
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6779–6793

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CodeSCM: Causal Analysis for Multi-Modal Code Generation

Mukur Gupta∗ Noopur Bhatt∗ Suman Jana
Columbia University

{mukur.gupta, noopur.bhatt}@columbia.edu
suman@cs.columbia.edu

Abstract

In this paper, we propose CodeSCM, a Struc-
tural Causal Model (SCM) for analyzing multi-
modal code generation using large language
models (LLMs). By applying interventions
to CodeSCM, we measure the causal effects
of different prompt modalities, such as nat-
ural language, code, and input-output exam-
ples, on the model. CodeSCM introduces la-
tent mediator variables to separate the code and
natural language semantics of a multi-modal
code generation prompt. Using the principles
of Causal Mediation Analysis on these medi-
ators we quantify direct effects representing
the model’s spurious leanings. We find that, in
addition to natural language instructions, input-
output examples significantly influence code
generation.

1 Introduction

Modern Large Language Models (LLMs) have
shown remarkable effectiveness in code reason-
ing tasks, particularly code generation (Nijkamp
et al., 2023; Rozière et al., 2023; Bai et al., 2023).
This task involves generating code that meets spe-
cific multi-modal requirements, constrained by
natural language instructions, code snippets, and
input-output (I/O) example pairs (Chen et al.,
2021a; Austin et al., 2021). Additionally, some
multi-modal prompt components contain informa-
tion from both code and natural language modali-
ties (Casalnuovo et al., 2020), such as function sig-
natures and variable names, where code structure
and natural language coexist. This enriched cod-
ing context, combining programming and natural
language semantics, helps LLMs better understand
both the semantics and syntactic requirements of
the desired code.

Prior research has shown the effectiveness of
prompt tuning in improving generation perfor-
mance (Brown et al., 2020; Liu et al., 2021; Wei

*These authors contributed equally to this work.

et al., 2023). These works have shown that multi-
modal prompts can be highly sensitive, where small
adjustments might result in drastically different re-
sponses from the model (Chao et al., 2023; Zhu
et al., 2023; Sclar et al., 2023). However, the in-
teractions between the multi-modal components of
code generation prompts and their direct or indi-
rect effects on the generated code are still not well
understood.

In this paper, we systematically explore these
complex multi-modal effects using a causal ap-
proach. We propose a novel causal framework,
CodeSCM, to measure the causal effects of differ-
ent modalities in the prompt on the performance
of code generation LLMs. CodeSCM defines a
Structural Causal Model(Pearl et al., 2000), shown
in Figure 1, where each modal component of the
prompt is treated as an independent variable that
causally affects the code generated by the model.
To account for similar natural language and code
semantics of different surface forms, we introduce
two latent mediator variables to capture code se-
mantics and natural language semantics of the input
prompt, mimicking a human mental model for gen-
erating correct code snippets from a multi-modal
input problem.

Specifically, we make four key contributions in
this paper: (i) we introduce CodeSCM, a novel
framework for causal inference in multi-modal
code generation tasks, enhancing interpretability
and causal understanding of codeLLMs. While
CodeSCM is designed for the code generation task
in this paper, it can be extended to other modalities,
tasks, and transformations. (ii) using CodeSCM,
we define the Total Effects of the modalities on
code generation, highlighting that input-output ex-
ample pairs and natural language code components,
like function headers, are significant modal compo-
nents alongside natural language instructions. We
also observe benchmark memorization in LLMs
like GPT-4T with our Total Effect analysis; (iii)

6779

Figure 1: CodeSCM causal graph representing the total and direct effects of the modal variable nodes on the
response variable Y representing the correctness of the generated code. CodeAL represents algorithmic channel of
code and CodeNL is natural language channel of code.

through targeted interventions on CodeSCM, we
measure the Direct Effects of each modality, rep-
resenting spurious model correlations, and show
that simple semantics-preserving transformations
to input-output example pairs lead to a significant
drop in accuracy; and (iv) following the asymmet-
ric causal effects of modalities, we examine the
effect of multi-modal code-specific pretraining on
the embedding space, which shows that codeLLM
CodeLLaMa can align different prompt modalities
better than LLaMa-2 in the embedding space. Our
code is available on GitHub1.

2 Background

2.1 Structural Causal Model

A Structural Causal Model (SCM) M (Pearl
et al., 2000) is defined by a 4-tuple M =
⟨U,V,F,P(U)⟩, where U represents a set of exoge-
nous variables that are affected by factors external
to the model, P (U) is a joint probability distri-
bution over the set U, V is a set of endogenous
variables determined by variables in U∪V, and F
is a set of functions from U∪V to V. The functions
in F can range from simple indicator functions for
binary variables to language models for complex
NLP tasks. The SCMM can be represented by a
causal graph G, which employs nodes to represent
both exogenous and endogenous variables.

Causal effects on any response variable Y ∈ V
are quantitatively measured using interventions.

1https://github.com/nb15/codeSCM-naacl25

An intervention on X ∈ V, represented by do(x),
creates a sub-SCMMx = ⟨U,V,Fx,P(U)⟩ where
Fx represents a subset of function mappings in F
which do not have X in their co-domain, and X
is replaced by a constant x. Hence, forcing the
variable X to take a constant value and removing
all mechanisms that may affect it. The response
variable Y post-intervention (do(x)) is represented
as Yx, i.e., P (Yx) = P (Y |do(x)). Following the
above notation, we can formally define causal ef-
fects:

Definition 2.1. (Total Effect) (Pearl, 2000): The
causal effect of two distinct realizations of variable
X with do(X = x′) and do(X = x′′). Total Effect
(TE(x′, x′′)) can be written as:

E[Y |do(X = x′)]− E[Y |do(X = x′′)] (1)

Causal Mediation Analysis (Robins and Green-
land, 1992; Pearl, 2022; Robins, 2003) involves
understanding the effects of a mediator M ∈ V in
explaining changes in Y . All the effects from X
to Y where all Z ∈ V, representing the parents
of Y excluding X , remain fixed are called Direct
Effects. We measure the direct effect of modalities
to define spurious learnings that are not mediated
by the latent mediators. We use the definition of
Path Effect for systematic measurement of direct
effects of a modality.

