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Abstract
Recent advancements in code completion mod-
els have primarily focused on local file con-
texts (Ding et al., 2023b; Jimenez et al., 2024).
However, these studies do not fully capture
the complexity of real-world software develop-
ment, which often requires the use of rapidly-
evolving public libraries. To fill the gap, we in-
troduce LIBEVOLUTIONEVAL, a detailed study
requiring an understanding of library evolution
to perform in-line code completion accurately.
LIBEVOLUTIONEVAL provides a version-
specific code-completion task comprised of
eight libraries (torch, torchvision, scipy,
pil, tqdm, pyyaml, matplotlib, and
pandas) as they evolve over the year along
with a detailed analysis of the evolution of two
popular and well-maintained public libraries:
PyTorch and Matplotlib. We evaluate popu-
lar public models and find that public library
evolution significantly influences model perfor-
mance. We explored mitigation methods by
studying how retrieved version-specific library
documentation and prompting can improve
the model’s capability in handling these fast-
evolving packages, paving a promising future
path in better handling fast-evolving libraries.

1 Introduction

Large Language Models for code (a.k.a. code
LLMs) (Li et al., 2023; Lozhkov et al., 2024;
Roziere et al., 2023) have significantly advanced de-
veloper productivity through improved code com-
pletion tasks. These models are pivotal not only in
code completion, but also in debugging, code sum-
marization, and language translation for software
development (Yan et al., 2023; Roziere et al., 2020,
2022; Min et al., 2024). These models are usually
evaluated either with code contest dataset (Li et al.,
2022) or with a focus on local files for context
to enhance the completion of the function (Chen
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et al., 2021; Ding et al., 2023a; Athiwaratkun et al.,
2023; Ding et al., 2023b; Jimenez et al., 2024).
However, these studies do not fully encompass the
complexities of real-world software development,
which requires public libraries. Complexity of code
completion with public library APIs increases, as
the APIs often evolve—some APIs change their
signature, some gets deprecated, while many new
APIs surfaced in this evaluation process (McDon-
nell et al., 2013). While some works perform code
completion involving public libraries (Liao et al.,
2023; Zan et al., 2022), use documentation of the
library for prediction (Qin et al., 2024), and show
that zero shot code completions suffer from halluci-
nations (Patil et al., 2023), these works do not focus
on the rapidly evolving nature of public libraries.
Large Language Models are trained on extensive
corpora of open-source code, which likely in-
cludes public libraries. Consequently, while LLM-
generated code may appear reasonable, it might not
be accurate for the specific version of the library
being used, leading to version-dependent perfor-
mance issues. Figure 1 shows that Code LLM’s
generation is correct for v2.2 but incorrect for
v1.2. This variability is significant since devel-
opers often work with different library versions –
newest versions for current projects and older ones
for legacy code maintenance. Therefore, the devel-
oper’s experience with coding assistants depending
on LLMs for code completion can vary greatly de-
pending on their specific use case.
Existing benchmarks and studies do not fully cap-
ture evolution, revealing a gap in our current evalu-
ation and understanding of code LLMs. This work
focuses on the following research questions: (1)
Does the performance of code LLMs change as the
library evolves? (2) If yes, can retrieving version-
specific meta-data like library documentation miti-
gate the impact of library evolution on code com-
pletion? (3) With the evolution of libraries, new
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Figure 1: An example of a code completion scenario under LIBEVOLUTIONEVAL. The incomplete code snippet on
the left requires the correct API method to solve a linear system specified by two PyTorch tensors. The code LLM
performs incorrect code completions due to version mismatch. The version-specific documentation is a potential
augmentations that can assist the LLM to perform correct and version-dependent completion.

