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Abstract

Data selection for fine-tuning large language
models (LLMs) aims to choose a high-quality
subset from existing datasets, allowing the
trained model to outperform baselines trained
on the full dataset. However, the expand-
ing body of research lacks a clear, unified
framework, and the variability in experimen-
tal settings complicates systematic compar-
isons. While existing surveys comprehensively
overview the stages and methods of data se-
lection, they often overlook an in-depth explo-
ration of the fine-tuning phase. In this paper,
we conduct a focused review of recent data
selection techniques for fine-tuning LLMs, an-
alyzing a dozen key studies. We introduce a
novel three-stage scheme—comprising feature
extraction, criteria design, and selector evalu-
ation—to systematically categorize and evalu-
ate these methods. Additionally, we propose a
unified comparison approach that incorporates
ratio-based efficiency and ranking-based feasi-
bility metrics to address inconsistencies across
experiments. Our findings reveal that meth-
ods emphasizing more targeted quality mea-
surement achieve higher efficiency but at the
cost of feasibility. Finally, we discuss trends
and highlight four key challenges in fine-tuning
data selection, offering potential directions for
future research 1.

1 Introduction

Supervised fine-tuning (SFT) leverages small
amounts of instruction-pair data to unlock large
language models’ instruction-following capabil-
ities and improve generalization across various
tasks (Radford et al., 2019; Wei et al., 2022; Singh
et al., 2023; Zhang et al., 2023; Albalak et al.,
2024). Recent research highlights that data qual-
ity is more critical than data quantity for effective

*The first two authors are equal contributions.
†Corresponding Author.
1The code is available at https://github.com/

tREeFrOGcoder/TEDD-Ranker

Candidate Dataset Selected Dataset

Length Diversity Perplexity Naturalness …

Fine-Tune

BLM SEM

Evaluation

“SEM Wins!”

Fine-Tune

Selection 
Criteria 

<Instruction> 
Given an address and city, 
come up with the zip code.
<Input> 
Address: 123 Main Street, City: 
San Francisco
<Output>
As an AI assistant...

<Instruction> 
Given an address and city, 
come up with the zip code.
<Input> 
Address: 123 Main Street

Figure 1: An illustration of data selection for fine-tuning
LLMs. Fine-tuning a model on the full dataset results
in a BaseLine model (BLM), while training a model on
a selected high-quality subset produces the Selective-
Enhanced Model (SEM), which is expected to outper-
form the BLM.

fine-tuning (Nakkiran et al., 2020; Shumailov et al.,
2024; Zhou et al., 2024; Jindal et al., 2024). As a
result, several data curation techniques have been
proposed, such as data selection (Chen et al., 2024;
Li et al., 2024b), data evolution (Wang et al., 2023;
Xu et al., 2023), and data reflection (Mukherjee
et al., 2023; Yin et al., 2023). Data selection, in
particular, involves choosing a high-quality subset
from a candidate dataset based on specific selec-
tion criteria, enhancing the model’s performance
while improving training efficiency by reducing the
number of samples. Unlike data augmentation or
polishing, it focuses on selecting inherently higher-
quality samples, as shown in Figure 1.

However, despite the rapid development of data
selection methods, there is currently no unified
framework for systematically guiding and com-
paring these methods, as experimental settings
vary widely across studies. Although some sur-
veys (Bommasani et al., 2021; Albalak et al., 2024;
Wang et al., 2024) have reviewed data curation tech-
niques in the contexts of pretraining, fine-tuning,
and reinforcement learning, they generally provide
high-level overviews and lack in-depth discussions
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Figure 2: The Three-stage Scheme of Data Selection for Fine-tuning LLMs. The feature extraction stage transforms
the raw data into compact representations to facilitate selection. The criteria design stage constructs quality labels
(QL) to capture data quality as selection criteria. The selector evaluation stage identifies the key components to
evaluate the effectiveness of the selector.

of the fine-tuning stage. This gap makes it diffi-
cult for researchers to conduct focused, sustained
studies on this crucial phase. To address this, our
survey provides a fine-grained review of data se-
lection methods for instruction fine-tuning LLMs,
rethinking existing approaches, proposing a unified
comparison method, and outlining key trends and
challenges in the field.

We begin by reviewing existing data selection
techniques, organizing them within a three-stage
scheme based on the key components of the data se-
lection pipeline: feature extraction, criteria design,
and selector evaluation (Figure 2). In the feature
extraction stage (Section 2), we categorize methods
into three types based on the form of the candidate
data: human-designed features, model-oriented fea-
tures, and raw text. In the criteria design stage
(Section 3), we categorize methods based on the
source of the sample quality label into two groups:
internal information and external information. The
latter is further divided into methods obtaining cri-
teria from model preference or sample influence. In
the selector evaluation stage (Section 4), we outline
three key aspects to reliably evaluate a selector’s ef-
fectiveness: candidate datasets, counterpart models,
and evaluation metrics.

We also introduce a unified comparison method
for evaluating existing works, incorporating both
ratio-based efficiency indicators and ranking-based
feasibility indicators (Section 5). Specifically, we
first construct a quantitative comparison of two-
dimensional efficiency based on the performance
improvement ratio (PIR) and selected dataset frac-
tion (SDF), aligning them through the efficiency
curve assumption, effectively addressing the chal-

lenge of comparing different methods under in-
consistent configurations. Then, we consider the
feasibility of the method from the perspectives of
flexibility and simplicity indicators. It qualitatively
ranks existing models by manually considering al-
gorithm complexity and reproducibility (the num-
ber of training models, algorithm steps, and open-
source availability), as well as their transferability
and scalability (dependence on data and models).

Finally, we discuss the main trends and chal-
lenges faced for data selection. We first sort out the
existing works chronologically from three aspects
(Candidate Dataset, Quality Measurement, and Se-
lected Feature) to grasp the current research focus
(Section 6). We then point out the most impor-
tant open question (How can we design effective
sample quality measurement for data selection?)
with four challenges: balance the efficiency and
feasibility; ensure the measurement objectivity; im-
prove specific tasks/domains performance without
compromising others and satisfy multiple goals.

2 Feature Extraction

Feature extraction plays a crucial role in the data
selection process. Some works preserve the orig-
inal text data, believing that it contains the most
comprehensive information (Chen et al., 2024; Li
et al., 2024b), while others transform raw texts into
more compact and representative feature sets (e.g.,
human-designed features and model-oriented fea-
tures) to facilitate selection. The former approach
aligns with human instinct by retaining linguistic
structures, while the latter focuses on extracting
features directly from the model to provide more
targeted data representations.
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Human-designed Features. To guide data selec-
tion according to human preferences, certain meth-
ods employ explainable, human-designed features
derived from linguistic information. For instance,
Instruction-Mining (Cao et al., 2023) leverages
such features by converting samples into vector rep-
resentations that incorporate various NLP metrics,
including coherence, naturalness, and understand-
ability. These metrics reflect linguistic quality and
can serve as effective selection criteria for improv-
ing the fine-tuning process.

