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Abstract

Large language Models (LLMs) have demon-
strated remarkable skills across various do-
mains. Understanding the mechanisms behind
their abilities and implementing controls over
them is becoming increasingly important for
developing better models. In this paper, we fo-
cus on skill unlearning in LLMs, specifically
unlearning a particular skill while retaining
their overall capabilities. We introduce two
lightweight, training-free machine skill unlearn-
ing techniques for LLMs. First, we observe
that the pre-activation distribution of neurons in
each Feed-Forward Layer (FFL) differs when
the model demonstrates different skills. Ad-
ditionally, we find that queries triggering the
same skill cluster within the FFL key space
and can be separated from other queries us-
ing a hypercube. Based on these observations,
we propose two lightweight, training-free skill
unlearning methods via intervention and ab-
stention respectively: Neuron Adjust and Key
Space Detection. We evaluate our methods
on unlearning math-solving, Python-coding,
and comprehension skills across seven different
languages. The results demonstrate their strong
unlearning capabilities for the designated skills.
Specifically, Key Space Detection achieves
over 80% relative performance drop on the for-
getting skill and less than 10% relative perfor-
mance drop on other skills and the model’s gen-
eral knowledge (MMLU) for most unlearning
tasks. 1

1 Introduction

In recent years, the superior capabilities demon-
strated by Large Language Models (LLMs) have at-
tracted significant research interest. Without train-
ing on task-specific datasets, LLMs exhibit strong
skills in various domains such as math (Wei et al.,

1Our code is available at https://github.com/Trustworthy-
ML-Lab/effective_skill_unlearning

Figure 1: An overview of the proposed skill unlearn-
ing methods: Neuron Adjust (through intervention)
and Key Space Detection (through abstention). This
example illustrates forgetting coding skill.

2022; Imani et al., 2023; Cobbe et al., 2021), cod-
ing (Austin et al., 2021; Li et al., 2022), and lan-
guage comprehension (Shi et al., 2023). Under-
standing the mechanisms behind these abilities and
implementing controls over them are becoming in-
creasingly important for developing stronger, safer,
and more interpretable models.

A recent line of research focuses on machine
unlearning (Yao et al., 2023; Liu et al., 2024),
which aims to remove the knowledge LLMs have
acquired from specific datasets while maintaining
their causally unrelated knowledge. In this work,
we focus on a variant of machine unlearning called
skill unlearning, which aims to remove a specific
skill (e.g., coding skill, elementary math-solving
skill) from the LLM while retaining its other skills.
Skill unlearning helps researchers control certain
behaviors of LLMs, providing insights into when
and how a model demonstrates a particular skill.

Currently, most unlearning methods (Lu et al.,
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(I) Efficiency (II) Performance (III) Scalability

Method: Does not
require training

No Inference
time cost

High quality
unlearning

Maintain model
overall capability

Applicable to
large models

Retrain from scratch No Yes Yes Yes No
Fine-tuning based unlearning No Yes Yes No Yes
In-context unlearning Yes Yes No Yes Yes
Selective Pruning Yes Yes Yes No Yes

Neuron Adjust (Ours) Yes O(1) Yes Partial Yes
Key Space Detection (Ours) Yes O(1) Yes Yes Yes

Table 1: Comparison of our method against existing machine unlearning methods, including retraining, fine-tuning
based methods, in-context unlearning, and a prune-based unlearning method Selective Pruning.

2022; Jang et al., 2023; Wang et al., 2023; Yu et al.,
2023; Eldan and Russinovich, 2023; Chen and
Yang, 2023; Yao et al., 2023) rely on fine-tuning,
which becomes increasingly costly as LLMs grow
larger. Other unlearning methods (Wu et al., 2023;
Pochinkov and Schoots, 2023) involve pruning
dataset-related sets of neurons, which we show can
harm the model’s overall capabilities. In this paper,
we introduce two new machine skill unlearning
methods that are training-free and have minimally
impact the model’s overall capabilities. We first
observe that feed-forward layer neurons exhibit dif-
ferent pre-activation distributions when the model
demonstrates different skills. Based on this obser-
vation, in section 3 we propose Neuron Adjust,
which probabilistically shifts neuron pre-activation
values to retain the desired skill distribution dur-
ing inference through intervention. By consider-
ing the correlation among neurons, we further ob-
serve that neuron activation vectors cluster within
different hypercubes in the feed-forward layer’s
key space when the model demonstrates certain
skills. Building on this, we introduce Key Space
Detection (KSD) in section 4, which detects and
blocks specific skill-related activations in the key
space through abstention by preventing query vec-
tors from accessing the skill-specific hypercube.