relationships between APIs are introduced, while
existing ones are altered. Can code LLMs effec-
tively adapt to these evolving relationships between
APIs? (4) Does the introduction, modification, and
deprecation of APIs as libraries evolve to make it
more challenging for code LLMs to perform accu-
rate code completions?
To investigate these research questions, we in-
troduce LibEvolutionEval, a benchmark and de-
tailed study specifically designed to understand the
impact of public library evolution on code com-
pletion. LibEvolutionEval offers version-specific
code-completion tasks spanning multiple years for
eight libraries – torch, torchvision, scipy,
pil, tqdm, pyyaml, matplotlib, and pandas.
LibEvolutionEval also performs a detailed analysis
of the evolution of two popular libraries (torch
and matplotlib) by providing version-specific
meta-data, documentation retrieval tasks, and code-
completion tasks. It requires code LLMs to per-
form version-specific code completions under both
realistic (where the evaluation examples are sam-
pled from permissively licensed GitHub reposi-
tories that is publicly available ) and controlled
scenarios (where a template uses API documenta-
tion to create evaluation examples that is not pub-
licly available ). It provides version-specific API
documentation to investigate the impact of library
evolution on embedding models during retrieval.
It offers tasks based on completion type to com-
pare: (1) completions guided by import statements
and clear library prefixes with (2) completions that
are object-oriented references and do not have a

library-defined prefix. We call them direct and in-
direct code completions (see Figure 3), and such
tasks evaluate models’ ability to adapt to evolving
relationships between APIs. Furthermore, LibEvo-
lutionEval also offers tasks based on granularity
that compares overall developer experience with
performance on specific APIs that have been newly
introduced, modified, or deprecated as the library
evolves, providing us with insights on the impact
of evolution against overall code-completion per-
formance.
We conducted a comprehensive evaluation using
widely used code LLMs (Lozhkov et al., 2024;
Jiang et al., 2023; OpenAI, 2024) and embedding
models (Zhang et al., 2024; OpenAI, 2022) to re-
port the following insights.

• Code LLMs and embedding models exhibit
substantial performance variation as public li-
braries evolve. Providing version-specific API
documentation as a context improves code
completion performance but does not entirely
address inherent version-based bias in version-
specific code completions.

• Code LLMs perform indirect API completions
better than direct API completions, demon-
strating an understanding of evolving relation-
ships between APIs.

• Introduction, modification, and deprecation of
APIs make it harder for code LLMs to perform
code completion where new models might
forget old deprecated APIs while old models
cannot predict the latest APIs.
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Figure 2: LIBEVOLUTIONEVAL’s preprocessing pipeline to obtain version-specific code-completions meta-data
including documentation, NL instructions, and API annotation.

2 LIBEVOLUTIONEVAL:
Version-Specific Code Completions

Each code completion example in LIBEVOLU-
TIONEVAL consists of code prompts ending at
a position where the LLM is tasked to complete
the missing expression, typically involving one or
more API calls to the public library under consid-
eration as shown in Figure 1. The uniqueness of
this dataset lies in its emphasis on version-specific
API usage, reflecting scenarios where developers
use LLMs to perform code completions for differ-
ent versions of the same library. We evaluate code
completions under two scenarios: realistic (GitHub
based) and controlled (documentation based).

2.1 Version-Specific Evaluation Creation

API Usage Collection For a realistic scenario,
we focus on data written by real-world develop-
ers, specifically from permissively licensed GitHub
repositories (Figure 2-(A) and Figure 7 in the ap-
pendix). This allows us to understand if the impact
of API evolution is significant with unknown con-
founding variables present in real-world code.
For detailed ablations on the other hand, we also
simulate a controlled scenario by creating synthetic
data for Matplotlib and PyTorch by taking API
documentation and converting it to evaluation ex-
amples using a template. The template is designed
to make the code LLM predict the API name given
its description, service name, and mandatory argu-
ments in the left context (Figure 2-(B) and Figure 8
in the appendix). This allows us to isolate the im-
pact of API evolution without the confounding vari-
ables found in real-world code, such as variations
in coding styles.

Versioning of API Usage For a realistic setting,
the GitHub repositories have a ‘requirements.txt’

file that mentions the exact version of the library
used to develop it. Additionally, if the GitHub
repository is a PyPI package (like torchvision)
that depends on the library under consideration
(like torch), we use the dependency matrix be-
tween different packages to match API usage with
the library version (Figure 2-(C)). Next, since the
data is created from API documentation for the
controlled setting, the version of the API usage
example is the same as that of the documentation
from which it is derived.