Model-oriented Features. For more direct
and targeted data selection, other works focus on
model-oriented features, which are extracted di-
rectly from the trained model as data representa-
tions. These features aim to capture the essence of
the model’s performance on specific tasks. For ex-
ample, LESS (Xia et al., 2024) creates a datastore
of effective and reusable low-dimensional gradi-
ent features from the LLM. This method allows
the model to directly minimize the loss on a target
task by selecting samples rather than relying on
superficial or pre-defined features.

3 Criteria Design

The source of the quality label is a critical factor
in designing selection criteria, which can be cate-
gorized into internal and external information. In-
ternal information refers to quality signals inherent
in the candidate dataset, while external information
evaluates quality through external measures, such
as preferences from external LLMs or the impact
of samples on model performance.

3.1 Leveraging Internal Information

To extract useful quality indicators from the
given candidate dataset, early work (Li et al.,
2024b) introduced Instruction Following Difficulty
(IFD) as a quality label, measuring how much an in-
struction contributes to generating the correspond-
ing output. Specifically, this study first trains an
LLaMA-2-7B model as a pre-experienced model
on a subset of the target dataset. The IFD score of
an instruction is then calculated based on how its
presence affects the likelihood of the model gener-
ating a particular response compared to when no
instruction is provided. Inspired by this, Superfilter-
ing (Li et al., 2024a) adopts a smaller model (e.g.,
GPT-2) as the pre-experienced model for data se-
lection and leverages the consistency between IFD
scores and perplexity across different model sizes

to facilitate fine-tuning from weaker to stronger
models. Additionally, SelectIT (Liu et al., 2024a)
employs a three-level reflection strategy (token-
level, sentence-level, and model-level) to measure
a backbone model’s uncertainty about a candidate
sample. This approach aims to reduce bias and
improve the reliability of quality assessment.

3.2 Leveraging External Information

Existing methods leveraging external informa-
tion can be categorized into two approaches: ex-
ternal model preferences and sample influence on
model outputs.

3.2.1 External Model Preference as Discrete
Quality Labels

To address the inefficiency of relying on human
labor for sample quality annotations, some works
use exclusive LLMs (e.g., ChatGPT), community
LLMs (e.g., LLaMA), or even smaller expert mod-
els to annotate quality automatically. These quality
labels are typically derived from external model
outputs and are, therefore, discrete.

Exclusive LLM Preference. AlpaGasus (Chen
et al., 2024) is a notable example that prompts
ChatGPT to score each sample directly, mimicking
human evaluation. The prompt follows a structured
template incorporating designed evaluation criteria,
such as helpfulness and accuracy, making it adapt-
able across different datasets and backbone models.
Unlike AlpaGasus, which assigns a single score
per sample, InsTag (Lu et al., 2024) generates fine-
grained quality labels in the form of instruction
intention tags annotated by ChatGPT. It evaluates
sample quality based on diversity and complexity,
and then applies a complexity-first, diversity-aware
sampling algorithm to balance these factors in data
selection.

Community Model Preference. DEITA (Liu
et al., 2024b) adopts the Evol-Instruct method (Xu
et al., 2023) to generate samples with varying
complexity and quality, using them to train com-
munity models (e.g., LLaMA) as quality scor-
ers instead of ChatGPT. The model separately as-
sesses instruction complexity and response qual-
ity scores for each candidate sample. A score-
first, diversity-aware algorithm is then designed
to rank and select samples based on a combined
evaluation of these scores. To optimize selection
cost, CaR (Ge et al., 2024) introduces an expert-
aligned, diversity-preserving approach by training a
lightweight Sentence-BERT model (135M parame-
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Method Candidate Datasets Backbones of SEMs
AlpaGasus Alpaca, DOLLY, GPT-4-LLM LLaMA-1/2-7B/13B
Instruction-Mining OpenOrca, DOLLY LLaMA-1-7B, LLaMA-2-7B/13B
CaR Alpaca LLaMA-1-7B/13B/30B, LLaMA-2-7B,

LLaMA-3-8B
SelectIT Alpaca-GPT4 LLaMA-2-7B/13B, LLaMA-3-8B/13B,

Mistral-7B
InstructionGPT-4 cc_sbu_align MiniGPT-4
IFD Alpaca, WizardLM LLaMA-1-7B, LLaMA-2-7B/13B
Superfiltering Alpaca, Alpaca-GPT4 LLaMA-2-7B/13B
Nuggets Alpaca, CodeAlpaca, WizardLM, FLANv2 LLaMA-2-7B
LESS FLAN V2, CoT, DOLLY, Oasst LLaMA-2-7B/13B, Mistral-7B
SHED MMLU, WizardLM LLaMA-1-7B/13B, Vicuna-7B, GPT-2
MoDS Alpaca, HC3, Alpaca-Evol-Instruct, DOLLY,

InstructWild, LIMA
LLaMA-2-7B

InsTag WizardLM, UltraChat, ShareGPT LLaMA-1/-2-13B
DEITA Alpaca, DOLLY, Oasst, FLAN 2022, WizardLM,

UltraChat, ShareGPT
LLaMA-1/-2-13B, Mistral-7B

Table 1: The candidate datasets and backbones of SEMs used in each method.

Method BLM Others Win-tie-loss Benchmark Scoring
AlpaGasus ✔ ✔ Vicuna, Koala, WizardLM,

Self-Instruct
MMLU, DROP, Humaneval, BBH

Instruction-Mining ✘ ✔ MT-Bench OPENLLM, MT-Bench
CaR ✔ ✔ Vicuna, PandaLM, CoachLM,

Self-instruct
-

SelectIT ✔ ✘ - MMLU, TYDIQA, BBH, GSM,
HumanEval, AlpacaEval

InstructionGPT-4 ✔ ✘ LLaVA-Bench MME, VQA, MMBench
IFD ✔ ✘ Vicuna, Koala, WizardLM,

Self-Instruct, LIMA
OPENLLM

Superfiltering ✔ ✘ WizardLM OPENLLM, AlpacaEval
Nuggets ✔ ✘ - MT-Bench, AlpacaEval, MMLU,

HumanEval
LESS ✔ ✘ - MMLU, TYDIQA, BBH
SHED ✔ ✘ - MMLU, ARC-challenge
MoDS ✔ ✘ Koala, WizardLM,

Self-instruct, Vicuna, LIMA
-

InsTag ✘ ✔ - MT-Bench
DEITA ✘ ✔ - OPENLLM, MT-Bench, AlpacaEval

Table 2: The counterpart models and evaluation metrics used in each method.

ters) as the quality scorer. It then applies clustering
and ranking techniques to select top-K candidates
while maintaining diversity.