Definition 2.2. (Path Effect) (Avin et al., 2005;
Wu et al., 2019): The causal effect of variable X
along a path α can be represented in an edge sub-

6780

https://github.com/nb15/codeSCM-naacl25

graph Gα. Path Effect (PEα(x
′, x′′)) can be writ-

ten as:

E
[
Y |Zα(do(x

′′)), Zα(do(x
′))

]
− E

[
Y (x′)

]
(2)

where Zα is the set of all mediators ∈ Gα, and
Zα is the complementary mediator set. Hence, all
the variables on the path α take values with do(x′′),
and other mediators that do not lie on α take values
with do(x′). Note that the Direct Effect is a special
case of the Path Effect.

2.2 Multi-Modal Code Generation
For code generation tasks, natural language in-
structions alone are often insufficient to meet strict
context-based syntax requirements, such as vari-
able or function names that are dependent on sur-
rounding code. Thus, natural language prompts are
augmented with code modality, guiding the genera-
tion into appropriate syntactical space (Chen et al.,
2021a; Austin et al., 2021). Additionally, some
prompt components, such as function header name,
appear as a single entity but contribute to multi-
ple modalities in terms of model understanding, as
observed by Casalnuovo et al. (2020).

For instance, the function header name in Fig-
ure 2a is primarily a code component, but its natural
language name also conveys information about the
desired output. As highlighted later in Section 3.1,
we call this a natural language channel of Code.
Figure 3 illustrates an example of a prompt with
and without the natural language channel of Code.
Similarly, input-output (I/O) example pairs also
carry information about code correctness and logic
beyond the syntactical structure. We believe that
future codeLLMs might rely heavily on these com-
ponents to ensure the correctness of intermediary
variables, akin to code debugging process of longer
code fragments. Therefore, we consider I/O pairs
and natural language channels of code as separate
modalities, in addition to natural language instruc-
tions and code.

3 Problem Setup

3.1 CodeSCM
Each prompt P in dataset D is decomposed into its
multi-modal components, which are represented as
variables in the structural causal model, as shown
in Figure 1. We use the extended Backus–Naur
form (Equation 7) to represent the multi-modal
prompt. In CodeSCM, as shown in Equation 7, we
consider four modalities: Natural Language (NL),

algorithmic channel of Code (CodeAL), natural
language channel of Code (CodeNL), and input-
output example pairs (I/O).

We define the multi-modal structural causal
model (CodeSCM) to model the causal relation-
ship between prompt modalities and the model-
generated code. Since different code snippets and
similar natural language texts can convey the same
semantics for a human mental model, we introduce
two latent mediators: MCode for code semantics
and MNL for natural language semantics. Follow-
ing the Causal Mediation Analysis, we assume each
modality’s effect on the output is mediated through
these variables. As shown in Figure 1, CodeAL and
NL directly affect MCode and MNL respectively;
I/O affects MCode, and, CodeNL directly affects
both mediators. The output generated code, R, is
tested for correctness against the test cases, where
code correctness is the response variable Y ∈ 0, 1,
with E(Y) representing accuracy over dataset D.
We do not account for confounding variables in this
analysis, leaving this investigation for future work.

3.2 Modal Causal Effects

Using CodeSCM, we define the causal effects of
each modal variable in P on the generated code.
We measure the Total Effect (Definition 2.1) of
each modality on the response variable Y , reflect-
ing the model’s sensitivity. Additionally, we ex-
amine the Direct Effect of modalities in form of
Path Effect (Definition 2.2) on Y , along a path that
bypass MCode and MNL, capturing spurious corre-
lations learned during training. We also define addi-
tional variables and interventions to quantify these
effects. Direct Effect (DE) and Total Effect (TE)
for CodeAL are presented here and the detailed
derivations for other modalities are in Appendix A.

Causal effects of CodeAL. We consider the
CodeAL variable as an output of a structural equa-
tion FC ∈ F on three additional variables, CAL,
CDC and XAL, shown in Equation 3. CAL is the
actual prompt component PCodeAL

∈ D. To mea-
sure DE(CodeAL on Y), quantifying the spurious
correlations, we vary CodeAL variable while keep-
ing mediator MC constant i.e MC(CodeAL) =
MC(Code′AL). As shown in Figure 2b, we do this
by inserting Dead Code (DC) into the original code,
a code semantics-preserving transformation. The
dead code is represented by variable CDC . We use
the categorical variable XAL to represent the inter-
action between the actual code and the dead code,

6781

(a) Multi-Modal Prompt (b) Semantics preserving transformations

Figure 2: (a) Modalities in an example from mMBPP+ dataset, red for NL, blue for CodeAL and CodeNL, and
green for Input/Output examples. (b) semantics preserving transformations: red for natural language, blue for
CodeNL, orange for CodeAL, and green for I/O examples.

Figure 3: The original HumanEval+ prompt (top) in-
cludes the function header intersperse, followed by
natural language instructions and input-output pairs for
code generation. The first modification (middle) re-
moves the algorithmic code channel by eliminating all
code components while retaining a natural language de-
scription of the function header in the docstring. The
second modification (bottom) removes the natural lan-
guage channel by standardizing the function name.

which also allows us to perform an intervention and
calculate causal effects over all prompts in D. We
drop the AL subscript in the following derivation
for brevity. It can take one of three values as shown
in equation 3.

CodeAL ← 1{X=1}(CAL + CDC)

+ 1{X=0}(CAL) + 1{X=−1}(NULL) (3)

where 1(.) is an indicator function; (CAL + CDC)
represents the concatenation of a snippet of dead
code with the actual code.

We measure the TE of CodeAL,
TE(CodeAL on Y), by computing the ex-
pected change in the Y by setting the CodeAL

component as NULL in the prompt using the

variable XAL.

TE = TE(do(XAL = 0), do(XAL = −1))
(i)
= E [YX=0]− E [YX=−1]

(ii)
= P [YX=0 = 1]− P [YX=−1 = 1]

(iii)
= A(D)−A(D;PCodeAL

= NULL)

where, equality (i) follows from the Definition 2.1,
equality (ii) follows because Y follows Bernoulli
distribution; A(D) is the accuracy of the model
over the dataset D. Figure 3 shows an example
of how CodeAL is removed from the prompt for
computing the total effect.

