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Abstract

Time is implicitly embedded in classification
process: classifiers are usually built on existing
data while to be applied on future data whose
distributions (e.g., label and token) may change.
However, existing state-of-the-art classification
models merely consider the temporal variations
and primarily focus on English corpora, which
leaves temporal studies less explored, let alone
under multilingual settings. In this study, we
fill the gap by treating time as domains (e.g.,
2024 vs. 2025), examining temporal effects,
and developing a domain adaptation framework
to generalize classifiers over time on multiple
languages. Our framework proposes Mixture
of Temporal Experts (MoTE) to leverage both
semantic and data distributional shifts to learn
and adapt temporal trends into classification
models. Our analysis shows classification per-
formance varies over time across different lan-
guages, and we experimentally demonstrate
that MoTE can enhance classifier generalizabil-
ity over temporal data shifts. Our study pro-
vides analytic insights and addresses the need
for time-aware models that perform robustly in
multilingual scenarios.

1 Introduction

Data, and therefore classification models built on
the data, can change over time. Written styles in
social media platforms can change rapidly (Stew-
art et al., 2017; Jin et al., 2024), and token and
label distributions can shift over long periods of
time (Röttger and Pierrehumbert, 2021). Large lan-
guage models (OpenAI et al., 2024; Zhao et al.,
2023) (LLMs) pre-trained on large amount of data
collections have assisted document classifiers cap-
turing precise semantic representations of docu-
ments and achieving state-of-the-art performance
on the classification task (Sun et al., 2023). Com-
mon ways to train and evaluate classification mod-
els depend on randomly splitting data into training,
development, and test sets. However, the train-

ing and evaluation setting rarely considers and
adapts the temporal nature of classification models
–– LLMs and classifiers are built on existing data
while to be applied on future data subjecting to
change. Thus, a notable yet not solved question
in the LLM era is: Does the temporal shifts effect
classification model performance, and if so, how
can we minimize the impacts?

However, examining and encountering the im-
pacts of temporal shifts on classification perfor-
mance remain understudied. To estimate the im-
pacts, studies developed classification models on
news articles (Agarwal and Nenkova, 2022), le-
gal documents (Huang and Paul, 2019), or medical
notes (Liu et al., 2024) by comparing performance
variations across time intervals of yearly or mul-
tiple years. While retraining classifiers by new
data and labels is straightforward (Rolnick et al.,
2019; Hu et al., 2022; Lopez-Paz and Ranzato,
2017), a substantial gap may prevent the method:
labels of future data not be available at the time of
model development. In addition, the existing stud-
ies (Röttger and Pierrehumbert, 2021; Agarwal and
Nenkova, 2022; Shang et al., 2022) primarily work
on English corpora, little is known about if the
principles are applicable to non-English languages.
Thus, a notable question yet unanswered is: can
the principles of temporal shifts on English data
and classifiers be applicable to other languages?

In this study, we focus on a standard evaluation
task, text classification, and answer the questions
by 1) examining temporal shifts and their impacts
on state-of-the-art classification models, 2) develop-
ing a domain adaptation approach, and 3) evaluate
performance impacts on the gender groups under
multilingual settings. Specifically, we introduce a
Mixture of Temporal Experts (MoTE) by leverag-
ing data shifts across time domains and developing
a dynamic routing network to allow swiftly gener-
alize classification models over time via two major
modules: clustering-based shift evaluator and tem-
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Data Language Time Interval Docs Ave. Length Imbalance-ratio

Review

English 11, 12, 13, 14 43,835 68 33.7
French 11, 12, 13, 14 24,434 92 28.0
German 11, 12, 13, 14 26,803 117 43.2
Danish 07-08, 09-10, 11-12, 13-14 467,215 111 26.0

EURLEX

English 1958-10, 12-16 60,000 1,200 50.1
Spanish 1958-10, 12-16 57,785 1,380 49.2
Croatian 1958-10, 12-16 10,444 1,490 26.1
Maltese 1958-10, 12-16 37,521 1,250 32.5