3.2.2 Sample’s Influence on Model Output as
Continuous Quality Labels

Another line of research calculates the sample’s
influence on the model’s final performance as a
continuous quality label for data selection.

Most methods leverage model-based estimations,
such as inference loss, Shapley values, perfor-
mance change, or necessity scores, to measure a
sample’s impact. Instruction-Mining (Cao et al.,
2023) and InstructionGPT-4 (Wei et al., 2023) con-
struct a predictor that utilizes various feature repre-
sentations of samples to estimate the inference loss
of a fine-tuned model, thereby obtaining quality la-
bels. They then employ BLENDSEARCH (Wang

et al., 2021), which combines global and local opti-
mizations, to determine the optimal dataset size.

To more precisely quantify sample influence at a
lower computational cost, SHED (He et al., 2024)
first applies a model-agnostic clustering algorithm
(K-means with Sentence-BERT embeddings) to
identify representative proxy samples. It then com-
putes Shapley values for each cluster, using them
as quality scores to guide data selection. Similarly,
Nuggets (Li et al., 2023) selects samples based on
conditional loss, which measures their impact by
comparing the model’s performance on a prede-
fined task with and without the sample in context
(one-shot score minus zero-shot score).

MoDS (Du et al., 2023) follows a two-stage ap-
proach: it first selects a high-quality data subset us-
ing external model scoring and fine-tunes an initial
LLM on this seed dataset. The necessity scores of
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the samples within this high-quality subset are then
used to perform the final data selection. This dual
measurement strategy enables MoDS to identify su-
perior samples, leading to significant performance
improvements in fine-tuned models.

Unlike these methods, which rely on model pre-
dictions, LESS (Xia et al., 2024) assesses a sam-
ple’s influence by measuring gradient similarity be-
tween candidate samples and existing task datasets.
It first fine-tunes a LoRA model to extract gradient
features from candidate samples, which are then
randomly projected into a storage space. Valida-
tion samples in the few-shot setting are also pro-
jected into this space to compute gradient similarity,
which serves as a quality label for data selection.

4 Selector Evaluation

To evaluate a selector’s effectiveness, exist-
ing works compare a Selective-Enhanced Model
(SEM), trained on a selected subset of the candidate
dataset, against the same foundation model fine-
tuned on the full dataset (BaseLine Model, BLM)
or other popular LLMs using win-tie-loss metrics
or benchmark scores. Table 1 and 2 summarize
the evaluation setup, including candidate datasets,
comparison models, and evaluation metrics.

Candidate Datasets. Most studies (Li et al.,
2024a,b; Liu et al., 2024b) use open-source datasets
as candidate sources for fine-tuning, aiming to im-
prove performance by selecting higher-quality sam-
ples. These datasets can be broadly categorized
into two types: (1) Typical datasets, which serve as
common instruction-tuning benchmarks, such as
Alpaca (Taori et al., 2023), Dolly (Conover et al.,
2023), and FLAN (Wei et al., 2022); (2) Advanced

datasets, which are refinements of typical datasets
to improve quality further, such as WizardLM (Xu
et al., 2023), UltraChat (Ding et al., 2023), etc.

Counterpart Models. To evaluate SEM’s effec-
tiveness, most works compare it against a BLM,
quantifying the improvement achieved through data
selection. Popular LLaMA-series models (Lu et al.,
2024; Chen et al., 2024) and Mistral models (Liu
et al., 2024b; Xia et al., 2024) are commonly used
as backbones. Additionally, some studies (Ge et al.,
2024; Liu et al., 2024a) benchmark SEM against
SOTA models (e.g., GPT-4, Claude, LLaMA-Chat
7B) to assess absolute performance, further validat-
ing the selector’s effectiveness.

Evaluation Metrics. The evaluation metric in-
cludes both relative and absolute aspects. Relative
metrics, like win-tie-loss ratios judged by GPT-
4, reflect SEM’s performance compared with its
counterpart models. Absolute metrics, instead, uti-
lize either the model’s response loss on test sets
(MMLU) or GPT-4’s score on specific benchmarks
to evaluate the SEM performance (MT-Bench).

5 An Unified Comparison Among Data
Selection Method

To directly compare various existing methods
while addressing inconsistencies in their experi-
mental setups, we propose a unified comparison
approach that incorporates ratio-based efficiency
and ranking-based feasibility. Figure 3 illustrates
the three-step framework: (1) Design Indicator:
evaluate existing methods using designed indica-
tors under a consistent setting (Alpaca as the candi-
date dataset, LLaMA-2 7B/13B as the SEM, and
win-tie-loss against the BLM as the metric); (2) Es-
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tablish Relation: plot the points of various methods
on a two-dimensional space representing Efficiency
and Feasibility comprehensively; (3) Derive Com-
parison: align the methods with a baseline to enable
comparison by translating their relationships into
accessible measurements.

5.1 Efficiency of the Selector

The efficiency of a data selector reflects its abil-
ity to accurately identify high-quality data, con-
tributing to better model performance. As shown in
the upper branch of Figure 3, the process consists of
three main steps: (1) We define an efficiency space
using two ratio-based indicators: the Performance
Improvement Ratio (PIR) and the Selected Dataset
Fraction (SDF), which adjust for biases in the ex-
perimental settings; (2) We establish an efficiency
curve to represent the relationship between these
indicators and overall efficiency, using extrapola-
tion to align them; (3) We set a baseline and apply a
homeomorphism function to convert each method’s
latent efficiency into an explicit, signed distance
from the baseline, enabling direct comparisons.

5.1.1 Ratio-based Efficiency Indicators
Performance Improvement Ratio (PIR). The

PIR is computed as the average ratio of SEM’s per-
formance score to that of the counterpart model
across different evaluation metrics. For methods
lacking evaluation data under unified conditions,
we estimate the PIR by leveraging the consistency
of the selector across various settings. Specifically,
we compute average ratios for each method un-
der different evaluation conditions and use the ob-
served linear relationship between these ratios to in-
fer the missing PIR values (refer to Appendix A.1).