The DE of CodeAL on Y , DE(CodeAL on Y)
is measured by the expected change in Y with vary-
ing CodeAL while keeping MCode unchanged with
dead code insertion. We calculate DE using the
Path Effect of XAL on Y , along a path from XAL

to Y which goes through CodeAL but skips MCode.
We note that the quantification of direct effect is
a special case path effect definition. Using Defini-
tion 2.2:

DE = E
[
YCodeAL(X=1),MC(X=0)

]
− E [YX=0]

(i)
= E [YX=1]− E [YX=0]

(ii)
= A(D)−A(D;PCodeAL

= CAL + CDC)

where equality (i) follows from the fact
that MC(CodeAL(X = 0)) is equal to
MC(CodeAL(X = 1)), because the dead code
insertion in Equation 3 keeps the code semantics
MCode unchanged. Equality (ii) is similar to equal-
ities (ii) and (iii) used in TE.

Causal Effects of Other Modalities. Similarly,
the NL, I/O, and CodeNL modal variables are
considered as outputs of structural Equations 4,

6782

5 and 6 respectively. For CodeNL, the direct ef-
fect requires bypassing two mediators, MNL and
MCode. Therefore, we define a transformation that
preserves semantics for both. As seen in Figure 2b,
our transformation adds a prefix DN (Dead Name)
to the function header, preserving semantics in both
the natural language and code domains. For I/O
transformations, each assertion equality is replaced
by two inequalities (≥ and ≤). While we demon-
strate one specific transformation for each modality
in our work to compute the respective Direct Ef-
fects, we note that CodeSCM can be extended to
any other transformations, provided that i) the me-
diator variables remain unchanged, and ii) the trans-
formations are independent of the input prompt. In
addition to DE experiments in Section 4, we show
DE computation with one additional transforma-
tion in Appendix D. We use simple prefix/suffix
transformations to ensure independence between
variables like S and DS or C and DC, to avoid
correlation introduced by common transformations
such as back-translation for NL.

4 Experiments

4.1 Settings

Datasets. To select evaluation datasets, we con-
sidered three key requirements: i) the dataset
should contain code and natural language com-
ponents (and preferably I/O pairs), iii) it should
provide test cases to quantify code correctness, and
iii) input modalities should be separable to isolate
modal causal effects.

Based on these criteria, we study the causal
effects on codeLLMs across three code genera-
tion benchmarks HumanEval+ (Liu et al., 2023a),
mMBPP+ (Liu et al., 2023a), and CoderEval(Yu
et al., 2024). To accommodate the lack of an ex-
plicit CodeAL modality in the original MBPP+
dataset, we create mMBPP+ (multi-modal MBPP+)
by adding a code function header to the original
prompt. We evaluate HumanEval and mMBPP us-
ing evalplus (Liu et al., 2023a), which extends orig-
inal datasets by incorporating additional challeng-
ing test cases for more rigorous testing. CoderEval
offers a range of coding problems, from self-
contained functions, to more complex functions
that require an entire project environment to run.
We focus on the self-contained (SC) subset, named
CoderEval-SCP for Python and CoderEval-SCJ for
Java. Detailed statistics are shown in Table 1.

Dataset Size NL CodeAL CodeNL I/O Pairs
HumanEval+ 164 ✓ ✓ ✓ ✓
MBPP+ 399 ✓ × ✓ ✓
mMBPP+ 399 ✓ ✓ ✓ ✓
CoderEval 460 ✓ ✓ ✓ ×
CoderEval-SCP 35 ✓ ✓ ✓ ×
CoderEval-SCJ 55 ✓ ✓ ✓ ×

Table 1: Statistics and prompt modalities of Hu-
manEval+, MBPP+, mMBPP+, and CoderEval datasets.

Models. Using CodeSCM, we evaluate the causal
effects on three codeLLMs: OpenAI GPT-4 Turbo
(OpenAI, 2024) (updated on January 25, 2024),
WizardCoder-15B (Luo et al., 2023), and Llama-
3-8B (AI@Meta, 2024). To further explore the
implications of modal alignment with code train-
ing, we examine the modal-representation space
of CodeLLaMa-13B and LLaMa-2 13B to isolate
the effects of multi-modal training, keeping other
parts of the training process and model architecture
constant.

Implementation. Following previous works on
code generation (Chen et al., 2021b), we use the
change in mean pass@1 accuracy (Pr(Y = 1))
to quantify the direct and total effects after in-
terventions on CodeSCM. All datasets used are
evaluation-only subsets, with no training involved
in our experiments. For inference on all LLMs, we
use a temperature of 0.01, a top_p value of 0.95,
and a batch size of 8. The open-source model
experiments were conducted on a single A100
GPU with 40 GB VRAM and each run took less
than 2 GPU hours. During experiments with self-
contained CoderEval functions in Python and Java,
we ensured that the transformations were equiva-
lent across both languages.

4.2 Total Effects of Modalities

Natural Language. The NL component, often a
docstring in code completion tasks and contain-
ing the core logic of the generated code, shows
the highest TE across all models on HumanEval+,
mMBPP+, and CoderEval-SCP. As shown later in
Section 4.5, removing NL increases the semantic
errors. The TE of NL is highest for HumanEval+,
followed by mMBPP+ and CoderEval-SCP, likely
due to the greater detail in HumanEval+ docstrings
compared to the shorter ones in CoderEval-SCP.
However, the do(XNL = −1) intervention still
maintains a non-zero accuracy. Given that gener-
ating correct code output without NL semantics
should not be possible, we hypothesize that the

6783

Model Modality
HumanEval+ mMBPP+ CoderEval-SCP CoderEval-SCJ Mean
TE DE TE DE TE DE TE DE TE DE

GPT-4T

Full 81.71 72.68 48.57 43.64 61.65

NL 42.08 1.22 19.05 4.26 20.00 2.86* 3.64 1.82 21.19 3.64
CodeAL 1.83 1.22 1.25 4.01 8.57 0.00 43.64 18.18* 13.82 5.86
CodeNL 18.91 1.83 42.86 2.76 0.00 2.86* 1.82 0.00 15.90 1.52
I/O Pairs 5.49 2.44 12.28 6.26 N/A N/A N/A N/A 8.89 4.35