Table 1: Overview of four time-varying languages in review corpora and legal datasets. Years from the 21st century
are represented by their last two digits (e.g., 11 for 2011). The label imbalance ratio calculates the ratio of the
number of samples in the majority class/label to that in the minority class/label.

poral router network. We evaluate our approach on
a review corpus with four languages (Danish, En-
glish, French, and German), and a legal corpus with
23 languages under a more challenging scenario
with longer time span and limited training data. We
compare MoTE with state-of-the-art baselines of
both non-time-adapted and time-adapted methods.
The multilingual setting has rarely been studied
particularly for the temporality and its impacts on
classification models. We further conduct ablation
studies to understand different MoTE modules and
show that the dynamic routing mechanism plays the
most critical role in promoting performance over
time. Our findings provide new insights and recom-
mendations for both researchers and practitioners
on the essential to consider time in designing and
deploying models on time-varying corpora under
the multilingual scenario.1

2 Data

To better measure and understand time and its im-
pacts on classification models, we select data from
two distinct domains: user review data and legal
documents. This selection enables us to compare
between short, informal text (social media reviews)
and longer, formal text (legal documents). Table 1
summarizes key statistics for the two datasets.

Legal Data Legal documents present a unique
challenge due to their temporal nature, mak-
ing models particularly susceptible to perfor-
mance degradation over time. The EURLEX
dataset (Chalkidis et al., 2021) is a multilingual
and multi-label dataset comprising legal documents
from 23 European languages. The documents are
annotated with EUROVOC concepts (labels) by the

1Our code is available at https://github.com/
trust-nlp/TemporalLearning-MoTE.

Publication Office of EU. We use the first levels of
the EuroVoc taxonomy in our experiments, encom-
passing 21 concepts. Prior studies have shown that
temporal effects in EURLEX significantly impact
classification performance (Santosh et al., 2024).
We follow the original data split, with a consistent
temporal division across all languages: training on
documents from 1958 to 2010 and testing on doc-
uments from 2012 to 2016. We take English (en),
Spanish (es), Croatian (hr) and Maltese (mt) as rep-
resentative examples, with their statistics shown in
Table 1. Detailed statistics for all 23 languages are
provided in Table 5 in the appendix.

EURLEX comprises long-form legal documents,
with the average document length exceeding 1,000
words across most languages. The label imbalance
ratio is calculated as the number of minority labels
divided by the number of majority labels, ranges
between 26.1 and 50.1 across different languages.
Notably, low-resource languages, such as Croat-
ian and Maltese, tend to exhibit lower imbalance
ratios compared to higher-resource languages like
English.

Review Data we retrieve a review data (Hovy
et al., 2015) spanning years between 2007 and 2014
and covering four language corpora, Danish (da),
English (en), French (fr), and German (de).2 The
data sources user reviews from Trustpilot website
and contains 5-scale ratings, timestamps, and bi-
nary gender values (female and male). For each
corpus, we divide the data into four time intervals,
remove reviewers fewer than 10 tokens, and only
keep data entries with complete user gender in-
formation, which aim to ensure data quality and
integrity.

2The Danish corpus ranges between 2007 and 2014, the
other three range between 2011 and 2014.
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Figure 1: Visualizations of temporal effects (performance variations by macro-F1 and AUC) of the cross-domain
tests on four languages. Darker blue indicate larger performance decrease.

The average length shows that the English re-
views are generally shorter than the other corpora.
We can observe that the Danish data is much larger
than the other languages, due to the origin of the
Trustpilot website. The The label imbalance ratio
calculates the ratio of the number of samples in the
majority class to that in the minority class. Since
the review data also contains user gender informa-
tion, we additionally report the gender imbalance
ratio, which is calculated as the proportion of the
majority gender to the minority gender. The gender
imbalance ratios for the review data are 1.51 (en),
1.29 (fr), 1.29 (de), and 1.14 (da) We can observe
that both label and gender distributions are not bal-
anced: majority ratings can be as twice as minority
labels, and there are more male than female users.
To properly estimate temporal effects, we consider
the imbalance factor in our evaluation metrics for
classification performance.