API Evaluation Example Creation To ensure
the quality of our proposed benchmark, we em-
ploy a series of rule-based and model-based post-
processing filters (Figure 2-(D)). We typically re-
strict the left context provided to the model to the
scope of the API being completed, limiting it to
the class containing the API call. If no class is
present, we include the entire preceding context
of the line. Import statements of the target library
are also included to provide the LLM with con-
textual clues (see §B in appendix). Additionally,
the initial regex of the API expression (e.g., torch
from torch.solve() as illustrated in Figure 1) is
placed just before the cursor position to encourage
the model to complete the API expression correctly.
Comments are removed from contexts to minimize
the risk of API leakage.

API Evaluation Example Selection When en-
countering multiple API calls on the same line (e.g.,
x = torch.ones(x) + torch.zeros(y)), if an
API (e.g., torch.ones) has already been included
in the evaluation dataset from this line, subsequent
APIs on that line (e.g., torch.zeros) are excluded.
This approach ensures diversity in the contexts rep-
resented in the dataset. Additionally, we discard
examples if the corresponding API call already ex-
ists within the collected evaluation dataset for the
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Figure 3: APIs classification based on completion type.

same source (e.g. GitHub repository). This means
that if we have already included an example of a
specific API (e.g., torch.ones) from a particular
source, we will exclude any additional examples
from that same source that use the same API (i.e.,
torch.ones). This strategy aims to ensure the di-
versity of API calls within the evaluation dataset.

Documentation Collection We systematically
collect documentation for detailed analysis of li-
brary evolution from their publicly available web-
sites (Figure 2-(E)). This includes comprehensive
details such as API signatures, names, types, in-
put parameters (noting it’s optional/mandatory na-
ture), and code usage examples. This documenta-
tion serves as a foundation for understanding these
APIs’ expected usage and evolution over time.

2.2 API Data Classification

Completion Type This classification assesses an
LLM’s ability to track the evolving relationships
between APIs as a library changes. It does so by
comparing completions based on import-driven pre-
fixes with those using open-vocabulary prefixes
(Figure 3 and Figure 2-(F)). These are:

• Direct Code Completions: These comple-
tions are driven by import statements, with
prefixes derived directly from the public li-
brary’s import statements. As an example,
nn.ReLU() is a direct API completion from
import torch.nn as nn.

• Indirect Code Completions: These comple-
tions lack a well-defined prefix which orig-
inates from referenced objects instantiated
through direct API calls. Figure 3 shows that
variable X is defined by X = nn.linspace and
is later used in X.round. These completions
test a model’s deeper contextual understand-
ing, requiring it to identify the corresponding
direct API call and comprehend the library’s
version-specific relationships between APIs
to achieve accurate code completion.

Type Old Version Current Version Next Version
Introduced API Not Supported API.Foo(x) API.Foo(x)
Deprecated API API.Foo(x) API.Foo(x) Not Supported
Modified API API.Foo(x, y) API.Foo(x)
Modified API API.Foo(x) API.Foo(x, y)

Table 1: Classification of APIs based on granularity.

Granularity This evaluation examines LLMs’
ability to adapt to rapid API changes, including
introductions, deprecations, and modifications as
the library evolves. We annotate APIs using their
documentation as (Table 1 and Figure 2-(G)):

• Introduced: API added in the current version
and not present in the previous version.

• Deprecated: API present in the current ver-
sion but removed in the next version.

• Modified: The name of the API does not
change but its arguments are updated.

• Unchanged: API does not change when com-
pared to the previous/next version.

We then cross-reference these annotated APIs with
the version-specific evaluation examples. This al-
lows us to label both API documentation (see Fig-
ure 4) evaluation examples based on granularity to
create subsets for analysis.

2.3 LLM Context Classification

In-File Context We assess the models’ code
completion capabilities using only the context avail-
able within the current file, replicating a typical
development environment scenario. The import
statements, the right context, and the left context
extracted are given to the model (see Figures 1
and 13a). This methodology ensures that our eval-
uation accurately reflects the practical conditions
faced by developers that use version-unaware code
completions and is aimed to serve as a baseline.