WizCoder

Full 53.05 52.63 37.14 47.27 47.52

NL 30.49 5.49 13.53 0.50 5.71 8.57* 10.91 3.64 15.16 3.70
CodeAL 4.27 9.76 2.00 2.50 2.86 2.86* 45.45 0.00 13.65 3.78
CodeNL 6.10 2.44 4.01 0.50 8.57* 8.57* 3.64 0.00 5.58 3.34
I/O Pairs 12.20 12.20 5.26 0.75 N/A N/A N/A N/A 8.73 6.48

LLaMa-3

Full 55.49 58.64 31.43 0 36.39

NL 33.54 3.66 16.54 0.00 11.43 5.71* 0.00 3.64* 15.38 3.54
CodeAL 0.61 3.66 1.76 1.51 0.00 2.86* 0.00 0.00 0.59 2.01
CodeNL 10.98 3.05 6.02 2.01 8.57 0.00 0.00 0.00 6.39 0.98
I/O Pairs 6.10 4.27 6.27 2.76 N/A N/A N/A N/A 6.19 3.52

Table 2: Total Effect (TE) and Direct Effect (DE) of modalities on code generation. Pass@1 accuracy on Full
prompt for each model and dataset is reported, followed by accuracy drop, indicating TE or DE. "*" denotes an
increase in accuracy with the respective intervention. Bold highlights top TE and DE for each dataset and model.
Accuracy results are averaged across 3 runs.

model either infers the correct NL semantics from
CodeNL or relies on its memory, suggesting mem-
orization.

CodeNL TE. The latter hypothesis is con-
firmed by the TE computation of CodeNL, which
emerges as an important prompt component in the
HumanEval+ and mMBPP+ datasets. For GPT-4T
on mMBPP+, the TE of CodeNL is 42.86%, sur-
passing the NL modality. Natural language chat
models, such as GPT-4T and LLaMa-3, consis-
tently show higher TE for CodeNL, with GPT-4T
reaching 18.91% on HumanEval+. This suggests
that natural language models may prioritize NL
semantics (MNL) more than code-focused models.

CodeAL TE. In CoderEval-SCJ, CodeAL

has a high TE across all models, with GPT-4T and
WizardCoder performance dropping nearly to zero.
We observe limited code generation capabilities
in the Java programming language exhibited by
codeLLMs, particularly evident with zero perfor-
mance from LLaMa-3. Further, models hallucinate
code entry points when CodeAL is absent. For
instance, in all 55 examples, LLaMa-3 places the
required code in a hallucinated class, as illustrated
in Figure 5. On Python subsets, CodeAL, which
contains minimal syntax information such as func-
tion headers and variable names, has the lowest TE
across all models. However, CodeAL in all three
datasets under consideration is limited to the func-
tion header and input variable names along with
function syntax (Figure 2a); the TE of CodeAL

where it may contain essential generation logic is

yet to be explored.

I/O Pairs. The TE of I/O pairs surpasses that
of CodeNL with WizardCoder and holds equal sig-
nificance with LLaMa-3 and GPT-4. This under-
scores the syntactic information encoded within
I/O pairs, potentially aiding the model in reason-
ing over correct code structures. Analogously to
human programmers employing unit testing for it-
erative code writing, the TE of I/O pairs suggests
a similar process within codeLLMs. Future ver-
sions of codeLLMs may leverage intermediate I/O
values for handling complex code, similar to the
debugging process in software engineering.

Memorization of Code Benchmarks. Given
that codeLLMs are trained on open-source datasets,
we explore the potential for benchmark memoriza-
tion. The non-zero pass@1 accuracy, even with-
out NL instructions, indicates memorization. Fur-
thermore, even after standardizing function header
names, GPT-4T still generated original function
names in 11.5% of HumanEval+ and 7.2% of
mMBPP+ cases (Figure 5). LLaMa-3 showed simi-
lar behavior, with 10.3% of HumanEval+ examples
despite the standardization of function names. The
notably high memorization figures for GPT-4T also
raise concerns regarding its performance on the
EvalPlus leaderboard(Liu et al., 2023a). Similar to
prior studies, such as (Lai et al., 2022), that exam-
ine memorization, our causal analysis also suggests
substantial dataset memorization. However, a de-
tailed investigation is left for future work.

6784

(a) CodeLLaMa-13B (b) LLaMa-2 13B (c) CodeLLaMa-13B (d) LLaMa-2 13B

Figure 4: (a) and (b) Embedding PCA projections of modalities in input prompt by CodeLLaMa and LLaMa-2. (c)
and (d) Prompt embedding projections along with the ground-truth code embedding projections by CodeLLaMa
and LLaMa-2. CodeAL and CodeNL is combined into function_signature.

4.3 Direct Effects of Modalities

We define direct effects (DE) by noting the drop in
pass@1 accuracy of the model under the semantics-
preserving transformations of modalities where the
latent mediators remain unchanged (Section 3.2).
These effects also represent the spurious correla-
tions, as any non-spurious learning process must be
mediated through MNL and MCode. From Table 2,
I/O pairs exhibit the strongest direct effect (DE) on
HumanEval+ and mMBPP+ across models, except
for mMBPP+ on WizardCoder. As seen in Figure
5, replacing a single assert equality in each I/O ex-
ample with two inequalities makes it harder for the
model to reason correctly over the code logic.

The DE of I/O pairs is then followed by the DE
of CodeAL, where WizardCoder shows a very high
DE of 9.76% on HumanEval+. For CoderEval-SCJ,
GPT-4T’s accuracy increased by 18.18% under the
do(XAL = 1) intervention. As shown in Figure
5, a Java code snippet in the form of dead code re-
duces the class name hallucinated by the model.
With this finding, we speculate that dead code
might help control hallucinations, but we leave
the detailed analysis to future work. In general, we
observe that the DEs of NL and CodeNL are com-
paratively lower, implying models are more robust
to natural language than code semantics, likely due
to instruction tuning stages.