Multilingual Analysis of Temporal Effects

We take the review data as an example to explore
the temporal effect. We define the temporal effect
as existing when there is a performance variation
in at least one time domain pairs, measured by the
difference between cross-domain and in-domain
performances. For the cross-domain performance
pij , we train a model on the training set of the time
domain Di (source) and evaluate the test set of
the time domain Dj (target). For the in-domain
performance pii, we train and test a model on the
training and test sets from the same time domain
Di.

To assess temporal effect under multilingual set-
tings, we split each corpus into |T | (T = 4 in this
study) splits and treat each time interval as a do-
main. Therefore, we can represent each data per
time domain as Dt(t ∈ T ). We sampled down the
data size for each time domain to match the domain
with the smallest size to mitigate systematic errors
due to the data size. For each time domain Dt,
we split the data by 7:3 for training and testing to
study temporal effect. We use macro averaged F1
score (F1-ma) and AUC to measure in-time-domain
and cross-time-domain performances of classifiers.
To measure temporal effects on the domain pair
Di, Dj , we subtract the in-domain performance pjj
(Dj → Dj) from the cross-domain performance
pij (Di → Dj), i.e. the performance change from
the source domain Di to the target domain Dj .
Each experiment repeats three times, takes average
of the performance, and estimates temporal effects
by the performance variations (pij − pjj). Finally,
we visualize temporal effects as performance varia-
tions across time domains in Figure 1.

Figure 1 suggests that classifiers perform worse
in the other time domains and generally dimin-
ishes more performance with a longer time inter-
val, while different languages exhibit different but
similar temporal patterns. For example, English,
French, and Danish classifiers drop more than 3%
when training on D1 and testing on D4; and close
time domains of all four languages usually have
smaller performance variations. The consistent ob-
servations can suggest that: 1) temporal effects
exist and diminish on classification performance
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in the multilingual scenario; and 2) temporal pat-
terns can vary across different languages. The find-
ings inspire us to propose the Mixture of Temporal
Experts (MoTE) to learn and adapt the time into
classifiers.

3 Mixture of Temporal Experts (MoTE)

In this section, we introduce a multi-source domain
adaptation approach, Mixture of Temporal Experts
(MoTE) in Figure 2, which leverages temporal
data shift and mixture of temporal experts. The
MoTE method contains two modules: Clustering-
based Shift Evaluator and Temporal Router Net-
work. The Clustering-based Shift Evaluator mea-
sures data shift by the difference between the data
representation of input data and the established
cluster centroids. The Temporal Router Network
module consists of a router and multiple experts.
The router is trained to dispatch the data representa-
tions to experts based on it’s distance to the cluster
centroids. And then the experts integrate the data
shift vectors produced by the shift evaluator before
passing to the classification layer. Finally, the pre-
dictor will take the time-aware representations for
predictions.

Problem Definition For each language corpus,
we hold out the most recent data as target time
domain data Dtarget and the rest as source time
domain Dsource, and divide Dsource to T time
domains by time order: Dt, t ∈ {1, ..., T}. The
source model Θsource is the model fine-tuned on
source domain data.The performance decline when
the source model Θsource is tested on the target do-
main data Dtarget indicates that the source model
struggles to generalize effectively to the target data,
and thus requires adaptation method to mitigate
performance degradation.

Our goal is to develop a method that can adapt
Θsource to the target domain, which can be aware
of the data shifts between Dsource and Dtarget and
improve model’s performance on the target data,
in which we achieve by the two major modules,
clustering-based shift evaluator and temporal router
network.

3.1 Module 1: Clustering-based Shift
Evaluator

The Clustering-based Shift Evaluator module quan-
tifies data shift in text data over time to address
model performance degradation. It creates seman-
tic representations of text using a feature encoder,

then applies K-Means clustering to these represen-
tations. The module labels source data with the
nearest clusters, creating a warmup dataset for ex-
pert routing.

To represent data shift, the module calculates the
distance between target data and source cluster cen-
troids. This distance serves as a shift representation,
informing experts about how new data differs from
the original distribution. By quantifying shift in
this semantic space, the module enables the system
to adapt to evolving data distributions. A detailed
pseudocode is provided in Appendix B, shown in
Algorithm 1.