Selected Dataset Fraction (SDF). The SDF
quantifies the effect of data size uniformly, cal-
culated as the ratio of the selected dataset’s size to
the total size of the original candidate dataset. It
ensures proportional representation across datasets,
eliminating bias due to varying dataset sizes (e.g.,
from 3,439 samples (Wei et al., 2023) to 306,044
samples (Lu et al., 2024)).

5.1.2 Comparison Based on Efficiency Curve
After plotting existing works’ PIR and SDF val-

ues, their efficiency remains a latent variable. Al-
though higher PIR and lower SDF are generally
indicative of greater efficiency, comparing works
with different combinations of these indicators can
be challenging. To resolve this, we draw inspiration

from scaling laws (Kaplan et al., 2020; Chung et al.,
2024) and LIMA (Zhou et al., 2024), and introduce
the efficiency curve extrapolation assumption. We
define two key properties of the unified efficiency
curve: (1) The curve follows a logarithmic-like
pattern, with a rapid but brief increase before ap-
proaching linearity; (2) The slope of a superior
efficiency curve is always steeper than that of an
inferior one (see Appendix A.2 for details). Using
these properties, we transform efficiency into an
explicit representation on the SDF × PIR space,
as shown in Figure 3.

Additionally, to provide a more direct and robust
comparison, we apply a homeomorphism function,
transforming relative efficiency comparisons into
measurable distances between different methods.
Each method’s distance from the baseline repre-
sents its comparative efficiency, as shown in Fig-
ure 4.

SelectIT

SHED

CaR

Figure 4: Efficiency comparison of popular data selec-
tion methods. The yellow dashed line represents the
baseline efficiency lbase, with the vertical distance from
each method to the baseline indicating its relative effi-
ciency difference.

Specifically, we take the yellow line connect-
ing Instruction-Mining and Instruction-GPT4 as
the baseline, approximating their shared efficiency
curve due to their similar selection methods.
The signed distance from this baseline indicates
whether a method’s efficiency is superior (green
dashed line) or inferior (red dashed line) to the
baseline. Larger distances reflect more significant
efficiency differences (see Appendix A.3).

As depicted in Figure 4, IFD emerges as the
most efficient method, while AlpaGasus is the least
efficient. This outcome arises because IFD is more
targeted: its Instruction Following Difficulty (IFD)
score is calculated not only from within the candi-
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date dataset but also using feature extraction from
the backbone model. Additionally, its quality labels
are derived from the model’s loss, which is more
direct and avoids reliance on external information.
In contrast, AlpaGasus relies solely on ChatGPT
scoring without considering the data quality distri-
bution, Backbone characteristics, or optimization
objectives, which affects the fine-tuned model’s
performance.

Moreover, this comparison enables us to observe
the relative rankings of other methods that were
previously difficult to compare due to different ex-
perimental setups. For example, LESS outperforms
Superfiltering, Superfiltering surpasses Nuggets,
Nuggets outperform InsTag, and InsTag is better
than DEITA.

5.1.3 Robustness of the Efficiency Indicator
To mitigate potential bias in the efficiency indica-

tor due to using the same candidate dataset (Alpaca)
and backbone model (LLaMA-2) across all works,
we conducted additional data selection experiments
with two representative methods (AlpaGasus and
IFD) using an alternative backbone (LLaMA-3).
We obtained their PIR values for comparison.

Work PIR (LLaMA-3 8B) PIR (LLaMA-2 7B)
AlpaGasus 1.287 (0.173) 1.284 (0.173)
IFD 1.512 (0.050) 1.747 (0.050)

Table 3: Comparison of PIR values between IFD and Al-
paGasus with different backbones (LLaMA-2/LLaMA-
3) under MT-bench. The value 1.287 (0.173) means the
PIR of the AlpaGasus method is 1.512 with an SDF of
0.173. Approaches to obtain the indicators’s value are
discussed in Section 5.1.1.

Tabel 3 shows that: (1) IFD consistently out-
performs AlpaGasus in efficiency, due to its more
targeted design for quality labels, as discussed in
Sections 3.1 and 5.1.2; (2) While AlpaGasus under-
performs IFD, it exhibits more stable performance
across different backbones, as it is independent of
the backbone model when evaluating data quality.

5.2 Feasibility of the Selector
Unlike previous studies that primarily focus on

efficiency, we also take into account the practical
usability of each method, a factor often overlooked.
To assess this, we follow the process illustrated in
the lower branch of Figure 3 for manual evaluation,
as relevant metrics are lacking. (1) We identify five
key factors that contribute to two ranking-based fea-
sibility indicators, which capture the simplicity and
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flexibility of each method, and manually annotate
them. (2) We obtain simplicity and flexibility ranks
and position the methods on a two-dimensional
feasibility measurement plane for relational visu-
alization. (3) We integrate both ranks to derive an
overall comparative ranking.

5.2.1 Ranking-based Feasibility Indicators
Simplicity. This metric assesses the complex-

ity of the selection process and the reproducibility
(Rep.) of the method. In terms of complexity, we
examine the implementation cost of the method,
which includes the number of models trained and
the complexity of the executed algorithms. We
also verify reproducibility by checking whether the
implementation has been open-sourced, as this is
highly valued in the research community. Further
details can be found in Appendix A.4.1.

Flexibility. Additionally, we evaluate the
model’s flexibility in terms of transferability and
extensibility, both critical for a method’s general-
ization in practical applications.

For transferability, a model-free method allows
the selection of different models without retraining
the selector, as it does not rely on specific models
to obtain quality labels; meanwhile, a dataset-free
selector can be applied to any candidate dataset
without retraining, highlighting its independence
from specific dataset information.

For extensibility, we consider whether the algo-
rithm contains fixed components that limit its adapt-
ability to other algorithms. For instance, methods
like AlpaGasus and InsTag rely heavily on third-
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party tools such as ChatGPT, which hinders their
ability to extend to other frameworks due to the
immutability of ChatGPT.

5.2.2 Comparison with Simplicity and
Flexibility

Based on the published papers for each method,
we annotate their simplicity and flexibility and
plot them to derive the final rankings, as shown
in Figure 5. We assign equal weight to simplicity
and flexibility and draw the lranking line to provide
a comprehensive ranking based on both factors.
Specifically, we project each method perpendicu-
larly onto the ranking line (which passes through
the origin), representing the average of the two
ranks. The sequence of the projected points corre-
sponds to the feasibility ranking of the methods.