Our contributions can be summarized as follows:

1. Motivated by the shift in neuron pre-activation
distributions and the modularity of skill-
triggering queries in the feed-forward layer’s
key space, we propose two novel machine
skill unlearning methods, Neuron Adjust and
Key Space Detection, which are scalable,
training-free, and maintain the model’s overall
capabilities with minimal degradation.

2. Our experiments on math, code, and language
skill unlearning demonstrate the effectiveness
of the proposed two methods with > 80%

relative performance drop on the target for-
getting skill and < 10% drop on the model’s
general knowledge (MMLU (Hendrycks et al.,
2021)) and other skills. Specifically, Key
Space Detection achieves nearly perfect
skill unlearning with negligible overall capa-
bility drop.

Table 1 compares our methods with traditional un-
learning methods and the skill unlearning method
Selective Pruning (Pochinkov and Schoots,
2023) across the dimensions of Efficiency, Perfor-
mance, and Scalability.

2 Related Work & Background

Large language model machine unlearning. This
line of work aims to remove the influence of spe-
cific data points and the corresponding model capa-
bilities without retraining the model from scratch.
Most previous works on machine unlearning have
focused on fine-tuning-based approaches (Lu et al.,
2022; Jang et al., 2023; Wang et al., 2023; Yu
et al., 2023; Eldan and Russinovich, 2023; Chen
and Yang, 2023; Yao et al., 2023), which become
increasingly costly as models grow larger. Pawel-
czyk et al. (2024) introduced in-context unlearning,
which provides contextual inputs to the language
model during the inference stage. Despite its cost-
efficiency, it lacks unlearning quality and is difficult
to generalize to large-scale unlearning.

Other training-free approaches focus on prun-
ing or removing specific sets of behavior-related
neurons in the model. DEPN (Wu et al., 2023) is a
pruning-based unlearning approach that removes
neurons based on their cumulative privacy gradi-
ent. Selective Pruning (Pochinkov and Schoots,
2023) is another pruning-based method, which re-
moves neurons based on their relative importance
to the forgetting dataset and the retaining dataset.
However, the extent to which pruning-based meth-
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Figure 2: An overview of the Neuron Adjust method in section 3. Before adjusting a neuron, the neuron has
different distributions under the forgetting and retaining datasets. During inference time, Neuron Adjust algorithm
will edit neurons with large distribution shift such that its pre-activation distribution will be close to the retaining
distribution.

Figure 3: Category distribution over different pre-activation value ranges for neuron at layer 17, index 693 (left),
and layer 0, index 13366 (right).

ods affect the model’s overall capabilities remains
unknown and unjustifiable.
Feed-forward neuron interpretability. This line
of work focuses on the interpretation of individual
neurons, meaning that individual neurons repre-
sent meaningful concepts, both in vision models
(Bau et al., 2020; Hernandez et al., 2022; Oikari-
nen and Weng, 2023) and language models (Bills
et al., 2023; Lee et al., 2023). Recent works have
shown that neurons exhibit multisemanticity (El-
hage et al., 2022; Bricken et al., 2023; Huben et al.,
2024), with some being expressible as a linear com-
bination of concepts (Oikarinen and Weng, 2024).
By considering neuron activation vectors, we can
also treat LLM’s feed-forward layers (FFLs) as key-
value memories, with neuron activation vectors as
keys and the output of the FFLs as values (Geva
et al., 2021; Meng et al., 2022).
Unlearning settings. In this paper, we focus on un-
learning a specific skill or capability of a language

model while retaining another. In the following sec-
tions, we denote Dretain as the dataset capturing
the skill we want the model to retain performance,
and Dforget as the dataset capturing the skill we
want the model to forget. Our methods involve
operations on the FFL in large pretrained autore-
gressive transformer decoder models, which takes
the layer-normed input z ∈ RH from the residual
stream:

FFL(l)(z) = W
(l)
downσ

(
W

(l)
up z

)
,

where z is first mapped to a higher-dimensional
space by an up-projection linear transformation
W

(l)
up and a non-linear activation function σ to ob-

tain neuron activations, and then mapped back to
RH space with a down-projection linear transfor-
mation W

(l)
down. Modern LLMs also utilize gated

linear units (GLUs) in FFLs. Instead of directly
activating each neuron, GLUs use a gating mecha-
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nism to control the information flow of each neu-
ron:

FFL(l)(z) = W
(l)
down

(
σ
(
W

(l)
gatez

)
⊙W

(l)
up z

)
,

where ⊙ is element-wise vector multiplication. In
the following sections, we consider W (l)

up z in tradi-
tional FFL and W

(l)
gatez in GLU-FFL as the neu-

ron pre-activations, and vectors after activation
function as the key vectors (See Figure 4 for il-
lustration), i.e. we have v

(l)
key = σ

(
W

(l)
up z

)
and

v
(l)
key = σ

(
W

(l)
gatez

)
⊙W

(l)
up z in regular FFL and

GLU-FFL respectively.

3 Inference Time Neuron Adjustment

In this section, we introduce Neuron Adjust, a
post-hoc, training-free machine unlearning tech-
nique for large language models achieved by infer-
ence time neuron pre-activation value adjustment.
An overview of Neuron Adjust method is shown
in Figure 2. In section 3.1, we show the motivation
of the method that some neurons’ pre-activation
distributions differ when the model demonstrates
different capabilities. Based on the observation,
we describe the Neuron Adjust method in section
3.2.

3.1 Case Study: Neuron Pre-Activation
Distribution Shift

We perform a case study to show how neuron pre-
activation distribution changes when the model
demonstrates math and coding skills separately. We
choose GSM8K (Cobbe et al., 2021) and MBPP
(Austin et al., 2021) as the two datasets that char-
acterize the math and Python coding skills of the
model, and Gemma-2b-it (Team et al., 2024) as
the subject model to study. We probe the model
with the two datasets, and document each neu-
ron’s (token, pre-activation) pair, and then prompt
GPT-4 (OpenAI et al., 2024) to categorize tokens
into meaningful categories as in Figure 3. For
the two neurons, although they are highly acti-
vated by "Programming-related keywords," "Opera-
tor/Syntax tokens," and "Tokens with Parentheses,"
they both show positive activations for "Numerical-
related tokens." This case study demonstrates that
neurons are multi-functional, and simply pruning
them would be harmful to the model’s overall ca-
pabilities.

3.2 Neuron Adjust Algorithm

Based on the observation that neuron pre-
activations exhibit different distributions when the
model demonstrates different skills and the poly-
semantic property of neurons, we propose Neuron
Adjust, a probabilistic skill unlearning technique
applied to the subject model during inference time.
Neuron Adjust unlearns one skill of the model
while retaining another skill by shifting each neu-
ron’s pre-activation from the forgetting skill distri-
bution to the retaining skill distribution. Algorithm
1 shows the pseudo-code of Neuron Adjust, which
mainly consists of two parts:

Algorithm 1 Neuron Adjust Algorithm for neu-
ron ni and inference time pre-activation v

1: Input: Dretain, Dforget, v
2: Probing the model with Dretain and Dforget,

approximate sample mean and std:

ni|Dretain ∼ N (µr, σr)

ni|Dforget ∼ N (µf , σf )

3: Calculate pr = P (v|N (µr, σr))
4: Calculate pf = P (v|N (µf , σf ))
5: if pr < pf then
6: α← pf

pr+pf

7: vadjust ← 2µr −
(
v−µf

σf
σr + µr

)
with

probability α
8: vadjust ← v with probability 1− α
9: else

10: vadjust ← v
11: end if
12: Output: vadjust

1. Probe the model with the forgetting and re-
taining datasets. For each neuron, assume
that the forgetting and retaining pre-activation
distributions follow a normal distribution. Ap-
proximate the means and standard deviations
(stds) of these two distributions using sample
pre-activation values.