Data Clustering Data shift is a key factor con-
tributing to model performance degradation. Un-
like structured data, which can be directly quan-
tified for data shifts using feature-based methods,
text data lacks such explicit features. Therefore, we
encode the text and use embeddings to quantify the
data shift in a semantic space. We use the output of
feature encoder as the data semantic representation.
Given time domain data D = {X1, X2, ..., Xt}
the data representation encoded by feature encoder
are denoted as: Z = {Z1, Z2, ..., Zt}, where D is
temporal ordered data exclude target domain. We
run a K-Means clustering algorithm on the repre-
sentations, with the number of clusters set to T ,
matching the number of time domains. Our experi-
ments also tried other clustering algorithms (e.g.,
Spectral Clustering), while K-Means achieved the
fastest parameter convergence and the best perfor-
mance. The T source-time data clusters are de-
noted as C1, C2, ..., CT = Kmeans(Z, T ), with T
cluster centroids: {c1, c2, ..., cT }.

We label the source data zi with the nearest clus-
ter li and save the clustered data (Z,L) = {(zi, li)}
as a warmup dataset for the mixture of experts’
routing process. The primary purpose of retaining
these cluster labels is to automatically segregate
data with different distributions and match it to the
nearest cluster. This warmup process allows the
router to learn how to dispatch incoming data to
the appropriate expert by identifying the most rele-
vant cluster. Additionally, the cluster centroids are
preserved to calculate data shift representations.

Data Shift Representation The data clusters is
based on the semantic distribution of the data. The
distance between the target data and the cluster
centroids of source data can be a measurement
for the data shift between the source and target
data. We use the difference between target data and
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Figure 2: The MoTE method overview. Dt is in the source time domain data that has true labels, D is temporal
ordered data excluding target domain, and Dtarget is the target time domain data without labels. Blue and grey
lines indicate the training process, and pink line represent predicting data flow in the target time domain.

centroids of the source data clusters as a data shift
representation, and this representation is provided
to the experts as a data shift information.

For ztargeti ∈ Ztarget, vij = ztargeti − cj , j ∈
1, 2, ..., T . vij is later passed to expert Θj if the
router dispatch representation ztargeti to the expert
Θj , indicating it’s shift from the jth cluster cen-
troid.

3.2 Module 2: Temporal Router Network
The Temporal Router Network adapts to data
shifts by routing inputs to appropriate experts.
It consist of a mixture of T expert networks:
Θ1,Θ2, ...,ΘT and a router. Each expert is a trans-
former block (Vaswani et al., 2017) with a classi-
fication layer, and the router is a gating network
G whose output is a T -dimension routing vector.
The module uses a top-K gating mechanism, in-
tegrates data shift information, warms up using
clustered source data, and produces final predic-
tions by weighted averaging of expert outputs. A
detailed pseudocode is provided in Appendix B,
shown in Algorithm 2.

Routing The Router is a top-K gating network,
with a trainable linear network with weight Wg and
with softmax and top-K gating function. Given a
input token z, the routing vector is:

G(z) = TopK (softmax(Wg · z),K)

TopK (v,K)i =

{
vi if vi ∈ top Kelements
0 otherwise.

To prevent the gating network fall into state that
always produces large weights for the same few
experts, we added a auxiliary load-balancing loss
Laux (Shazeer et al., 2017) to Cross-entropy loss:

L = CE(y, ŷ) + λLaux,

where CE(y, ŷ) represents the cross-entropy
loss, y is the true label, and ŷ is the predicted
probability distribution over the classes. For all
experiments, we set λ = 0.01, following the origi-
nal setting (Shazeer et al., 2017).

Warmup We use the clustered source data rep-
resentations (Z,L) to warm up the router. Each
representation is labeled with a cluster index ob-
tained during the data clustering process. Intu-
itively, this process is to ensure that each expert
corresponds to a specific cluster, allowing them to
learn how to handle data from their respective clus-
ters more effectively during subsequent training. In
the warmup stage, we train the router to dispatch
data that is closer to a particular cluster in the latent
semantic space to the corresponding expert.