As shown in Figure 5, AlpaGasus demonstrates
the highest flexibility, despite its mediocre perfor-
mance. Its simplicity, stemming from not requiring
LLM training and involving fewer steps in the selec-
tion process, makes it easy for others to reproduce
its results—even though no official implementation
has been released. Moreover, it can be more easily
transferred to other scenarios (both model-free and
dataset-free) as it relies solely on ChatGPT scoring
without scenario-specific information. Although
Instruction-Mining and SHED outperform Alpa-
Gasus, they compromise feasibility due to their
heavy reliance on fine-tuning multiple LLMs and
using complex quality indicators derived from both
datasets and models.

5.3 Overall Consideration of the Selector

In summary, a key observation from our com-
parison of efficiency and feasibility is that existing
methods often struggle to achieve both high perfor-
mance and ease of use simultaneously. Addition-
ally, we find that the more tailored a data selection
method is, the better the SEM performance tends
to be. For instance, DEITA is more complex than
AlpaGasus because it trains the selector based on a
backbone model and considers data diversity, lead-
ing to better performance. However, these more
complex processes and algorithms can introduce
external factors that hinder direct optimization and
reduce transferability. For example, despite its tai-
lored approach, LESS underperforms IFD due to
the added complexity and noise introduced by ex-
ternal datasets.

We also evaluate MoDS, which demonstrates
high comparative efficiency (PIR = 3.34, SDF =

0.02), but it uses two coupled phases of LLM train-
ing, similar to applying the selection method twice,
resulting in its exclusion from comparisons with
other works in our paper.

6 Discussions

6.1 Trends
Figure 6 illustrates the current research trends,

where we have categorized the existing work fol-
lowing three key aspects: Candidate Datasets, Qual-
ity Measurement, and Selected Features, arranged
chronologically. Based on this, we can identify
three main trends:

(1) Candidate Datasets: As detailed in Sec-
tion 4, earlier works predominantly utilized gen-
eral datasets for constructing selectors (Cao et al.,
2023). However, newer studies have shifted to-
wards using more specific datasets tailored for se-
lector development (Li et al., 2024b).

(2) Quality Measurement: There has been a no-
ticeable shift in how quality is measured, as men-
tioned in Section 3. Early approaches focused on
external scorer-based judgments that assessed sam-
ple quality and diversity (Chen et al., 2024; Liu
et al., 2024b). In contrast, recent methods have
moved towards direct measurement of model per-
formance improvement based on the influence of
individual samples (Xia et al., 2024).

(3) Selected Features: As discussed in Sections
2 and 3, they are shifted from using concrete in-
dicators (single quality score (Chen et al., 2024)
and multi-dimension indicators (Lu et al., 2024))
to abstract indicators (the training loss (Li et al.,
2024a) and gradient similarity (Xia et al., 2024)).

Quality Measurement PFM Loss Information LLM Score 

Specific

Selected Feature

Candidate Dataset General

Timeline 
AlpaGasus InsTag

SuperfilteringIFD LESSMoDS SHED

CaRDEITA

Instruction-Mining InstructionGPT-4 Nuggets SelectIT

Jul
2023

Aug Nov Dec Feb
2024

Apr

Model Optimize 
Indicator

Quality Score   
   Indicator

Multi-dimensions 
Indicator

PFM Loss 
Indicator

Figure 6: The timeline of the evolution of data selection
methods.

6.2 Challenges
Despite substantial progress in data selection for

fine-tuning large language models (LLMs), sev-
eral critical challenges remain, particularly in ad-
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dressing the open question: How can we design
effective sample quality measurements for data
selection?

(1) Balancing the Efficiency and Feasibil-
ity. As discussed in Section 5, more targeted ap-
proaches that directly measure the sample’s impact
on model performance often demonstrate higher ef-
ficiency. However, these methods can reduce feasi-
bility when applied to diverse settings, a limitation
that has been overlooked in previous studies (Cao
et al., 2023; Wei et al., 2023; Xia et al., 2024). De-
veloping a measurement strategy and data selection
algorithm that effectively balances both efficiency
and feasibility remains a challenging research goal.

(2) Ensuring the Measurement Objectivity.
For methods that rely on existing LLM prefer-
ences (Chen et al., 2024; Lu et al., 2024; Liu et al.,
2024b), designing appropriate scoring prompts to
ensure reliable scores is crucial. This is particu-
larly challenging given that biases persist even in
state-of-the-art models such as GPT-4/GPT-4o. For
methods based on a sample’s influence (Li et al.,
2023, 2024b; Xia et al., 2024), creating metric func-
tions that account for both sample characteristics
and model specifics is essential. Therefore, achiev-
ing objective and consistent measurements across
different tasks and models remains a significant
challenge.

(3) Improving Specific Tasks/Domains Perfor-
mance without Compromising Others. Existing
research (Jha et al., 2023) shows that performance
improvements from selected samples vary across
tasks. While there are notable gains in tasks like
writing and role-playing, improvements in mathe-
matics and reasoning are often marginal (Li et al.,
2023; Lu et al., 2024). Therefore, developing meth-
ods to improve performance in task-specific do-
mains without negatively affecting other tasks is an
important direction for future research.

(4) Satisfying Multiple Goals in Data Selec-
tion. Most existing works focus on merging vari-
ous aspects such as data quality (Chen et al., 2024;
Xia et al., 2024) and diversity (Lu et al., 2024; Liu
et al., 2024b). However, data selection methods for
multi-turn and multi-model scenarios are still un-
derdeveloped. Developing approaches that address
these complex scenarios is crucial for expanding
the applicability of data selection techniques.

7 Conclusion

In this paper, we present a fine-grained survey
of a dozen data selection methods for fine-tuning
large-scale language models and establish a three-
stage data selection scheme to standardize the pro-
cess. To address inconsistencies across different ex-
perimental setups, we also introduce a unified com-
parison approach using ratio-based and ranking-
based indicators to quantify efficiency and assess
feasibility, which has been overlooked in previous
works. Our comprehensive evaluations, consider-
ing both efficiency and feasibility, reveal that meth-
ods with more targeted designs tend to achieve
higher efficiency, though often at the cost of fea-
sibility. Additionally, we outline the progression
of existing research and identify four critical chal-
lenges for future work: balancing efficiency and
flexibility, ensuring measurement objectivity, im-
proving specific tasks/domain performance without
compromising others, and satisfying multiple goals
in data selection. These challenges point to key
areas for future research, particularly in refining
sample quality measurement techniques.

Limitation

We mainly research data selection for instruc-
tion fine-tuning LLMs instead of data rewriting
or augmentation. Although we have already com-
prehensively examined the existing works, we ac-
knowledge that there may still be some works we
neglected, especially the very recent work that was
published on the preprint platforms.