Library Version-Aware Context While the in-
file context mimics a realistic code-completion set-
ting , there still exists ambiguity for the LLM to per-
form code completion. For example, there might
be two valid responses based on the in-file context
corresponding to two different versions of the li-
brary, as shown in Figure 1. To mitigate this issue,
we add a comment before left context that tells the
LLM the version of the library under consideration.

Version-Specific Retrieved API-Context De-
velopment on the success of retrieve-and-generate
frameworks for repository-level code completions
(Zhang et al., 2023; Ding et al., 2023b), we
adapt this retrieve-and-generate approach for the
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Figure 4: Illustration of the evolution of PyTorch and Matplotlib public libraries over time. This highlights the rapid
evolution of modern public libraries.

Feature Assorted PyTorch Matplotlib

# API Documentations - 29.4K 35.6K
# Eval Examples 4.5K 20.1K 10.1K
Avg. # lines in prompt 66.25 104.91 84.36
Avg. # tokens in prompt 732.06 1149.34 995.91
Avg. # lines in reference 1.27 1.21 1.25
Avg. # tokens in reference 18.74 13.73 17.47

Table 2: LIBEVOLUTIONEVAL statistics.

retrieval of public library documentation. Our
documentation retrieval database is organized by
versions of public libraries. It contains compre-
hensive metadata, including API signatures, input
parameters, usage examples, and detailed natural
language descriptions of APIs and their parameters.
For each code completion task, we generate a query
using the natural language instruction describing
the developer’s intent. This is done by giving
target code completion to Anthropic’s Claude
v2 (Anthropic, 2023) and asking it to not reveal
the regular expressions corresponding to the name
and input arguments of target code completion
(refer to § C for the Appendix and Figure 2-(H)).
We utilize an embedding model (CodeSage (Zhang
et al., 2024) by default) to determine the similarity
between the query and the available API entries,
selecting the top 3 matching APIs. These are
then formatted as commented code, incorporating
API signatures and parameters, placed before
the left context to serve as the version-specific
documentation as shown in Figure 13b.

2.4 Dataset Statistics and Scope

Statistics We present the statistics of LIBEVO-
LUTIONEVAL in Table 2. We use the StarCoder
tokenizer (Li et al., 2023) to compute the number
of tokens. For version-specific characteristics, see
§F in the appendix.

Scope In addition to left contexts and target code
completions, we include the subsequent code lines
from the source code files in LIBEVOLUTIONEVAL

examples. By providing the source code lines both
to the left (prompt or prefix) and to the right (suffix)
of the references, LIBEVOLUTIONEVAL enables
the evaluation of code LLMs for their fill-in-the-
middle (FIM) capabilities (Bavarian et al., 2022).
Furthermore, the meta-data from documentation
allows us to conduct evaluations using RAG.

3 Experimental Setup

Models We benchmark public code LLMs: Mis-
tral (Jiang et al., 2023), StarCoder2 (Lozhkov et al.,
2024), GPT-4o-mini (OpenAI, 2024) and CodeGen
1.0 (Nijkamp et al., 2023). We benchmark version-
specific retrieval tasks using CodeSage (Zhang
et al., 2024) and OpenAI-ada-002 (OpenAI, 2022).
Lastly, we conducted scaling experiments with Star-
Coder (Li et al., 2023) (1B, 3B, 7B), StarCoder2
(3B, 7B, 15B), and CodeSage (Small, Large).

Evaluation Metrics For code completion, we
concentrate on the correctness of APIs called by
calculating the F1 score (Ding et al., 2023b). For
documentation retrieval, to evaluate the perfor-
mance of embedding models by using Mean Re-
ciprocal Rank (MRR), assessing how well they re-
trieve version-specific documentation and whether
their performance varies with library evolution.

Inference We maintain uniform hyperparameters
across all models. The maximum sequence length
is 8K tokens, with each context trimmed to include
the nearest 4K tokens from the API expression. A
maximum generation length is 128 tokens. We
report the results of the greedy search. During
the post-processing phase we check if the source
code following target code completion is being
generated; if so, the generation is truncated accord-
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Figure 5: Illustration of the code completion performance of the Starcoder2, Mistral, and GPT-4o-mini models by
measuring the F1 score. The performance of code LLMs varies significantly as libraries evolve.