Data Shift Information Integration The fea-
ture encoder produces general vectors Z∗ =
{z∗1 , z∗2 , ...., z∗n} where z∗i = Encoder(xi). The
router produce a gating vector G(z∗i ) and dispatch
z∗i to K experts. shift vector vij = zi − cj
We concatenate the shift vector vij and the jth

expert’s transformer layer’s [cls] token output:
E(z∗i ,Θj)⊕vij before pass it to classification layer.

6155



Method
English French German Danish

F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓
ChronosLex 47.96 79.31 2.23 41.48 76.36 2.04 38.53 75.12 2.17 47.64 82.01 2.16

Anti-CF 25.31 65.09 2.14 15.63 65.59 1.80 16.78 55.61 1.99 32.77 71.58 2.11
Self Labeling 40.52 72.02 2.13 38.07 75.57 1.97 28.30 69.42 2.08 46.51 77.95 2.03
Source Model 48.92 78.64 2.21 35.05 72.25 2.00 34.01 75.06 2.15 49.83 82.58 2.13
MoTE (ours) 53.30 80.81 2.17 44.97 77.24 1.97 46.70 76.29 2.14 52.77 82.57 2.06

∆ (MoTE - Avg) +12.62 +7.05 -0.01 +12.41 +4.80 +0.02 +17.30 +7.49 +0.04 +8.58 +4.04 -0.05

Table 2: Overall classification performance. The row ∆ represents the difference between MoTE and the average of
all baselines for each metric. Positive values indicate improvement, while negative values indicate performance
decreases. For Fair, negative values indicate worse performance as lower is better.

Weighted Averaging The MoTE model produce
a set of probabilities pk from each experts for the
target data prediction. The final output of the
adapted model is obtained by passing these predic-
tions through a weighted averaging function and a
sigmoid function, where the weights are the routing
scores from the top-K gated router.

p(x,K) =
1

|K|
∑

k∈T
Gk(z

∗) ∗ pk(x)

Where T is the number of experts and G(z∗) is
the gating vector from the router.

4 Experiments

To examine the effectiveness of our proposed Mix-
ture of Temporal Experts (MoTE) method, we
conduct experiments to compare our method with
the source model (fine-tuned on source time do-
main) and state-of-the-art baselines on the tar-
get time domain data. We set our experimen-
tal result against three established baseline meth-
ods: Self-Labeling (Agarwal and Nenkova, 2022),
Anti-CF (Su et al., 2023), and ChronosLex (San-
tosh et al., 2024). We set the source model
as a comparison to see whether the method im-
proves the model’s adaptation to the target domain.
Our assessment includes both performance evalu-
ation and fairness evaluation. To validate domain-
generalizability of our MoTE method under multi-
lingual setting, we also conduct experiments on the
legal data EURLEX (Chalkidis et al., 2021) con-
taining 23 languages and compare our method with
the best-performing baseline (Santosh et al., 2024).
In addition, our work includes an ablation study
focusing on the proposed MoTE method, where we
removed each component of our method. By as-
sessing the performance resulting from the removal
of each component, we measured its contribution
to the overall effectiveness.

4.1 Baselines

To demonstrate the effectiveness of our proposed
MoTE method, we compare it with the source
model and three state-of-the-art baselines. Source
Model is the vanilla baseline for temporal domain
adaptation. We obtain the model fine-tuned on
gold labeled source data, and then test this source
model on target data. Self-Labeling (Agarwal
and Nenkova, 2022) employ the fine-tuned source
model to generate self-labeled target data, which
is then combined with the original source data to
train a new model. Anti-CF (Su et al., 2023) utilizes
the source model’s output to regularize model up-
dates and includes a sequence of adapters attached
to the frozen source model for efficient inference.
ChronosLex (Santosh et al., 2024) train the model
on data from each time period sequentially, moving
chronologically through the temporal splits.