Besides, we focus on outlining the scheme of
existing work on data selection and propose an
analytical method for comparing various works
directly. Therefore, the descriptions of each work
could be limited to key points relevant to our study
rather than providing a comprehensive overview
due to limited space.
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A Appendix

A.1 Performance Improvement Ratio

Method Backbones of
SEM

Same Model Other Models

Win
Rate

Bench. Win
Rate

Bench.

AlpaGasus LLaMA-2-7B 1.284 0.949 - -
Superfiltering LLaMA-2-7B 1.475 1.010 - -
InsTag LLaMA-2-13B 1.344 - - 0.985
DEITA LLaMA-2-13B 1.426 - - 1.000
InstructionGPT-4 MiniGPT-4 1.443 - - -
Nuggets LLaMA-2-7B 1.519 - - -
IFD LLaMA-2-7B 1.747 - - -
LESS LLaMA-2-13B (1.491) 1.015 - -
Instruction-Mining LLaMA-2-7B (1.400) - 0.212 0.991
SHED LLaMA-1-7B (1.460) 1.005 - -
CaR LLaMA-2-7B 1.343 - - -
SelectIT LLaMA-2-7B (1.653) 1.067 - -

Table 4: The performance improvement under four eval-
uation settings. In the Same Model, we compare SEM
and BLM, while in other models, we compare SEM and
the same-size models trained based on other backbones
(such as LLaMA Chat).

Since different work uses different evaluation
methods, it is difficult to compare them directly.
Therefore, to uniformly evaluate their performance,
we first fix Alpaca as the candidate dataset since it
is widely adopted, and then we divide the various
evaluation settings mentioned in all works into (1)
BLM comparing with SEM on the same Backbone
and (2) BLM comparing with other models (such
as LLaMA Chat). Then, we further divide them
into win rate and benchmark improvement (Bench.)
with different kinds of evaluation metrics.

In total, we have four evaluation settings, as
shown in Table 4, and we take the average of each
type in Formula (1) if it uses multiple evaluation
metrics or other models.

PIR =
1

n

n∑

i=0

Xi

Yi
(1)

where Xi and Yi are, respectively, the performance
of the SEM and the counterpart model under the
same evaluation setting i, and n is the total number
of the evaluation settings using the same kind of
evaluation metric (win-tie-loss or benchmark scor-
ing) and counterpart model. We then choose the
win rate under BLM as the ratio indicator of PIR
not only because it directly reflects the improve-
ment effect made by the selector but also because
most of the works provide this value.

To fill the missing value, we leverage the con-
sistency of model performance: the same model
should perform similarly under different evaluation
settings. Therefore, we obtain the bridge function

by linearly regressing the other works with the win
rate under BLM as the label and the other three
entries in Table 4 as variables. Then, we estimate
the missing value by using the bridge function to
transfer the value under other entries into PIR.

For the work that does not adopt the Alpaca
as a candidate dataset, we use the same regres-
sion method to scale its performance to the Alpaca
dataset. Moreover, for the work evaluated under
multiple SDF and thus having multiple PIR, we
choose the one that has the highest PIR value to
indicate the method’s optimal performance.

SHED

l base

CaR

SelectIT

IFD
Instruction-Mining
AlpaGasus

Figure 7: Efficiency curves of three representative
methods (IFD, Instruction-Mining, and AlpaGasus).
The yellow baseline connects Instruction-Mining and
InstructionGPT-4, serving as the shared asymptote of
their efficiency curves and providing a ground approxi-
mation for efficiency trends.

A.2 Efficiency Curve Extrapolation

To directly compare the efficiency of work with
different performance improvement ratios (PIR)
and selected data fractions (SDF), we establish the
efficiency curve for each work using the efficiency
curve extrapolation, which consists of two proper-
ties:

Property 1. Relevant theories (such as scal-
ing law) (Kaplan et al., 2020; Sun et al., 2017;
Moskovskaya et al., 2023) suggest that the loss
value is linear with respect to the log of data size
given that the dataset always contains the same
portion of good and bad data. Inspired by these the-
ories, we model the PIR-SDF relation of a "fixed-
quality" dataset to be a log-like curve, which is
increasing, concave down, and approaching linear
after an initial increase.

Property 2. The efficiency represented by a
higher curve with a larger slope is superior to that
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represented by a lower one. It is intuitively de-
rived from property 1 and the fact that high-quality
data leads to better SEM performance (Zhou et al.,
2024). Therefore, if a method is more efficient,
then the portion of good data it selects will al-
ways be larger, and thus the gradient of its per-
formance improvement ratio (PIR) will always be
greater than an inferior method at any given se-
lected dataset fraction (SDF) in the graph.

Figure 7 is plotted following the efficiency curve
extrapolation. The curves are represented with
dashed lines to show that they are not ground-truth
curves but rather extrapolations.

A.3 Efficiency Comparison Method
The extrapolation idea introduced in Appendix

A.2 is an intuitive tool for efficiency comparison
because it allows different data selection methods
to slide on their respective efficiency curve, scal-
ing to any SDF value with a matched PIR while
maintaining their unique efficiency trait. For exam-
ple, all works in Figure 7 can slide to the blue line
following their unique efficiency curves and then
get their rankings directly according to the corre-
sponding PIR value since they all have the same
SDF=0.050.

However, this naive comparison method faces
two challenges: (1) except for the yellow baseline,
all other works’ ground truth efficiency curve is
not accessible due to the lack of data; (2) such
a method gives only an intuitive ranking rather
than concrete values, which are necessary for more
nuanced comparison.

To address these two challenges, we propose to
use each work’s distance to the baseline to repre-
sent their efficiency value as illustrated in Figure 5,
which is supported by the idea of homomorphism.
Related math derivation is listed below.

We start by formally defining this problem. Let
X denote the latent efficiency space, where each
x ∈ X represents the intrinsic efficiency of a data
selection method. Our goal is to compare xk (ef-
ficiency of method k) with xb (efficiency of the
baseline method) using their observable operating
points in the product space S × P , where S is the
selected dataset fraction (SDF) and P is the perfor-
mance improvement ratio (PIR).

In order to establish a one-to-one correspon-
dence between latent efficiency and observable
data, we formulate the efficiency curve as a ho-
momorphism by the following definition: the effi-
ciency curve of method k is a function fk : S → P ,

parameterized by xk, mapping SDF to PIR. For-
mally,

fk(s) = f(s;xk), (2)

where f is a homeomorphism between X and
S × P . This definition captures the bijective and
continuous property of the efficiency curve: (1)
Bijectivity: Each xk ∈ X maps to a unique curve
fk(s), and vice versa; (2) Continuity: If x1 ≻ x2
(higher efficiency), then (f(s;x1) > f(s;x2) for
all s ∈ S.