Model Completion Strategy Context Setting PyTorch Matplotlib

Starcoder2-7B
In-File (Not Version-Aware) 68.8 69.7

Fill-in-the-Middle + Version-Aware 69.3 70.1
+ Version-Aware RAG 73.3 75.4

Mistral-7B
In-File (Not Version-Aware) 65.8 60.18

Left-Context Only + Version-Aware 66.04 61.2
+ Version-Aware RAG 67.6 69.05

GPT-4o-Mini
In-File (Not Version-Aware) 64.3 52.5

Instruction-based (w/ Example) + Version-Aware 64.78 53.1
+ Version-Aware RAG 70.14 66.7

Table 3: Code completion performances under different input types and context prompting strategies. Each model is
evaluated in three context settings: in-file (not version-aware), version-aware, and version-aware RAG.

ingly. We transform the newly generated text, into
an AST to extract API expressions (Ding et al.,
2023b). If no API expressions are identifiable, the
generation is left unchanged. We apply the same
post-processing on the target completions before
calculating the evaluation metrics.

4 Results

Library evolution impacts code LLM perfor-
mance We evaluate how the performance of code
LLMs changes as libraries evolve by perform-
ing code completions for eight libraries: torch,
torchvision, scipy, pandas, pillow,
pyyaml, and tqdm. This evaluation uses Star-
Coder2, Mistral, and GPT4o-mini (more in §I). As
shown in the first two columns of Table 3, these
models employ different completion strategies:
StarCoder2 uses fill-in-the-middle, Mistral utilizes
left-context only, while GPT4o-mini follows an
instruction-based approach with a one-shot exam-
ple. All eight libraries are benchmarked in realistic
scenarios. Figure 5 shows that the developer expe-
rience can vary significantly across all models and
libraries as public libraries evolve, highlighting the
need for better model adaptation to API changes.

Version aware contexts enhance code LLM per-
formance Table 3 demonstrates a clear improve-
ment in model performance as additional contex-
tual information is provided during the code com-
pletion task. In the baseline In-File setting, where
the models rely solely on the code context within a
file, the performance is the lowest across all mod-
els. Introducing version awareness significantly en-
hances accuracy, as models can better disambiguate
API usage across different library versions. The
most notable improvements occur in the Version-
Aware RAG setting, where documentation relevant
to the specific library version is retrieved and used
to further refine API completions. This enriched
context enables models to generate more precise
completions by taking into account the evolving
API landscape. These results emphasize the critical
role that version-specific and dependency-aware
contexts play in improving the accuracy and relia-
bility of code completions.
Furthermore, Figure 6c visualizes the impact of us-
ing version-aware RAG compared to in-file context
settings for the StarCoder2 model, focusing on the
evolution of PyTorch and Matplotlib. Although
version-aware RAG consistently improves the per-
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(a) MRR Scores for CodeSage Small
and Large Models

(b) F1 Scores for Starcoder2 and Star-
coder Models with respect to PyTorch

(c) In-File vs Version-Aware RAG Per-
formance for Starcoder2

(d) Direct vs Indirect Code Completion
for Starcoder2

(e) Overall vs Deprecated Set Code
Completion for Starcoder2

(f) MRR Scores for open CodeSage
and Open-Ada-002 models.

Figure 6: Detailed analysis of the impact on code completion as PyTorch and Matplotlib evolve using API-
completion and documentation retrieval tasks.

formance of version-specific code completions, it
does not fully address the model’s internal bias
toward certain versions of the libraries. The box
plot highlights variance in the model’s predictions,
suggesting that despite the enhanced contextual in-
formation, underlying biases in the LLM remain,
likely stemming from the uneven distribution of
training data across library versions.

Library evolution impacts documentation re-
trieval using embedding models We measure
the performance of version-specific documentation
retrieval as libraries evolve, using embedding mod-
els. As shown in Figure 6f, we benchmark public
CodeSage-Small and the closed-source OpenAI
Ada models on Torch and Matplotlib. We ob-
serve that the performance of these embedding
models fluctuates with the evolution of libraries.
This insight sheds light on why version-aware RAG
enhances performance for version-specific code
completion tasks, but cannot fully resolve the vari-
ance in performance across different library ver-
sions. The embedding models themselves exhibit
bias toward certain library versions, explaining
the persistent performance gaps in version-specific
code completions.