4.2 Evaluation Metrics

Our evaluation employed F1 scores and area un-
der the ROC curve (AUC). The review data have
user demographic information, so we also include a
fairness metric to assess the fairness over different
demographic groups for a more holistic compari-
son of our approach against the baselines. The fair-
ness metric is measured by the equality differences
of false positive/negative rates (FPR/FNR) (Dixon
et al., 2018), which calculates the absolute dis-
crepancies in FPR and FNR across different gen-
der groups. For example, the equality difference
of FPR is calculated by

∑
g∈G |FPRg − FPR|,

where G is the gender and g is a gender group (e.g.,
female). We report the sum of the equality differ-
ences of FPR and FNR, denoted as “Fair”. For
the experiment on EURLEX data, since the task
is multi-label classification and the data lack of
subgroup information for fairness evaluation, we
report samples-F1, macro-F1 score and AUC.
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Data Summary SOTA Baseline (%) MoTE Performance (%) ∆(MoTE-SOTA) (%)
Language ISO AUC-ma F1-sa F1-ma AUC-ma F1-sa F1-ma AUC-ma F1-sa F1-ma
English en 87.53 68.77 43.49 88.04 72.95 57.52 0.51 4.18 14.03
German de 86.78 68.12 40.99 88.63 71.55 54.54 1.85 3.43 13.55
French fr 87.19 64.84 37.09 88.14 71.82 54.73 0.95 6.98 17.64
Italian it 87.59 69.53 44.2 88.15 72.65 56.09 0.56 3.12 11.89
Spanish es 87.28 68.31 42.93 88.63 72.73 57.65 1.35 4.42 14.72
Polish pl 87.18 68.35 40.35 88.27 72.00 54.75 1.09 3.65 14.40
Romanian ro 88.07 70.63 45.6 89.27 73.51 56.62 1.20 2.88 11.02
Dutch nl 87.11 69.69 43.99 87.76 71.76 55.03 0.65 2.07 11.04
Greek el 86.37 66.89 38.98 87.13 69.17 51.92 0.76 2.28 12.94
Hungarian hu 87.28 66.89 39.65 87.93 71.05 53.62 0.65 4.16 13.97
Portuguese pt 89.99 74.52 52.61 89.39 74.70 59.4 -0.60 0.18 6.79
Czech cs 87.29 68.45 41.39 88.20 72.65 54.18 0.91 4.20 12.79
Swedish sv 86.55 65.08 37.97 88.68 71.52 54.03 2.13 6.44 16.06
Bulgarian bg 88.78 71.48 48.51 89.53 74.60 61.07 0.75 3.12 12.56
Danish da 87.50 69.52 42.93 88.36 72.47 56.04 0.86 2.95 13.11
Finnish fi 85.02 59.46 31.54 86.57 70.64 52.3 1.55 11.18 20.76
Slovak sk 88.57 71.68 48.48 89.3 71.99 56.55 0.73 0.31 8.07
Lithuanian lt 87.15 68.13 41.87 88.19 72.41 56.5 1.04 4.28 14.63
Croatian hr 87.64 69.55 46.45 88.56 69.74 54.62 0.92 0.19 8.17
Slovene sl 87.63 69.43 42.98 89.14 72.30 56.27 1.51 2.87 13.29
Estonian et 87.12 68.16 40.28 87.40 71.73 54.63 0.28 3.57 14.35
Latvian lv 87.58 68.88 41.94 88.71 70.87 55.17 1.13 1.99 13.23
Maltese mt 82.67 56.36 32.25 84.61 61.51 44.15 1.94 5.15 11.9

Table 3: Comparison of MoTE performance and state-of-the-art baseline on 23 language splits EURLEX data. ∆
measures the MoTE’s absoluate percentages of performance improvements over the SOTA baseline.

4.3 Experimental Settings

For the review data, we hold out the 20% data of
the most recent time period from each corpus as the
target time domain, with the remaining data used
as the source time domain. For the legal data, we
follows the train-test split of the EURLEX dataset
and use the training split as the source time domain.
We use XLM-RoBERTa-base (Conneau et al., 2019)
as the base model and feature encoder in our ex-
periments, with learning rate 3e-5, batch size 32,
and a maximum token length of 128 for the review
data and 512 for the legal documents. with the
early stopping to tune for best performance. All
hyperparameters and baseline experiments follow
their original settings, with details provided in Ap-
pendix E.

