one box
for the question, one box for the answer, two pairs
of QA total).

B Transforming Descriptions to QA Pairs

The first step in converting teachers’ descriptions of
students’ responses into VQA pairs is decomposing
the teacher-written captions into “facets”, which
are atomic descriptions of the information in the
caption. Figure 6 shows our instruction prompt for
the GPT4o and Claude 3.5 Sonnet, which converts
teacher-written annotations into atomic facets or
topics. The prompt follows a few-shot strategy,
providing an example of a teacher-written caption
and a list of atomic topics derived from it. The
examples used in the prompts were curated with
the help of an expert teacher.

For QA pair generation, the decomposed facets
were again passed to the LMs, prompting them to
convert each facet into a QA pair. The prompt for
this conversion is shown in Figure 7. Like the facet
decomposition process, the prompt uses a few-shot
strategy, providing examples of facets and their
corresponding QA pairs, curated with the help of
an expert teacher.

We map questions to question types using the
prompt shown in Figure 8.

C Model Benchmarking and Evaluation
Details

Four vision language models (VLMs), GPT-4o,
Claude 3.5 Sonnet, Gemini 1.5 Pro and Llama
3.2-11B Vision Instruct, were evaluated on their
ability to interpret images of students’ handwritten
responses using developed QA pairs. We ran the
three commercial VLMs with default hyperparam-
eters accessed via the API from their respective
platforms. For Llama 3.2 11B, we accessed it via
the Fireworks API with default hyperparameters
except for setting the max tokens to 100 as it was
prone to deviate from prompted instructions and
generate overly lengthy answers. Each model was
prompted with an image of a student’s response
to a math problem and asked to answer a question
from the generated QA pairs. The prompt used
for generating answers based on the handwritten

responses is shown in Figure 9.
For the evaluation of these models, five authors

evaluated a random sample of 500 questions paired
with the students’ handwritten images, comparing
the model’s answer with the teacher’s. The eval-
uation focused on: (i) the accuracy of the model-
generated answer to the handwritten student re-
sponse, and (ii) the similarity between the teacher-
provided and model-generated answers.

To scale up the evaluation, we employed a LM to
assess the similarity of answers. We prompted the
Mixtral 8x22B model to compare the two answers
and provide a similarity score on a Likert scale.
The prompt used for this evaluation is shown in
Figure 10. Additionally, two automated metrics,
BERTScore and ROUGEL were used to compare
the answers.

D Human evaluation

D.1 Synthetic QA Quality Assessment
When assessing the quality of QA pairs are as fol-
lows, annotators are asked to select one bullet for
each task below. The numbers in parentheses ac-
companying each answer choice indicate the total
number of times that option was chosen by annota-
tors across 100 QA pairs. This assessment step was
done by asking annotators to download Markdown
files containing one image and QA pair each, and
mark x in checkboxes.

Task 1: Can this question be answered by the
provided image?

Q: a sampled question Q
Response 1:

• Yes, the information in the images is sufficient
to answer the question (85)

• No, the information in the images is not nec-
essary to answer the question (6)

• No, the question is not answerable (9)

Task 2: Is the provided answer correct?
Q: Q
A: the answer to Q
Response 2:

• Yes, if an AI model returned this, I would trust
it. (82)

• Maybe, but could be better. If an AI model re-
turned this, I’d tolerate it but still have doubts.
(8)

• No, I can see it trying but it’s wrong. If an AI
model returned this, I would distrust it. (9)
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Decomposing captions to atomic facets
You are given a caption describing a student’s handwritten math image. This caption is a
paragraph long description about the image. Decompose this caption into a list of atomic
descriptions/facets, where each atomic description/facet is about only one salient aspect
of the image. Each atomic description/facet should be self-contained and capture only one
idea from the caption. One atomic description/facet should not be a part of another atomic
description/facet. Anyone reading the atomic description/facet should be able to understand
the idea without needing to read the entire caption. The atomic descriptions/facets are
short sentences or clauses extracted, but not inferred, from the given caption.

Output your answer as a list of strings.

For example, given this caption :
{ Example of a teacher written caption}
Generate :
{ Example of a list of atomic facets}

Decompose this caption: {caption}

Figure 6: Prompt for decomposing teacher-written captions for images into atomic facets.