Impact of scaling and model updates on han-
dling evolving APIs We evaluate the impact of
scaling both embedding models (Figure 6a) and
code-completion models (Figure 6b) across differ-
ent sizes to observe improved retrieval and code

completion performance respectively. However,
performance still fluctuates as libraries evolve, sug-
gesting that while scaling improves results, it does
not fully address the challenges posed by evolv-
ing libraries. Furthermore, updating to newer ver-
sions, such as from StarCoder-7B to StarCoder2-
7B shows that while performance improvements
overall are observed (due to better training meth-
ods), these do not address the biases introduced by
the evolution of public libraries. This points to a
need for more specialized training techniques, such
as fine-tuning using versioned datasets or incorpo-
rating explicit temporal data about API evolution.

Direct vs indirect API completion We evalu-
ate the performance of direct and indirect code
completions as libraries evolve in Figure 6d. The
model exhibits better performance for indirect code
completions than direct code completions. From
subsection 2.2, we know that every indirect code
completion example contains a corresponding par-
ent direct API call in the left context. We posit that
the code LLM can understand that it needs to per-
form code completion so that the generated code
serves as an attribute related to this version-specific
parent direct API call present in the left context.

Impact of different APIs on code completion
In Figure 6e, we compare overall performance with
the subset of deprecated APIs for code completions
in PyTorch and Matplotlib, focusing on a con-
trolled setting. The results show that code LLMs
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(a) StarCoder2 (Model Release: 2024)
on Matplotlib Deprecated APIs.

Version Deprecated Overall
Year API Score Score
2019 38.58 61.83
2020 43.93 60.12
2021 53.01 61.31
2022 52.74 65.15
2023 57.14 66.08

(b) CodeGen 1.0 (Knowledge Cutoff:
2022) on Matplotlib Introduced APIs.

Version Introduced Overall
Year API Score Score
2020 53.14 62.89
2021 54.23 62.85
2022 56.29 60.04
2023 44.08 59.44
2024 41.37 58.57

(c) StarCoder2 (Knowledge Cutoff: 2024)
on PyTorch Introduced/Deprecated APIs.

Version Deprecated/Intro- Overall
Year -duced API Score Score
2018 68.78 71.06
2020 59.10 75.45
2021 68.13 72.84
2022 60.93 71.02
2023 67.13 72.82

Table 4: Performance comparison of models on different API sets across library versions. Underlined scores indicate
a significant performance drop while bold scores are maximum across the two settings considered.

struggle with deprecated APIs, consistently per-
forming worse compared to the overall set. This
observation aligns with our qualitative results that
models prefer API calls for newer versions of the
library (see Figure 1 and 9). To verify this in a
realistic scenario, Table 4c provides a version-by-
version analysis for PyTorch, comparing newly in-
troduced and deprecated APIs. We observe con-
sistently lower performance on deprecated APIs,
except for 2018, a year dominated by newly intro-
duced APIs, which are now widely adopted. These
findings demonstrate that rapid changes to API im-
pact models’ ability to complete code accurately,
with deprecated APIs posing particular challenges.

Temporal analysis of model performance on in-
troduced and deprecated APIs The tables com-
pare the performance of StarCoder2 and CodeGen-
1.0 on Matplotlib’s deprecated and introduced
APIs, respectively, in a controlled setting. Table 4a
shows that StarCoder2 struggles with older, dep-
recated APIs from 2019 and 2020, indicating that
API forgetting contributes to version-specific per-
formance drops. In contrast, Table 4b highlights
a sharp decline in CodeGen-1.0’s performance on
introduced APIs from 2023 and 2024, revealing its
2022 knowledge cutoff. This suggests that such
tasks could be used to estimate a model’s knowl-
edge cutoff. In general, the results underscore the
need to develop model training techniques to better
handle library evolution.