5 Results

We present the macro-F1 score and AUC along
with fairness evaluation of the review data in Table
2. And the results of legal data are presented in
Table 3. To better interpret the experimental results,
we conduct a detailed performance analysis.

Analysis 1. Does MoTE improves model’s gen-
eralizability? We evaluate our proposed MoTE
method across two distinct domains: user reviews
(short, informal texts) and legal documents (long,
formal texts). The results consistently demonstrate
MoTE’s ability to enhance model performance over
time. The result on the review data in Table 2
shows that our proposed MoTE method has better
F1 score by a range of 2.94% to 12.69% improve-
ment compare to the source model. This shows that
our proposed MoTE method significantly improves
the model’s generalizability over time. Besides,
our proposed MoTE method consistently performs
better than baselines across all four languages and
all metrics: MoTE has better F1 score by a range
of 5.13% to 8.17% improvement compare to the
best performing baseline (i.e. ChronosLex). On the
legal data, as shown in in Table 3, MoTE achieves
improvements in macro-averaged F1 score ranging
from 6.79% to 17.64% and in samples-averaged F1
score ranging from 0.18% to 11.18% compared to
the SOTA baseline (ChronosLex) These improve-
ments shows MoTE’s effectiveness in handling
longer texts and more structured, formal language,
which often span longer time intervals.
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Analysis 2. Does MoTE improves fairness? As
shown in Table 2, our proposed MoTE method has
better group fairness compared to the source model
across all languages’ result(e.g. improves by 3.28%
in Danish corpus). Although certain baselines, such
as Anti-CF and Self-Labeling, achieve slightly bet-
ter fairness scores, they suffer from significantly
lower overall performance in both F1 score and
AUC. Overall, our method enhances fairness with-
out sacrificing performance improvement.

Analysis 3. What’s the improvement difference
across different languages? We find that our
method has best performance improvement in Ger-
man corpus within the review data (F1 improved
12.69% over the source model) and best group fair-
ness improvement in Danish corpus (Fair improved
3.28%). The German corpus is the most class-
imbalanced corpus (largest imbalance-ratio in Ta-
ble 1), with the number of samples in majority class
is 43.2 times greater than that in minority class.
And the Danish corpus is the most gender-balanced
corpus, with lowest gender-imbalance ratio of 1.14.
In the legal domain, MoTE also shows substantial
improvements in low-resource languages, such as
Maltese, where F1-ma improves by 11.9 percent-
age points, composes a relative increase of 36.9%.
These may indicate:

1) MoTE is particularly effective for class-
imbalanced datasets (e.g. German corpus). The
use of a mixture of temporal experts enhances pre-
dictions for minority classes, which are more im-
pactful in the macro-F1 score.

2) MoTE improves fairness more in gender-
balanced datasets (e.g. Danish corpus). This may
be because a more balanced demographic distri-
bution offers more minority group data, enabling
MoTE to better address fairness.

Analysis 4. Why Anti-CF and Self-Labeling
failed? We observe that methods like Anti-CF
and Self-Labeling lead to large degrees of perfor-
mance decline compare to source model, which
means the adaptation failed. These approaches
depend heavily on the source model’s outputs on
the target data: Anti-CF uses the source model’s
output to regularize the adapted model, while Self-
Labeling relies on the source model’s labels on the
target data to train the new model. A possible expla-
nation for this performance decline is that such re-
liance can introduce noise, particularly when there
is substantial data shift in the minority classes. In
this case, the source model’s incorrect predictions

may amplify errors in these classes, leading to
reduced macro-F1 and macro-AUC scores. This
could explain why the performance decline is more
pronounced in language corpora where the source
model already exhibits lower macro-F1 and macro-
AUC scores, such as French and German.