Following the definition, we can now quantify
the property 2 (mentioned in Appendix A.2) of
an efficiency curve by representing the efficiency
differences via slope accumulations. We argue for
this idea by first interpreting the meaning of the
slope: The derivative dfk

ds reflects how efficiently a
method trades off SDF for PIR (aka. how efficiently
it can select good data). Formally, for x1 ≻ x2,

df(s;x1)

ds
>

df(s;x2)

ds
∀s ∈ S (3)

Steeper slopes indicate better efficiency (greater
PIR gain per unit SDF increase).

Now, with the per SDF efficiency advantage
gauged by the slope difference, we can further
quantify the accumulative total efficiency differ-
ence between method k and baseline b over S by
defining their vertical separation as:

fk(s)−fb(s) =

∫ s

smin

(
df(τ ;xk)

dτ
− df(τ ;xb)

dτ

)
dτ

(4)
Equation (4) integrates slope differences across S,
enabling a quantitative description of how much
better one method is over the baseline.

Since future comparisons will mostly be based
on the baseline, a simplified notation is derived
as follows: Let fb(s) = f(s;xb) be the baseline’s
known efficiency curve. For method k operating at
(s, k), its vertical offset from the baseline at sk is:

∆pk = pk − fb(sk) (5)

∆pk measures how much k outperforms the base-
line at the same SDF.

To further map the efficiency to directly observ-
able data in S × P , we apply geometric correction
by transforming the vertical offsets ∆pk into a per-
pendicular distance yk (see Figure 5). Formally, let
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θ be the angle between the baseline curve and the
SDF axis at sk. We define yk as:

yk = ∆pk · sin θ (6)

We end this derivation by giving the final map-
ping function and argue that it’s still a homeomor-
phism, which enables a neat and rigorous compari-
son. Define φ : X → R as

φ(xk) = yk = sin θ ·(f(sk;xk)− f(sk;xb)) (7)

We argue that φ is a homomorphism by checking
whether its bijective and continuous: (1) Bijectivity:
Guaranteed by the bijectivity of f ; (2) Continuity:
Follows from the continuity of f and sin(θ). Thus,
we claim that this final mapping function preserves
the ranking x1 ≻ x2 ⇐⇒ y1 > y2.

In conclusion, for any method k with observable
(sk, pk), its efficiency distance to the baseline is:

yk = sin θ · (pk − fb(sk)) , (8)

equivalent as Equation (7), requiring only a single
point and thus bypassing the need for the inaccessi-
ble efficiency curve.

A.4 Feasibility
We consider simplicity and flexibility to be

the two main aspects when evaluating a selection
method’s feasibility. This section explains how
these two aspects are qualitatively and reasonably
evaluated using further refined indicators.

A.4.1 Simplicity
The simplicity of a data selection method takes

into account (1) the number of LLMs trained in
selector construction, (2) the number of steps in the
selection algorithm, and (3) reproducibility, which
is based on the open-source state of the code.

# of Trained LLMs. This indicator counts the
number of LLMs trained during the selector con-
struction stage. For example, AlpaGasus, InsTag,
CaR, and Nuggets use purely ChatGPT (commer-
cial LLM), LLaMA (community model in Nuggets
and SelectIT), or expert small model (355M in
CaR) as a scorer or tagger, so no LLM is trained
in the construction and the count is thus 0. IFD,
Superfiltering, and LESS train one warm-up model
(LLaMA for IFD and LESS, GPT-2 for Superfilter-
ing) to obtain quality labels for candidate datasets,
so the count is 1. MoDS trains one intermedi-
ate model for necessity evaluation, so the count
is also 1. DEITA trains a complexity scorer and

a quality scorer from ChatGPT-evolved data sepa-
rately, so the count is 2. Instruction-Mining fine-
tunes 129 models to obtain loss scores on 129 data
subsets to rule-fit a linear loss score predictor, so
the count is 129. The same count rule applies to
InstructionGPT-4 since these two works are almost
identical in method. Additionally, SHED fine-tunes
500 models during the proxy Shapley value calcu-
lating stage, so the count is 500.

# of Algorithm Steps. The following pseudo al-
gorithms help count the steps in the selecting stage
(excluding the Init and Return steps), where the
number in the bracket in the table is the number of
LLMs used. For example, based on the Algorithm
1, AlpaGasus performs first ChatGPT scoring and
then ranking to get the final selected subset, which
consists of 2 steps with 1 LLM usage.

Reproducibility. "✔" means the code is open-
source on GitHub, "✘" means the opposite. Addi-
tionally, AlpaGasus has been open-source by others
but not by the authors, and InsTag provides a demo
on ModelScope and checkpoints on HuggingFace,
but no codes are open-source. Thus, we consider
them to be close-source.

A.4.2 Flexibility
The flexibility of a selection method considers

both transferability and extensibility. The former
is determined by whether the method can be trans-
ferred to other methods without retraining for ev-
ery new model choice or candidate dataset choice,
while the latter is by whether proprietary models
like ChatGPT/GPT4 are used in the selection pro-
cess.

Model Free. It means the selector model can
be replaced with any other model without harm-
ing the efficiency of the data selector conceptually.
For example, AlpaGasus allows users to replace
the ChatGPT with other models for direct scoring,
which has the downside of over-reliance on pro-
prietary models. Similarly, InsTag prompts GPT
for annotation; CaR uses an expert small model for
expert-aligned scoring; Nuggets prompts LLaMA
for conditional loss; and SelectIT obtains three-
level of uncertainties directly from a foundation
model, which does not need to retrain the selec-
tor if the model is changed. Meanwhile, Superfil-
tering, IFD, and LESS need to warm up a model
with a portion of the candidate dataset, and thus,
changing the model requires a re-warm-up and is
thus not model-free. DEITA trains two separate
scorers from LLaMA. Replacing LLaMA with an-
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Methods # Trained LLMs # Algorithm Steps Rep. Simplicity Transferability Extensibility Flexibility Feasibility
(# Using LLMs) Model Free Dataset Free ChatGPT/GPT-4 Free

AlpaGasus 0 2(1) ✘ 1 ✔ ✔ ✘ 1 1
InsTag 0 3(1) ✘ 2 ✔ ✔ ✘ 1 2
CaR 0 4(0) ✔ 2 ✔ ✔ ✔ 2 3
Nuggets 0 4(2) ✔ 2 ✔ ✔ ✔ 2 3
SelectIT 0 4(3) ✔ 2 ✔ ✔ ✔ 2 3
Superfiltering 1* 3(1*) ✔ 3 ✘ ✘ ✔ 3 4
IFD 1 3(1) ✔ 4 ✘ ✘ ✔ 3 5
LESS 1 4(2) ✔ 5 ✘ ✘ ✔ 3 6
DEITA 2 5(4) ✔ 6 ✘ ✘ ✘ 5 7
InstructionGPT-4 30 4(1) ✔ 7 ✘ ✔ ✘ 4 7
SHED 500 3(0) ✔ 8 ✘ ✘ ✔ 3 7
Instruction-Mining 129 4(0) ✘ 8 ✘ ✔ ✘ 4 8