5 Related Works

Large language models for code excel in vari-
ous software development tasks (Yan et al., 2023;
Roziere et al., 2020, 2022; Min et al., 2024), facili-
tating the developments of coding assistants. Sim-
ilarly, developments in code embedding models
used for retrieval (Robertson et al., 2009; Guo et al.,
2022; Zhang et al., 2024; OpenAI, 2022) have fur-

ther enhanced LLMs’ capabilities. In this journey,
evaluation benchmarks have played a pivotal role
with numerous works developing benchmarks to
evaluate code LLMs (Zheng et al., 2023; Cassano
et al., 2023; Hendrycks et al., 2021; Lu et al., 2021;
Puri et al., 2021; Clement et al., 2021; Ding et al.,
2023a; Wang et al., 2023; Lu et al., 2022). These
studies typically assess code completion abilities
given local file contexts, both in-file (Chen et al.,
2021; Athiwaratkun et al., 2023; Lu et al., 2021)
and repository-level (Ding et al., 2023b; Zhang
et al., 2023; Liu et al., 2024; Ding et al., 2024).
However, they do not fully encompass the complex-
ities of real-world software development, which
requires extensive use of public libraries. Some
works have explored code completion involving
public libraries (Liao et al., 2023; Zan et al., 2022;
Qin et al., 2024; Patil et al., 2023), but they do
not address the rapidly evolving nature of these
libraries. To fill this gap, we introduce LIBEVO-
LUTIONEVAL that evaluates the performance of
LLMs on code completion across multiple versions
of public libraries, capturing their evolution and
reflecting real-world scenarios where developers
interact with different versions of the same library.

6 Conclusion

In this paper, we introduced LIBEVOLUTIONEVAL,
a comprehensive benchmark specifically designed
to assess the performance of Code Large Language
Models (code LLMs) in code completion tasks as
public libraries evolve. Our results demonstrate sig-
nificant variability in LLM performance based on
the API version, highlighting the challenges of han-
dling library evolution. The findings underscore the
necessity for future advancements in code comple-
tion technologies to consider the dynamic nature
of public libraries, aiming to improve developer
productivity and accuracy in real-world settings.
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Supplementary Material: Appendices

A Limitations

This study involves a zero-shot approach to evalu-
ate the impact of the evolution of public libraries on
Code LLMs. Pre-training a model exclusively with
version-specific data from public libraries might
help to reduce the version-dependent discrepan-
cies observed in zero-shot settings. Additionally,
it is important to acknowledge that CodeLMs are
trained on vast repositories of unlabeled code, rais-
ing the possibility that the model might have pre-
viously encountered some of the evaluation data.
This potential overlap should be carefully consid-
ered when interpreting the results of this study.

Figure 7: Examples of API evaluation.

Figure 8: Matplotlib API evaluation example created
synthetically from documentation.

Figure 9: Qualitative example of an error in code com-
pletion on LIBEVOLUTIONEVAL focused set.

B LIBEVOLUTIONEVAL Generation

Realistic Scenario Python files using the library
are processed to extract library usage patterns by
parsing the files into Abstract Syntax Trees (ASTs)
using the tree-sitter library. This comprehen-
sive approach allows us to identify syntactic el-
ements such as function calls and import state-
ments specific to the library. The AST is system-
atically traversed to detect both direct and indirect
API calls to the library and its submodules. Di-
rect API calls are identified by their explicit in-
vocation in the source code, typically involving
function calls directly on the library modules (e.g.,
torch.nn.Linear). Indirect API calls are recog-
nized through variables or objects that are assigned
to library functions or classes and used later in
the code, which requires tracking variable scopes
and aliases across the codebase. The broader struc-
tural context for a direct API call is determined by
locating the closest enclosing syntactic structure,
such as a function or a class method, in the AST.
This enclosing structure is regarded as the scope
of the API call. The entire block of code consti-
tuting this scope is extracted as a context. This
context includes parameter lists, internal variable
declarations, and other code elements within the
same block, providing a comprehensive view of
how the API is integrated into the function. The
context for indirect API calls includes not only the
block where the variable is used but also poten-
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tially broader code segments that influence or are
influenced by the variable use. This methodical
extraction of context ensures that each API call,
whether direct or indirect, is analyzed within its
operational environment concerning left context.