2. During inference, when a neuron has a pre-
activation value v, calculate the likelihood of
v being sampled from each of the two dis-
tributions. If v is more likely to be sampled
from the retaining distribution, keep the value.
Otherwise, shift v towards the retaining distri-
bution. Additionally, take a symmetric adjust-
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ment based on the mean of the retaining distri-
bution (this step serves as an adaptive penalty),
with a probability based on how likely v is
sampled from the forgetting distribution.

4 Feed-Forward Layers Key Space
Hypercube Detection

One limitation of Neuron Adjust is that it treats
each neuron individually, without considering their
correlations. However, neurons often work together
in a coordinated way, contributing to the model’s
overall behavior. In this section, we first present
our observation that query vectors evoking a spe-
cific skill tend to cluster in the key space of the
feed-forward layers, as described in Section 4.1.
Building on this clustering phenomenon, we intro-
duce Key Space Detection (KSD) in Section 4.2,
a machine unlearning technique that prevents query
embedding vectors from accessing designated hy-
percubes.

4.1 Neurons are Correlated Features in
High-Dimensional Space

As the v⃗key in Figure 4(b), we define the vector be-
fore the down-projection matrix Wdown in each FFL
as the neuron activation vector, which forms the
key space of each FFL. Each FFL has a unique key
space. We use llama-3-8b as the subject language
model, MBPP as the probing dataset that triggers
the model’s Python coding skill, and GSM8K as
the probing dataset that triggers the model’s grade
school math problem-solving skill. We probe the
model with the two training datasets and document
two probing activation vector sets of the last token
of each query, {v⃗(l)}mbpp and {v⃗(l)}gsm8k, for the
lth FFL. We calculate the mean and std vector, µ⃗(l)

D

and σ⃗
(l)
D , of each {v⃗(l)}D, where

(µ⃗
(l)
D )i :=

1

|D|

|D|∑

j=1

(v⃗
(l)
j )i

(σ⃗
(l)
D )i :=

√√√√√ 1

|D|

|D|∑

j=1

(
(v⃗

(l)
j )i − (µ⃗

(l)
D )i

)2
,

and bound the two vector sets with hypercubes

{µ⃗D±ασ⃗D} :={u⃗ | µ⃗(l)
D −ασ⃗

(l)
D ≺ u⃗≺ µ⃗

(l)
D +ασ⃗

(l)
D },

where α is a hyperparameter that controls the size
of the hypercube, and≺ denotes element-wise less-
than comparison. Figure 6 shows the percentage

of vectors contained in the hypercube {µ⃗gsm8k ±
ασ⃗gsm8k} when increasing α from 0 to 30 in the
last layer of the model. We observe that when α =
15, nearly all math query vector embeddings are
encompassed within the hypercube. As α increases
from 15 to 20, a gap forms between the math and
code query clusters: all math queries remain within
the hypercube, but no code queries are included.
When α exceeds 20, a few code queries begin to
fall within the hypercube.

We further analyze the changes in size and dis-
tance within and between the math query cluster
and the code query cluster across different layers.
Specifically, for each layer l, we calculate the small-
est hypercube that encompass all math and code
queries, respectively, and compare their volumes
and the distance between their centers.

Figure 5 (left) shows the log ratio of the volume
of the lth layer hypercube to the volume of the
first layer hypercube. As the layers get deeper,
the hypercube becomes smaller, indicating denser
clustering. Figure 5 (right) shows the Euclidean,
Manhattan, and cosine distances between µ⃗

(l)
gsm8k

and µ⃗
(l)
mbpp for each l. We observe that the Euclidean

and Manhattan distances gradually increase as the
layers get deeper, except for high peaks in the very
first and last layers. Additionally, for most layers,
the cosine distance fluctuates around 1.0, indicating
the orthogonality of the two clusters.