4.4 Effect of Multi-Modal Pretraining

Our experiments on causal effects reveal asymmet-
ric impacts of different modalities, leading us to ex-
amine their distribution in the embedding space of
codeLLMs with code pretraining. We use PCA, fol-
lowing previous works (Cai et al., 2020; Rajaee and
Pilehvar, 2021), to visualize high-dimensional rep-
resentations into three dimensions. For this analy-

sis, we combine data samples from the HumanEval
and mMBPP datasets, excluding CoderEval due to
its lack of the I/O modality (Table 1).

We use LLaMa-2(Touvron et al., 2023) to ex-
plore the effect of multi-modal pretraining of LLMs
and how it affects the embedding representation
of different modalities. The pretraining stages of
code-aware LLMs add multi-modal alignment in
codeLLMs, which is confirmed by the performance
difference of 26.9% on HumanEval and 39.2%
on MBPP between the LLaMa-2 (13B) and the
codeLLM CodeLLaMa (13B), as reported by prior
works (Li et al., 2023; Liu et al., 2023b). Using
CodeLLaMa-13B and LLaMa-2 13B we can isolate
the effects of multi-modal training keeping other
factors such as model architecture and positional
encodings constant.

In Figure 4b, complete prompts and modal com-
ponents (red and green) form distinct clusters in
the case of LLaMa-2, whereas, in Figure 4a, the
prompt and the docstring are better associated by
CodeLLaMa as they form closer clusters. I/O ex-
amples in the prompt have high token overlap with
the function header (Figure 2a). While LLaMa-2
keeps them together (black and magenta clusters)
probably due to the high token overlap, CodeL-
LaMa can separate them in the embedding space.
Figures 4c and 4d show how the model associates
input prompts and ground-truth code solutions.
LLaMa-2 forms nearly two disjoint clusters (Fig-
ure 4c), even when prompts and ground-truth code
are strongly correlated, while CodeLLaMa can as-
sociate prompt with code solution in the embedding
space. We further discuss anisotropy in CodeL-
LaMa’s embedding spaces in Appendix 5.

6785

HumanEval+ mMBPP+
Model Modality Syn Sem Runt Other Syn Sem Runt Other

GPT-4T

NL -8.22 26.13 -18.67 0.76 -5.58 14.32 -9.61 0.87
CodeAL -0.75 1.49 -1.80 1.10 -1.42 2.31 -0.89 0.00
CodeNL -3.12 -7.04 -8.47 18.63 -11.27 -30.64 32.21 9.70
I/O Pairs -1.62 0.61 1.01 0.00 -3.85 -4.75 7.65 0.94

WizCoder

NL -3.37 15.01 -11.65 0.00 -1.29 7.72 -6.01 -0.42
CodeAL -0.30 -0.65 -0.95 -.00 -0.92 6.93 -5.58 -0.42
CodeNL -0.59 -4.58 -0.21 4.96 -1.04 -2.08 2.74 0.39
I/O Pairs -1.01 2.67 -1.65 0.0 -1.05 4.06 -3.38 0.37

LLaMa-3

NL -4.11 20.96 -16.60 -0.25 -5.14 14.13 -7.98 -1.01
CodeAL 0.42 0.90 -1.30 -0.03 -1.32 4.38 -2.13 0.93
CodeNL -1.57 -8.67 -1.21 11.44 -0.90 -10.04 7.68 3.26
I/O Pairs 4.43 1.75 -6.13 -0.05 -0.41 -9.85 10.80 -0.54

Table 3: Percentage of errors out of total passed cases for GPT-4T, WizardCoder-15B, and Llama-3-8B on
HumanEval+ and mMBPP+. Negative percentages indicate a decrease in error count, while positive values indicate
an increase in error count upon intervention. Syn represents Syntax errors, Sem represents Semantic Errors, and
RunT represents runtime errors.

Figure 5: Left figure shows a CoderEval-SCJ prompt where dead code insertion corrects the original prompt’s error
of creating a hallucinated Java class (red box). The top right figure illustrates an mMBPP+ prompt where I/O pair
transformations lead to a semantic error in lines 15-16. The bottom right figure shows GPT-4T’s memorization of a
HumanEval+ prompt.

4.5 Errors in codeLLMs

In this section, we analyze the types of errors en-
countered by codeLLMs on the HumanEval+ and
mMBPP+ datasets, as detailed in Table 3. Errors
are categorized into syntax errors, semantic errors,
runtime errors, and other errors. The values in
the table represent the percentage change in error
counts upon removal of the modality (do(X =
−1)) during TE computation, relative to the full
prompt. For instance, upon removal of NL from
HumanEval for GPT-4T leads to a drop in accuracy
of 42.08% (Table 2), and the 26.13% of this drop is
due to increase in semantic errors (Table 3). So the
percentage changes sum up to zero for each modal-
ity, model, and dataset combination. As evident for
all three models, removing the NL modality leads

to a significant increase in semantic errors, confirm-
ing that natural language instructions are crucial for
conveying problem semantics. Semantic errors are
seen in form of failed test cases or assertion state-
ments. Other errors such as resource, dependency,
environment and timeout errors are mostly seen
with the removal of CodeNL modality, reflecting
its importance in guiding the correct code syntax.
WizardCoder-15B shows relatively small changes
in syntax and other errors across modalities. For
instance, on HumanEval+, syntax errors change
by -0.30% to -3.37% across different modalities,
indicating strong syntactic generation capabilities,
likely due to its extensive code-specific training.

6786

5 Related Work

Automatic Code Generation. Code generation
with multi-modal prompts has been explored by
some earlier works such as (Desai et al., 2015;
Gulwani et al., 2017). Recent works have either
adopted the transformer architecture (Feng et al.,
2020; Wang et al., 2021) or leveraged the GPT
(Brown et al., 2020) skeleton with massive pretrain-
ing for code pretraining (Rozière et al., 2023; Li
et al., 2023; Luo et al., 2023; Nijkamp et al., 2023;
Zhu et al., 2024).

Prompt-Tuning. Various approaches to prompt-
tuning (White et al., 2023) have been explored
for various domains and modalities (Mullick et al.,
2024; Wu et al., 2023), such as Chain-of-Thought
reasoning (Wei et al., 2023), Tree of Thoughts (Yao
et al., 2023), discrete prompt optimization (Wen
et al., 2023; Shin et al., 2020), and few-shot learn-
ing (Brown et al., 2020). In the context of code
generation, prompt engineering has been leveraged
for human-in-loop debugging (Denny et al., 2022),
correctness evaluation of generated code (Liu et al.,
2023b), multistep planning, and generation (Zheng
et al., 2023). Our work explores the effects of
modalities in prompts on code generation, which
can be further used for targeted prompt-tuning pro-
cesses for better performance.