Table 5: Feasibility rank considers both Simplicity rank and Flexibility rank. The former consists of three indicators:
(1) # Trained LLMs; (2) # Algorithm Steps (# Times Using LLMs in the algorithm) and (3) Reproducibility, while
the latter considers extensibility and transferability. The number in the bracket of the "# Algorithm Steps" column
indicates the times of LLMs used in the selection algorithm. * indicates that Superfiltering trains a GPT-2 instead of
LLaMA. The detail of each step of the "# Algorithm Steps" is shown in Algorithm 1-11.

other model requires retraining the scorers with the
same seed-evolved data. Instruction-Mining and
InstructionGPT-4 need to retrain the two sets of
models for the loss estimation; therefore, they are
not model-free. SHED performs actual fine-tuning
to calculate Shapley values, while MoDS trains an
intermediate model for necessity evaluation. There-
fore, both are not model-free.

Dataset Free. It means the change of the candi-
date dataset won’t require retraining the selector,
which means the candidate dataset is not used as
training data in the construction of the data selec-
tor. For example, from AlpaGasus to SelectIT in
the table, all these works use the candidate dataset
directly for score obtaining without training, so
they are dataset-free. For instruction-Mining/GPT-
4, they derive the mapping function to estimate
loss on any candidate dataset. Works like Super-
filtering, IFD, LESS, and DEITA all rely on the
information within a given candidate dataset and
need warm-up; retraining is necessary if the dataset
is replaced. SHED calculates Shapley by iteratively
fine-tuning the model, which requires re-finetuning
if the candidate dataset is changed.

A.5 Algorithms Summary
We summarize the key selection algorithm in

a highly abstract way to facilitate the qualitative
evaluation of Simplicity indicator, where algorithm
steps are counted. The following summary uses a
modular way to count algorithm steps, attempting
to ensure each step is of similar difficulty while
capturing all the necessary steps. The counting
result is shown in Table 5, where the init and return
steps of each method do not count towards the
number of algorithm steps.

Algorithm 1 AlpaGasus

1: Init D = Candidate Dataset, S = ChatGPT, U
= LLM Usage

2: Use S to score D (U+=1)
–> sample with score

3: Do score ranking and pick top K
4: Return Selected Subset

Algorithm 2 InsTag

1: Init D = Candidate Dataset, S = ChatGPT, U
= LLM Usage

2: Use S to tag D (U+=1)
–> sample with tags

3: Do tag normalization
–> sample with tag statistics

4: Do complexity-first diverse sampling
5: Return Selected Subset

Algorithm 3 CaR
1: Init D = Candidate Dataset, S = Expert

Model(355M), U = LLM Usage=0
2: Use S to score D

–> sample with score
3: Do score ranking and pick top n1

–> selected dataset Dn1

4: Do clustering on D
–> K subsets D′

5: Do score ranking in each D′ and pick top n2
in each D′

–> selected dataset DK∗n2
6: Return Dn1 +DK∗n2

6609



Algorithm 4 Nuggets

1: Init D = Candidate Dataset, S = Backbone, U
= LLM Usage

2: Prompt S with zero-shot D (U+=1)
–> sample with ZeroShotScore

3: Prompt S with one-shot D (U+=1)
–> sample with OneShotScore

4: OneShotScore - ZeroShotScore
–> sample with GoldenScore

5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 5 SelecIT
1: Init D = Candidate Dataset, S = Backbone, U

= LLM Usage, P = Prompt Templates
2: Use each prompt in P to annotate each sample

–> Prompt-attached Dp

3: Use each model in S to score each sample in
Dp (U+=3)
–> Dp with score

4: Aggregate scores for each sample in D
–> each sample in D has an aggregated score

5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 6 IFD & Superfiltering

1: Init D = Candidate Dataset, S = Backbone, U
= LLM Usage

2: Use D′ ∈ D to to warm up S
–> pre-experienced S′

3: Use S′ to generate IFD/Perplexity score on D
(U+=1)
–> each sample with score

4: Do score ranking and pick top K
5: Return Selected Subset

Algorithm 7 LESS
1: Init Dc = Candidate Dataset, Dt = Target

Dataset, S = Backbone, U = LLM Usage
2: Use D′

c ∈ Dc to LoRA warm up S
–> LoRA Model S′

3: Use S′ to get gradients of Dc (U+=1)
–> gradient store of Dc

4: Use S′ to get gradients of Dt (U+=1)
–> gradient store of Dt

5: Do gradient-similarity-based selection
6: Return Selected Subset

Algorithm 8 DEITA
1: Init D = Candidate Dataset, S = Backbone, U

= LLM Usage
2: Use evolved datasets to train two Ss (U+=1)

–> complexity scorer model Sc and quality
scorer model Sq

3: Use Sc to score D (U+=1)
–> instruction with complexity score

4: Use Sq to score D (U+=1)
–> output with quality score

5: Multiply two scores and rank
–> ranked sample

6: Do score-first, diversity-aware selection
(U+=1)

7: Return Selected Subset

Algorithm 9 InstructionGPT-4
1: Init Dc = Candidate Dataset, Dt = Training

Dataset, S = Transformer model, U = LLM
Usage

2: Use vectorized Dt to train a self-attention NN
(U+=1)
–> trained S

3: Do vectorization on Dc with indicators
–> vectorized Dv

4: Use S to predict loss on Dv

–> sample with loss score
5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 10 Instruction-Mining

1: Init Dc = Candidate Dataset, Dt = Training
Dataset, S = Linear Selector, U = LLM Usage

2: Use vectorized Dt to train a linear selector
–> trained S

3: Do vectorization on Dc with indicators
–> vectorized Dv

4: Use S to predict loss on Dv

–> sample with loss score
5: Do score ranking and pick top K
6: Return Selected Subset
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Algorithm 11 SHED
1: Init D = Candidate Dataset, S = Backbone, U

= LLM Usage
2: Do clustering on embedded D

–> Proxy dataset from each cluster Dp

3: Calculate Shapley Value on Dp

–> Dp with score
4: Do optimization-aware sampling on D accord-

ing to scores
–> Selected Subset

5: Return Selected Subset
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