4.2 Machine Unlearning via Key Space
Detection

The idea of Key Space Detection is as follows:
we first identify the sample mean vector µ⃗(l)

D and
the sample standard deviation vector σ⃗(l)

D of each
FFL activation by probing the model with the for-
getting dataset D. Then, we create a hypercube

{µ⃗(l)
D ± ασ⃗

(l)
D }

in the key space as in section 4, where α is a hy-
perparameter we select to balance the trade-off be-
tween the quality of forgetting and maintaining the
overall capability of the model. During inference,
if we detect a query vector falling within the hy-
percube, we abstain the model’s output and replace
it with a system message "Your query is not
valid." instead.

5 Experiments

In this section, we present experimental results
of math/code skill unlearning in Section 5.1 and
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Figure 4: Overview of the Key Space Detection method in section 4. a) shows the structure of decoder-based
large language models. b) shows the components of a GLU-based feed-forward layer in the LLM, where vkey is
located in the key space we aim to prune. c) is an example of a 3-neuron key space. The blue hypercube is formed
by {µ⃗D ± ασ⃗D}, where µ⃗D and σ⃗D are the sample mean vector and standard deviation vector of vkey when probing
the model with the forgetting dataset. During every inference step, if we detect vkey ∈ {µ⃗D ± ασ⃗D}, we prohibit
the model from generating the output.
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Figure 5: Relationship of the smallest hypercube containing all query vectors across layers. The left figure shows
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0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Percentage of Query Vectors Contained in { D ± * D}

GSM8K as the Forgetting Set
MBPP as the Retaining Set

Figure 6: Percentage of Query Vectors contained in the
Hypercube {µ⃗gsm8k ± ασ⃗gsm8k}

language unlearning in Section 5.2.

We test the performance of Neuron Adjust
(NA) and Key Space Pruning (KSD) on each
skill unlearning task. For the NA method, we rank
neurons by their difference in distribution mean,
µf − µr, and select the top β neurons with β set

Algorithm 2 KSD Algorithm for layer l

1: Input: size hyperparameter α, inference time
activation key vector vkey, forgetting dataset D

2: Probing the model with D, estimate sample
mean and std vectors µ⃗(l)

D , σ⃗
(l)
D .

3: During inference step k, current output o:
4: if vkey ∈ {µ⃗(l)

D ± ασ⃗
(l)
D } then

5: o := "Your query is not valid."
6: Stop inference.
7: else
8: o += tokenk.
9: Continue with the next token inference step

k + 1.
10: end if
11: Output: o

to 0.5%, 1.5%, and 3.0%. For the KSD method,
we choose size coefficient α such that KSD ei-
ther matches or outperforms the best forgetting
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Figure 7: Performance of Neuron Adjust on Math/Code Skill Unlearning. On the horizontal axis, NA, SP, and
KSD stand for Neuron Adjust (ratio), Selective Pruning (ratio), and Key Space Detection, respectively.
The vertical axis represents the relative performance of the model compared to the original model after applying
each unlearning method.

quality of Neuron Adjust. For the math/code
skill unlearning task, we use Selective Pruning
(Pochinkov and Schoots, 2023), a pruning-based
skill unlearning method, as our baseline. This
method prunes neurons in the FFLs based on their
relative importance to each dataset. After skill un-
learning, we want the model to unlearn only the
specific skill while maintaining its overall capabili-
ties. Therefore, we also evaluate the effect of each
method on 5-shot MMLU accuracy. For each ex-
periment, we run it three times and report the best
result.

5.1 Math/Code Skill Unlearning

For math/code skill unlearning, we choose the train-
ing splits of MBPP and GSM8K as the forget-
ting datasets. The MBPP dataset contains code-
based programming problems for evaluating LLMs’
Python code generation abilities, while the GSM8K
dataset consists of grade school-level math prob-
lems for assessing their problem-solving skills in
elementary mathematics. We use these two datasets
to capture the model’s Python coding skills and
elementary math problem-solving skills. After un-
learning, we test the models on the testing split of
each dataset. For Python coding skills, we also test
on MBPP+ (Liu et al., 2023), which contains 35x
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Figure 8: Results of unlearning one language in MLQA dataset while retaining the others with Neuron Adjust 5%
and Key Space Detection on llama-3-8b. The i-th row shows the model’s performance on different languages
after unlearning the i-th language.