• No, this is just irrelevant/weird. (1)

In the main paper, we binarize the responses to
Task 1 by treating the first two options above as
“Yes” and the third as “No” to separate out answer-
able and unanswerable questions. We also bina-
rize Task 2’s responses, by grouping “Yes” with
“Maybe” and the two “No” together.

D.2 Evaluating Model Performance

We verify the utility of our automatic evaluation
metrics as well as their ranking of models by eval-
uating 500 model responses. Five annotators re-
sponded to the following questions in Markdown
files containing images. Note that Response 1
below has options similar to Response 2 in Ap-
pendix D.1.

Task 1: Is the provided answer correct?
Q: a sampled question Q
A: a model M’s answer to Q
Response 1:

• Yes, if an AI model returned this, I would trust
it.

• Maybe, but could be better. If an AI model re-
turned this, I’d tolerate it but still have doubts.

• No, I can see it trying but it’s wrong. If an AI
model returned this, I would distrust it.

• No, this is just irrelevant/weird.

Task 2: Do these two answers match?
Q: Q
A (Teacher): Gold answer to Q

A (Model): M’s answer to Q
Response 2:

• Basically the same answer

• Similar but not same answer

• Neither similar nor different, not sure

• Quite different answers

We binarize the above responses in Task 1 into
“correct” and “incorrect” by grouping “Yes” with
“Maybe” and the two “No” together. Similarly,
we binarize the responses to Task 2 by grouping
“Basically the same” and “Similar” together, and
grouping “Neither” and “Quite different” together.
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Conversion of atomic facets/topic to QA pairs
You are given a caption describing a student’s handwritten math image. You are also given
a list of short atomic descriptions derived from this caption. Your task is to generate
as many question-answer pairs as you can, with each question focusing on a different
atomic description from the provided list. Each question must be directly relevant to its
corresponding atomic description and self-contained, meaning that it should be answerable
using only the information provided in that specific atomic description. Ensure each
question is clear, concise, specific and unambiguous. Provide answers that are concise, and
directly address the content of each atomic description. Avoid open-ended or vague questions,
and questions that can have multiple correct answers.
To avoid having questions with multiple correct answers possible, frame a question as an
alternative question with two mutually exclusive options, one of the options being the
answer.
Eg: Instead of generating open ended question as this: “Where is the purple dot?”, generate
close ended question such as: “Is the purple dot to the left or right of the number line”
, and instead of generating: “What type of content is in the image?”, generate: “Is the
content in the image hand-drawn or digital?”

Output your result as a list of JSON objects in the following format:
[{"question": ..., "answer":...}, {"question": ..., "answer":...},...]

For example,
Given the caption:
{ Example Caption }

And the atomic descriptions:
{ Example of a list of atomic facets }

Generate:
{ Example of a list of QA pairs }

Generate question and answer pairs given this image caption:{caption} and the list of atomic
descriptions: {facets}

Figure 7: Prompt for converting atomic facets to QA pairs.

GPT-4o QA Claude QA Teacher QA
Model BERT ROUGE-L LM Human BERT ROUGE-L LM Human BERT ROUGE-L LM Human

(n=31) (n=31) (n=63)
GPT-4o 0.835 0.544 0.700 0.742 0.843 0.599 0.743 0.677 0.752 0.199 0.628 0.524

Claude 3.5 Sonnet 0.856 0.537 0.697 0.871 0.883 0.608 0.732 0.742 0.754 0.202 0.657 0.587
Gemini 1.5 Pro 0.815 0.461 0.627 0.774 0.826 0.514 0.665 0.581 0.711 0.118 0.490 0.365

Llama 3.2-11B V 0.731 0.174 0.368 0.387 0.729 0.176 0.408 0.323 0.785 0.253 0.296 0.127

Table 9: Overall evaluation results for models across different VQA datasets generated by GPT4o, Claude, and
human teachers. The table presents evaluations using automated metrics (BERTSCORE, ROUGEL), as well as
assessments from LMs and human evaluators. Bold is the max score across each metric.
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Categorizing questions into question types
You are categorizing questions related to assessing and understanding images of students’
responses to math problems. You will receive a list of question types lettered A to H,
including examples of questions that fall within each type. Your task is to assign an
unlabeled question to a letter representing a question type.