Causal Inference in Code/NLP. Recent research
has applied causal inference to the NLP domain
(Vig et al., 2020; Finlayson et al., 2021; Stolfo
et al., 2022) to better understand model behavior,
which is now formalized as causal NLP (Jin et al.,
2022; Feder et al., 2022). In the context of code,
prior approaches have applied causal framework
for various classification tasks such as vulnerability
detection (Rahman et al., 2024; He et al., 2022)
and code performance prediction (Cito et al., 2021).
To the best of our knowledge, we are the first to
apply causal inference to study modal effects on
code generation task.

6 Conclusion

We propose CodeSCM, a Structural Causal Model
for analyzing multi-modal code generation using
LLMs. Our analysis revealed that input-output ex-
amples and natural language code components sig-
nificantly influence model generation. Additionally,
our interventions show that semantics-preserving
changes can impact accuracy and can also lead to
fewer hallucinations in some cases.

7 Limitations

We can calculate causal effects in CodeSCM with
the assumption of no confounders. We believe that
in the future, our causal formulation of code gener-
ation could be extended to account for confounders
using the backdoor criterion.

8 Ethical considerations

We release the algorithmic details and work with
public code datasets, which neither reveal any per-
sonal sensitive information nor contain any toxic
statements. While there are potential societal con-
sequences, they are not deemed important to high-
light here.

9 Acknowledgments

We thank the anonymous reviewers for their con-
structive and valuable feedback. This work is sup-
ported partially by an NSF CAREER award; and
an award from the Google Cyber NYC Institutional
program. Any opinions, findings, conclusions, or
recommendations expressed herein are those of the
authors and do not necessarily reflect those of NSF,
or Google.

References
AI@Meta. 2024. Llama 3 model card.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Chen Avin, Ilya Shpitser, and Judea Pearl. 2005. Identi-
fiability of path-specific effects.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

6787

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth
Church. 2020. Isotropy in the contextual embedding
space: Clusters and manifolds. In International Con-
ference on Learning Representations.

Casey Casalnuovo, Earl T. Barr, Santanu Kumar Dash,
Prem Devanbu, and Emily Morgan. 2020. A theory
of dual channel constraints. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering: New Ideas and Emerging Results,
ICSE-NIER ’20, page 25–28, New York, NY, USA.
Association for Computing Machinery.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J. Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. Preprint, arXiv:2310.08419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,

Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021b. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and
Satish Chandra. 2021. Counterfactual explanations
for models of code. Preprint, arXiv:2111.05711.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2022.
Conversing with copilot: Exploring prompt engineer-
ing for solving cs1 problems using natural language.
Preprint, arXiv:2210.15157.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi
Jain, Amey Karkare, Mark Marron, Sailesh R, and
Subhajit Roy. 2015. Program synthesis using natural
language. Preprint, arXiv:1509.00413.

Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid
Pryzant, Dhanya Sridhar, Zach Wood-Doughty, Jacob
Eisenstein, Justin Grimmer, Roi Reichart, Margaret E.
Roberts, Brandon M. Stewart, Victor Veitch, and Diyi
Yang. 2022. Causal inference in natural language
processing: Estimation, prediction, interpretation and
beyond. Preprint, arXiv:2109.00725.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. Preprint, arXiv:2002.08155.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
arXiv preprint arXiv:2106.06087.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh,
et al. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119.

Jingzhu He, Yuhang Lin, Xiaohui Gu, Chin-
Chia Michael Yeh, and Zhongfang Zhuang. 2022.
Perfsig: Extracting performance bug signatures via
multi-modality causal analysis. In 2022 IEEE/ACM
44th International Conference on Software Engineer-
ing (ICSE), pages 1669–1680.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Zhijing Jin, Amir Feder, and Kun Zhang. 2022.
CausalNLP tutorial: An introduction to causality for
natural language processing. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing: Tutorial Abstracts, pages 17–
22, Abu Dubai, UAE. Association for Computational
Linguistics.

6788

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3377816.3381720
https://doi.org/10.1145/3377816.3381720
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2111.05711
https://arxiv.org/abs/2111.05711
https://arxiv.org/abs/2210.15157
https://arxiv.org/abs/2210.15157
https://arxiv.org/abs/1509.00413
https://arxiv.org/abs/1509.00413
https://arxiv.org/abs/2109.00725
https://arxiv.org/abs/2109.00725
https://arxiv.org/abs/2109.00725
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.1145/3510003.3510110
https://doi.org/10.1145/3510003.3510110
https://doi.org/10.18653/v1/2022.emnlp-tutorials.4
https://doi.org/10.18653/v1/2022.emnlp-tutorials.4

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. ArXiv, abs/2211.11501.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you! Preprint, arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel Mankowitz, Esme
Sutherland Robson, Pushmeet Kohli, Nando de Fre-
itas, Koray Kavukcuoglu, and Oriol Vinyals. 2022.
Competition-level code generation with alphacode.
arXiv preprint arXiv:2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2023b. Is your code generated
by chatgpt really correct? rigorous evaluation of
large language models for code generation. Preprint,
arXiv:2305.01210.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
Preprint, arXiv:2107.13586.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,

Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
Preprint, arXiv:2102.04664.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

Ankan Mullick, Mukur Gupta, and Pawan Goyal. 2024.
Intent detection and entity extraction from biomedi-
cal literature. Preprint, arXiv:2404.03598.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
Preprint, arXiv:2203.13474.

OpenAI. 2024. Gpt-4 turbo. https://help.openai.
com/en/articles/8555510-gpt-4-turbo.

Judea Pearl. 2000. Causality: Models, Reasoning, and
Inference. Cambridge University Press.

Judea Pearl. 2022. Direct and indirect effects. In Prob-
abilistic and causal inference: the works of Judea
Pearl, pages 373–392.

Judea Pearl et al. 2000. Models, reasoning and infer-
ence. Cambridge, UK: CambridgeUniversityPress,
19(2):3.