Figure 9: A case in a 2-neuron key space to explain how inference-time unrelated key vector would be affected by
Neuron Adjust (left, get adjusted) and Key Space Detection (right, unaffected). In this case, an adjustment to v
is unfavorable.

more Python test cases to evaluate the robustness
of the unlearning process.

Figure 7 compares the performance of the un-
learning methods on four models: Gemma-2b (Team
et al., 2024), Llama-2-7b (Touvron et al., 2023),
Llama-3-8b, and Llama-3-70b (AI@Meta, 2024).
NA, tested at different adjustment ratios, shows that
higher ratios lead to more forgetting with minimal
impact on MMLU accuracy, though MBPP reten-
tion decreases slightly. KSD achieves the highest
forgetting rates with negligible effects on MMLU
accuracy and retention, proving its efficiency in
unlearning while maintaining overall performance.
In contrast, SP effectively forgets math skills and
retains coding performance but produces nonsensi-
cal output when asked to forget coding skills while
retaining math, even with just 0.01% neuron prun-
ing. This suggests pruning can harm overall model
capabilities, likely due to shared neurons between

coding and math tasks. In this case, both NA and
KSD outperform SP.

5.2 Language Skill Unlearning

For the language skill unlearning task, we use the
MLQA (Lewis et al., 2019) dataset as our evalua-
tion benchmark. We use each language’s context
data as the forgetting dataset. Figure 8 shows the re-
sults of NA (left) and KSD (right) in a heatmap view.
The kth row of the heatmap indicates the percent-
age decrease in each language’s performance after
forcing the model to forget the kth language on the
vertical axis. Ideally, we aim to maximize the diag-
onal entries while keeping the other entries small.
From the heatmap, we observe that NA performs
well in forgetting English (en), Spanish (es), and
Hindi (hi). However, when forgetting German (de),
Chinese (zh), Vietnamese (vi), and Arabic (ar), the
performance of one or more languages in the re-
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taining dataset also decreases significantly. This
suggests that the model may utilize a shared set of
neuron values when demonstrating these languages.
In contrast, KSD shows a better ability to maintain
the model’s performance on other languages while
achieving substantial forgetting quality on most of
the languages. After forgetting each language, we
also tested the model’s performance on the MMLU
task. Both methods demonstrate a performance
decrease of less than 5%. We also observe that
KSD consistently outperforms other methods in re-
taining the model’s overall capability. Figure 9
illustrates the reason. For an out-of-distribution
knowledge query vector v, NA may adjust some of
its dimensions because it only considers operations
for single neurons. In contrast, KSD considers the
correlations among all neurons, prohibiting query
vectors from accessing a much smaller area in the
key space. Therefore, it is guaranteed to have no
negative effect on out-of-hypercube queries.

6 Conclusion

In this paper, we propose two lightweight, training-
free machine skill unlearning methods, Neuron
Adjust and Key Space Detection, which have
minimal impact on the model’s overall capabilities.
Neuron Adjust achieves unlearning by shifting the
pre-activation of feed-forward layer neurons from
the forgetting distribution to the retaining distribu-
tion. KSD achieves unlearning by prohibiting query
vectors from accessing skill-specific key space. We
evaluate our methods on unlearning math-solving,
Python-coding, and comprehension skills across
seven different languages with GSM8K, MBPP,
and MLQA datasets respectively. Both methods
show strong skill unlearning performance with min-
imal hurt to the model’s overall capability. Exper-
iments demonstrate the effectiveness of the two
methods with > 80% relative performance drop on
the target forgetting skill and < 10% drop on the
model’s general knowledge and other skills. Specif-
ically, Key Space Detection achieves nearly perfect
skill unlearning with negligible overall capability
drop.