Here are all possible question types:
A. Questions around how the image or its contents were created, such as medium or paper type.
Examples: "Are the rectangles in the image hand-drawn or computer-generated?", "Is the image
of handwritten student work on a whiteboard or on paper?", and "Is the student’s handwriting
on lined paper or blank paper?".
B. Questions focusing on writing or labels in the image. Examples: "What is the top of the
rectangles labeled with?", "Are the x values from left to right 24, 48, 72, 96, and 108 or
24, 48, 72, 94, and 100?", "Are the disks on the board numbered or unnumbered?", "Are every
consecutive whole number labeled on the y-axis or only some numbers?", "What fraction is
written above the number 1?", "According to the student’s note, is the table harder or easier
to use?", and "What equation is typed on the page?".
C. Questions inquiring about the low-level composition of drawings/diagrams, including the
positioning of content. These questions should only require minimal understanding of math
concepts. Examples: "Along the number line, has the student drawn tick marks?", "Which
digit in 26 has the student circled?", "Are the lines completely straight or not entirely
straight?", "What color is the shaded piece in the bottom strip?", "Are the dots arranged
randomly or in groups?", "Are the vertical lines inside the rectangles equally spaced?",
"Does the second arrow go from -6 to +6 or from +6 to -6?", and "In the place value chart,
where does the student write the digit 7?".
D. Questions that involve enumerating visual content. Examples: "How many green dots are
drawn in a row?", "What is the total number of cells in the table?", "According to the
student’s actual drawing, how many groups and how many dots are in each group?", and "Does
the tape diagram drawn by the student have multiple sections or just one section?".
E. Questions that involve higher-level understanding of math shown in the student’s response,
including knowing what specific content is intended to represent. Examples: "What is the
highest number on the tick marks?", "Are coordinates given in the image?", "Are the numbers
below the line whole numbers or fractions?", "Which piece is shaded to represent 1 over 4?",
"Are all the angles in the image acute or obtuse?", "3 garlic cloves correspond to how many
tablespoons of olive oil?", "According to row 4, how much is charged for 6 lawns?", and "Is
the purpose of this number line to show where to round 26 or where to round 25?".
F. Questions pertaining to the student’s problem solving steps, strategy, or solution.
Examples: "How does the student demonstrate the multiplication in the equation?", "What
is the result of the butterfly method?", "To what number is the student estimating 2,803?",
"What is the result of 8 divided by 2?", "According to the answer sentence, how many
homework papers does Ms. McCarthy have left?", and "According to the diagram, how much do
three-sevenths equal?"
G. Questions that judge the correctness of the student’s work. Examples: "Does the student
correctly or incorrectly identify the base of the prism?", "Does the student have any
misconceptions regarding coordinate pairs?", and "Does the student put the decimal in the
correct place in the product?".
H. Other

Your response must begin with a capital letter ranging from A to H. For example:
Question: Did the student correctly draw two rows in their array?
Category: G.

Now, assign the following question to a question type that it fits best. Remember to begin
your response with a capital letter designating a question type.
Question: question
Category:

Figure 8: Prompt for categorizing questions into question types.
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Generating answer for a question about student’s handwritten response
You will be provided an image containing two parts: a math problem on the left side, and
a student’s handwritten response to that problem on the right. Your task is to answer a
question about the student’s work on the image’s right side.
Your answer should be clear and concise. If possible, provide short answers that are five
words or less.
Do not solve the problem yourself; just answer the question based on the student’s response
in the provided image. Focus on the student’s work and not on the problem that is provided
on the left side.

For example,
Question: “What equation is written above the diagram?”
Your answer: “3x + 2 = 8”

Question: “How many boxes are the width and length of the graph?”
Your answer: “18 by 10”

Question: “What is drawn on the grid?”
Your answer: “A square”

Now, using an image of a math problem and student’s response, answer the following question.
{question}
{image}

Figure 9: Prompt used with VLMs for answering question about the student’s handwritten response.

Comparing model’s answer with teacher provided answer
Given, Question: {question}
Answer 1: {teacher_a}
Answer 2: {model_a}

Rate the level of similarity between these two answers with respect to how well they answer
this question. The Likert rating options are:
4. Basically the same answer
3. Similar but not same answer
2. Neither similar nor different
1. Quite different answers

Provide both the Likert rating followed with an explanation as to why they are similar.
Format the output as a valid parsable JSON like:
{“rating”: 3, “reason”: “Because...”}

Figure 10: Prompt used for comparing model-generated answer with teacher-provided answer about student
handwritten responses.
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