Md Mahbubur Rahman, Ira Ceka, Chengzhi Mao, Saikat
Chakraborty, Baishakhi Ray, and Wei Le. 2024. To-
wards causal deep learning for vulnerability detection.
In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1–11.

Sara Rajaee and Mohammad Taher Pilehvar. 2021. An
isotropy analysis in the multilingual bert embedding
space. arXiv preprint arXiv:2110.04504.

James M Robins. 2003. Semantics of causal dag models
and the identification of direct and indirect effects.
Highly structured stochastic systems, pages 70–82.

James M Robins and Sander Greenland. 1992. Identi-
fiability and exchangeability for direct and indirect
effects. Epidemiology, 3(2):143–155.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. Preprint,
arXiv:2308.12950.

6789

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2404.03598
https://arxiv.org/abs/2404.03598
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://help.openai.com/en/articles/8555510-gpt-4-turbo
https://help.openai.com/en/articles/8555510-gpt-4-turbo
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
Preprint, arXiv:2310.11324.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV
au2, Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language mod-
els with automatically generated prompts. Preprint,
arXiv:2010.15980.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. Preprint, arXiv:2109.00859.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2023. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. Preprint,
arXiv:2302.03668.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. Preprint, arXiv:2302.11382.

Qi Wu, Yuyao Zhang, and Marawan Elbatel. 2023. Self-
prompting large vision models for few-shot medical
image segmentation. In MICCAI workshop on do-
main adaptation and representation transfer, pages
156–167. Springer.

Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang
Tong. 2019. Pc-fairness: A unified framework
for measuring causality-based fairness. Preprint,
arXiv:1910.12586.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, ICSE
’24, New York, NY, USA. Association for Computing
Machinery.

Wenqing Zheng, S P Sharan, Ajay Kumar Jaiswal,
Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. 2023. Outline, then details: Syntactically
guided coarse-to-fine code generation. Preprint,
arXiv:2305.00909.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Zhenqiang Gong, and Xing Xie. 2023.
Promptbench: Towards evaluating the robustness
of large language models on adversarial prompts.
Preprint, arXiv:2306.04528.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

A Causal Effects

In this section, we present the causal effects of three
modalities: Natural Language (NL), I/O Pairs, and
Code with NL component (CodeNL). For each
modality, we provide the corresponding structural
equation, followed by the total effect (TE) and di-
rect effect (DE).

6790

https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2302.03668
https://arxiv.org/abs/2302.03668
https://arxiv.org/abs/2302.03668
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/1910.12586
https://arxiv.org/abs/1910.12586
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://arxiv.org/abs/2305.00909
https://arxiv.org/abs/2305.00909
https://arxiv.org/abs/2306.04528
https://arxiv.org/abs/2306.04528

A.1 Natural Language (NL)
The NL variable is defined by the following struc-
tural equation:

NL← 1{XNL=1}(S +DS)

+ 1{XNL=0}(S) + 1{XNL=−1}(NULL) (4)

where S is the actual natural language prompt com-
ponent PS ∈ D, DS is a Dead String that does
not alter the semantics of the natural language,
and XNL is used to control whether to allow the
original PS , concatenate a dead string, or remove
the natural language modality. Similar to dead
code insertion in CodeAL, dead string insertion is
a semantics-preserving transformation such that
MNL(S) = MNL(S + DS). NL subscript is
dropped for brevity.

Total Effect of NL.

TE = TE(do(XNL = 0), do(XNL = −1))
= Acc(D)−Acc(D;PNL = NULL)

Direct Effect of NL.

DE = E
[
YX=1,NL(X=1),MNL(NL(X=0))

]

− E
[
YNL(X=0)

]

= Acc(D)−Acc(D;PNL = S +DS)

Here, DS represents the Dead String. We use
the prefix ‘DOCSTRING: ’ concatenated to each
natural language instruction to preserve semantics.
Other transformations such as back-translation are
possible but introduce correlations between vari-
ables, so we prefer simpler prefix or suffix transfor-
mations that keep S and DS independent.

A.2 I/O Pairs
The I/O modality is defined by the following struc-
tural equation:

I/O ← 1{XIO=0}(I
r = Ir)

+ 1{XIO=1}((I
l ≤ Ir) + (Ir ≥ Ir))

+ 1{XIO=−1}(NULL) (5)

where I l and Ir represent the left-hand side (LHS)
and right-hand side (RHS) of the assertion equality
statement in the original prompt, respectively. For
semantics-preserving transformations, we replace
each assertion equality with two inequalities, ≤
and ≥. I/O is omitted for brevity.

Total Effect of I/O.

TE = TE(do(XIO = 0), do(XIO = −1))
= Acc(D)−Acc(D;PIO = NULL)

Direct Effect of I/O.

DE = E
[
Y(X=1,MCode(X=1),MCode(X=0))

]

− E
[
YMCode(X=0)

]

= Acc(D)−
Acc(D;PIO = (I l ≤ Ir) + (Ir ≥ Ir))

A.3 Code with NL Component (CodeNL)
The CodeNL modality is defined by the following
structural equation:

CodeNL ← 1{XNL=1}(CNL +DN)

+ 1{XNL=0}(CNL) + 1{XNL=−1}(NULL) (6)

where CNL is the code prompt component
PCodeNL

∈ D, and DN is a Dead Name added
to the function header. This transformation pre-
serves semantics for both the natural language
and code domains. For instance, MNL(CNL) =
MNL(CNL +DN).

Total Effect of CodeNL.

TE = TE(do(XCN = 0), do(XCN = −1))
= Acc(D)−Acc(D;PCodeNL

= NULL)

Direct Effect of CodeNL.

DE = E

[
Y(

X=1,CNL(X=1),MNL(CNL(X=0)),

MC(CNL(X=0))
)
]
− E

[
Y(CNL(X=0)

]

= Acc(D)−Acc(D;PCNL
= CNL +DN)

Here, DN represents Dead Name, and we use the
prefix ‘func_’ in Python and ‘Method’ in Java to
maintain semantic preservation. Other transforma-
tions, like capitalization, are possible but avoided
to keep CNL and DN independent.