Our findings provide insights into how neuron
activations cluster in key spaces and how these spa-
tial properties can be leveraged for skill unlearning.
These observations not only enhance our under-
standing of model behavior but also offer a promis-
ing direction for more targeted and interpretable
unlearning techniques. We believe these insights

will contribute to ongoing investigations into model
interpretability, safety, and control. For example,
certain knowledge, such as personal privacy data
or adversarial attack inputs, may be localized in
more fine-grained regions of the model’s key space.
Understanding how these spatial properties can be
systematically utilized needs further exploration.
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Limitations

Similar to other unlearning methods, our approach
can only remove capabilities that can be captured
by a dataset. However, in real-world applications,
a specific dataset may not always be available for
every capability we wish to remove. Unlearning
knowledge without a controlled dataset or unlearn-
ing out-of-distribution data points presents an in-
teresting yet challenging problem in the field of
machine unlearning. Future work could explore
techniques to address this challenge. Additionally,
unlearning one skill while retaining a highly depen-
dent skill requires a more fine-grained analysis. A
promising direction for future research is to lever-
age spatial correlations among neurons to refine
unlearning mechanisms and improve selectivity.
Furthermore, we have not yet identified an effi-
cient and automatic way to determine the optimal
values for the adjusting ratio and the size hyperpa-
rameter α in both methods. In the case of Neuron
Adjust, the reduction of unintended capabilities
in the model is not guaranteed. For Key Space
Detection, although we can ensure the model’s
performance for out-of-hypercube queries, it may
still lead to the degradation of certain unknown ca-
pabilities, as queries may cluster in a non-convex
shape within the key space.
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A Appendix

A.1 Time complexity analysis
Neuron Adjust and KSD are both plug-in modules applicable to any autoregressive LLMs. For both
methods, the implementation involves obtaining the mean and standard deviation of each neuron in
the key space for every MLP layer by probing the subject model with the forgetting dataset. Since the
forgetting dataset consists of N samples, this requires only N forward passes of the subject model. Given
an autoregressive LLM with L MLP layers, each containing K neurons (where L and K are constants),
we analyze the time complexity in detail:

Neuron Adjust: For each inference step, we need to:

• Determine whether the inference time neuron activation is more likely to be drawn from the forgetting
or retaining distribution. This step is O(KL) = O(1).

• Change the neuron activation value if necessary. This step is also O(KL) = O(1).

Therefore, Neuron Adjust has an inference time cost of O(1).

KSD: For each inference step, we only need to determine whether the key vector in the last MLP layer is
within the forgetting hyper-rectangle. This step is O(L) = O(1). Therefore, KSD has an inference time
cost of O(1).

In our experiments (real-world setting), it took less than 15 mins to implement our methods on
llama-3-8b with a single V100 GPU, thus they are pretty light compared to other training-based methods.
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A.2 Sequential forgetting of multiple skills
In this section we present the behavior of our methods when tasked to forget multiple skills sequentially.
As shown in section 3 and 4, our methods are designed to be applied as plug-in modules. These modules
can be used after each model update or fine-tuning process without affecting the model’s ability to learn
new tasks or skills.
Neuron Adjust is specifically optimized for forgetting a single skill, while Key Space Detection

(KSD) can be extended to forget multiple skills. KSD works by identifying the hypercube that corresponds to
each skill and determining whether the inference-time key vector falls within any of these hyper-rectangles.
The computational complexity of this approach at inference time is O(M), where M represents the number
of skills to be forgotten.

To demonstrate the effectiveness of KSD in forgetting multiple skills, we conducted an additional
experiment using Llama-3-70B, targeting the simultaneous forgetting of two tasks, MBPP and GSM8K.
The results, as shown in Table 2, highlight the significant reduction in performance on the forgotten skills
while maintaining general MMLU performance.

Method GSM8K MBPP MBPP+ MMLU
Original 47.5% 61.1% 51.1% 64.9%
KSD 8.1% 0.5% 0.5% 64.8%

Table 2: Results of Forgetting MBPP and GSM8K with Llama-3-70B

The results demonstrate that KSD achieves a performance drop of over 80% on both GSM8K and MBPP
tasks, effectively erasing the learned skills while leaving general knowledge tasks largely unaffected.
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