Controlled Scenario The library usage data for
controlled ablations was created synthetically us-
ing the documentation for each version. Each doc-
umentation is converted into a code completion
example to be used for evaluation using a template
(see Figure 8). The template highlights the service
name, API description, and mandatory arguments
and does not leak the name of the API.

C Generating Natural Language
Instructions Using Claude

Figure 10: The template used to prompt Claude to create
natural language instructions from a target code comple-
tion expression. The template explicitly guides the LLM
not to provide the name or the arguments required for
the code completion in the natural language instruction.

D Retrieval Performance vs Model Size
on LIBEVOLUTIONEVAL

Figure 11: Larger CodeSage models perform better at
documentation retrieval

E Code Completions Performance vs
Model Size on LIBEVOLUTIONEVAL

(a) Starcoder2 15B and 7B on PyTorch.

(b) Starcoder 1B, 3B, and 7B on PyTorch.

Figure 12: Larger Starcoder and Starcoder2 models
perform better at code completions.

F Detailed Statistics of Data

Main Result

Library 2019 2020 2021 2022 2023
torch 286 513 708 835 738

torchvision 16 16 14 16 16
scipy 70 70 70 70 68

pandas 60 60 60 59 60
matplotlib 90 90 90 89 90

pillow 40 40 40 40 40
pyyaml 8 8 8 Na 8
tqdm 12 12 12 12 12

Table 5: API Examples per Year for Libraries
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Matplotlib Library Ablation Data

Version Deprecated Overall Direct Indirect Introduced
3_0_3 40 1000 297 359 N/A
3_2_0 40 1000 154 175 200
3_3_4 40 1000 339 395 200
3_5_2 40 1000 291 298 200
3_6_3 40 1000 84 31 200
3_8_3 N/A 1000 37 8 200

Table 6: Comparison between Matplotlib Focussed vs.
Comprehensive dataset.

PyTorch Library Data

Table 7: PyTorch API Usage Data

Version Direct Indirect Intr/Depr Deprecated Overall
v_1_1_0 286 174 50 N/A 1000
v_1_2_0 341 189 35 9 1000
v_1_4_0 452 262 45 14 1000
v_1_6_0 513 300 50 N/A 1000
v_1_8_0 564 353 50 40 1000
v_1_10_0 708 466 50 40 1000
v_1_12_0 876 543 0 40 1000
v_1_13_0 835 503 0 40 1000
v_2_0_0 738 441 36 40 1000
v_2_2_0 680 375 0 N/A 1000

F.1 PyTorch Documentation Data

Table 8: Torch version changes over time.

Torch Version Total New Deleted Modified Consistent
0.4.0 1187 0 8 172 1179
1.1.0 1518 339 44 198 963
1.2.0 1548 74 10 43 1438
1.4.0 1752 214 14 225 1507
1.6.0 2031 293 48 523 1482
1.8.0 2455 472 77 466 1591

1.10.0 3324 946 596 237 1631
1.12.0 3625 353 135 126 3051
1.13.0 3784 294 113 120 3337
2.0.0 4018 347 87 148 3504
2.2.0 4187 256 0 68 3863

F.2 Matplotlib Documentation Data

Table 9: API changes across versions.

Version New Deleted Modified Consistent
3.0.3 0 180 135 4141
3.2.0 1191 249 152 3875
3.3.4 705 909 69 4240
3.5.2 1505 523 84 4407
3.6.3 478 292 133 5571
3.8.3 631 0 59 6123

G Visualizing prompts given to CodeLMs
in LIBEVOLUTIONEVAL

(a) Prompt in a zero-shot setting

(b) Prompt when augmentation is provided

Figure 13: Visualizing prompts given to code LLMs in
LIBEVOLUTIONEVAL.

H Additional Model Benchmarking

(a) GPT-4o benchmarked on LIBEVOLU-
TIONEVAL.

(b) QwenCoder-2.5 benchmarked
on LIBEVOLUTIONEVAL.

Figure 14: Comparison of GPT-4o and QwenCoder-2.5
benchmarked on LIBEVOLUTIONEVAL.
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I BM25 RAG Experiment

Figure 15: Zero shot and BM25 on code completion.
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