B Multi-Modal Prompt

The multi-modal prompt P can be expressed as an
equation comprising one or more prompt compo-
nents P j of modality Mi, where different prompt

6791

components are concatenated using one of the de-
fined separators:

P = P 1
M1

[
sep P j

Mi

]
(7)

sep = ′ ′ | \n | \t | : | , | ; (8)

In this equation, different prompt components are
concatenated using one of the defined separators.

C Implementation Details

We exclude APPS (Hendrycks et al., 2021) and
CodeContest (Li et al., 2022), as they lack multi-
modal prompts, making them unnecessary for
multi-modal causal analysis. Similarly, while
the CONCODE segment of the CodexCGLUE
(Lu et al., 2021) benchmark includes multi-modal
prompts, it measures code quality via natural lan-
guage similarity metrics like BLEU, which is un-
suitable for code generation tasks. Lastly, DS-1000
(Lai et al., 2022) was excluded due to the need for
manual screening of all examples to separate modal
components for CodeSCM.

D DE Additional Transformation

We demonstrate one specific transformation for
each modality in the paper and compute the re-
spective causal effects. CodeSCM can be directly
extended to other transformations as well for DE
computation. For example, in Table 4, along with
original transformations from Table 2 (DE-1), we
illustrate DE computation with an additional set of
transformations (DE-2) for the mMBPP+ dataset
using WizardCoder codeLLM. The following trans-
formations are used for DE-2 - (dead string prefix,
unused variable, dead name prefix, and negating
the not assert statement):

• DS = Code Logic:\n (in Equation 4)

• CDC = \tvar = 42 (in Equation 3)

• DN = header_ (in Equation 6)

• assert I l == Ir is changed to assert not I l! =
Ir) (in Equation 5)

E Multi-Modal Pretraining

Inspired from previous works (Cai et al., 2020;
Rajaee and Pilehvar, 2021), we measure the
cosine similarities between the averaged last

Modality DE-1 DE-2
Full 52.63
NL 0.50 1.23
CodeAL 2.50 3.03
CodeNL 0.50 1.73
I/O Pairs 0.75 3.23

Table 4: Direct effects of WizardCoder on mMBPP+
dataset under an additional transformation. DE-1 values
are the same as Table 2

Prompt Component CodeLLaMa ↓ LLaMa-2
examples 0.85 0.77
docstring 0.86 0.83
prompt 0.87 0.80
solution 0.90 0.83
function 0.91 0.85
all 0.77 0.66

Table 5: Intra-modal cosine similarity between mean
hidden representation of CodeLLaMa-13B and LLaMa-
2. Similarities are reported by combining HumanEval
and mMBPP.

Modality-1 Modality-2 CodeLLaMa ↓ LLaMa-2

function docstring 0.59 0.43
docstring examples 0.63 0.45
solution docstring 0.65 0.47
function prompt 0.74 0.66
docstring prompt 0.76 0.64
function examples 0.77 0.66
examples prompt 0.82 0.72
solution function 0.82 0.76
solution examples 0.83 0.72
solution prompt 0.84 0.72

Table 6: Inter-modal cosine similarity between averaged
hidden representation of CodeLLaMa-13B and LLaMa-
2. Similarities are reported by combining HumanEval
and mMBPP.

layer’s hidden state representations of CodeL-
LaMa and LLaMa-2. For each modality, intra-
modality Sintra cosine similarity is defined as
Ei,j∈P

[
cos

(
M(i),M(j)

)]
, where i and j are dis-

tinct prompts of same modality. Inter-modal cosine
similarity Sinter is defined for a pair for modalities,
as Ei∈P1,j∈P2

[
cos

(
M(i),M(j)

)]
, where i and j

belong to different prompt modal components.
Similar to Section 4.4, we combine data sam-

ples from the HumanEval and mMBPP datasets,
excluding CoderEval due to its lack of I/O modality
(Table 1). In Table 6, the ground truth problem so-
lution and input prompt are kept closest by CodeL-

6792

LaMa despite being of different modalities and low
token overlap, which explains CodeLLaMa’s supe-
rior performance on code generation benchmarks.
LLaMa-2 on the other hand, keeps ground truth
problem solution and function header name, prob-
ably due to significant token overlap between the
two.

Measuring Sinter for each modality, in Table
6 we observe the closer clusters of modalities
in CodeLLaMa’s vector space with consistently
higher similarities. Given a round of code pretrain-
ing, CodeLLaMa assigns the highest Sinter to the
function header and solution, both of which are
code components, while LLaMa-2 assigns similar
Sinter to the docstring (PNL) and code solution
(Pcode). Finally, in the last row of Table 6, we show
the average cosine similarity of the entire space i.e.,
vector representations from all components. We
note a higher similarity in the code model. Given
elevated values of similarity for the code model,
we suspect an anisotropic embedding space com-
pared to the natural language model. Anisotropy
would increase as the model learns to specialize
in one task/domain (code generation in this case)
and loses generalization capabilities. The concrete
conclusive claim however requires further analysis
which we leave to the future works.

F Error Analysis

In this section, we provide definitions of the differ-
ent types of errors encountered in code generation
tasks.

Syntax Errors. These errors occur when the
code does not conform to the syntactical rules of
the programming language. They are typically de-
tected during the parsing stage. An example of a
syntax error might be a missing colon, unmatched
parentheses, or incorrect indentation.

Semantic Errors. Semantic errors arise when
the code is syntactically correct but fails to produce
the intended output due to logical mistakes. This
can include errors in the logic of the code, incor-
rect use of variables, or wrong implementation of
algorithms. We broadly encounter two types of
semantic errors: (i) test case errors, when the test
cases in the respective dataset fail; (ii) assertion
errors, when an input-output example assertion in
the prompt fails.

Runtime Errors. These errors occur during the
execution of the code. They result from operations

like division by zero, accessing out-of-bound in-
dices, or other exceptional conditions that the code
does not handle.

Other Errors. This category includes various
errors that do not fit into the above classifications.
It covers resource errors (e.g., memory errors when
the program tries to allocate more memory than
what is available), dependency errors (e.g., missing
modules or packages), environment errors (e.g.,
issues with file access or permissions), and timeout
errors (when the execution of the code takes longer
than the allowed time limit).

6793