5.1 Ablation Study
To systematically explore the contribution of each
component in our proposed MoTE method, we
conducted an ablation study by removing each key
components from the proposed MoTE model: the
warmup process, the router network, and the shift
evaluator. Removing the first two components may
lead the data fail to be routed to the ideal expert,
and missing the shift evaluator may result in the
model unaware of data shift. We summarized the
result of the ablation study in Table 4.

1) w/o warmup: removed the warmup process
for the router. Removing the warmup process may
cause overfitting issue on a special expert.

2) w/o router: removed the routing network,
instead we randomly dispatch the data to one single
expert. In this case, all the experts may underfit the
data because the sparsity of data.

3) w/o evaluator removed the clustering-based
shift evaluator, with no temporal data shift informa-
tion provided to the temporal experts.

Difference in performance decline by removing
component We find that removing each module
all results in different degrees of performance de-
cline (e.g. macro-F1 significantly declines by a
range of 4.77% to 10.14% for French corpora’s
result). The components causing the most sub-
stantial performance drop differ across datasets.
For English and German corpora, removing the
router (w/o router) has the largest impact, while for
French and Danish corpora, removing the evalua-
tor (w/o evaluator) results in the most significant
decline. The largest performance degradation oc-
curs in the French corpora when removing the shift
evaluator, with a 10.14% decrease compared to the
complete MoTE method. This observation indi-
cates the importance of both the mixture of experts
architecture and the data shift information in the
MoTE method. The warm-up process, while still
beneficial, appears to have a relatively smaller im-
pact on overall performance.

Difference in ablation result of four languages
We observe that while performance declines occur
across all datasets when removing any component,
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Method
English French German Danish

F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓ F1-ma AUC-ma Fair↓
w/o warmup 52.85 76.75 2.19 37.73 72.75 1.89 45.40 72.60 2.12 49.15 80.13 2.09
w/o router 40.66 73.64 2.18 40.20 71.60 1.96 42.53 70.95 2.16 49.93 79.43 2.10

w/o evaluator 47.56 79.87 2.18 34.83 68.92 1.97 44.77 72.73 2.14 48.78 77.82 2.06
MoTE 53.30 80.81 2.17 44.97 77.24 1.97 46.70 76.29 2.14 52.77 82.57 2.06

Table 4: Ablation analysis results. We bolden the highest F1 and AUC scores. ↓ indicates lower is better.

the magnitude of these declines is notably smaller
for English and Danish. We infer that other fac-
tors (e.g. document length and class-imbalance)
influence the performance diminish in ablations.

In conclusion, each component contributes to
the temporal learning effectiveness, with the com-
plete MoTE model achieving the best overall per-
formance and relatively lower algorithmic biases
over the gender.

6 Conclusion

Our study suggests that time can significantly im-
pact classification performance and gender fairness
under the multilingual setting, and model deploy-
ments should be aware of the temporal effects may
vary across different languages and gender groups.
The proposed MoTE approach outperform the state-
of-the-art classifiers and time-aware baselines by
a large margin and maintain gender fairness, as
demonstrated both in review and lagal domain. Our
ablation analysis suggests that while the temporal
expert and shifting evaluator modules both con-
tribute to the performance improvements, the tem-
poral expert module acts a more critical role, ver-
ifying our initial motivation. Finally, the findings
also provide a recommendation for practitioners
following the insights above that it is important to
slice test entries from future or new samples of any
time-varying data, instead of only randomly slicing
samples as a test set.
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8 Limitations

While we have examined temporal effects and
adapted the time into the classification models by
the MoTE approach under the multilingual setting,
two major limitations have be acknowledged to
appropriately interpret our findings. First, we con-
ducted our experiments on the review data and
legal data, while the observations may vary across
other fields, such as medical and clinical data. Ex-
panding our approach may require complete in-
formation of timestamp, language categories, and
demographic attributes (e.g., gender). However,
the complete data entries are usually hard to collect.
In this study, we include four languages in review
data and evaluate different approaches over four
time intervals to demonstrate how temporal effects
can impact algorithmic classifiers, we further pro-
pose a MoTE approach and test it both on review
and legal data, expanding the experiments to 23
languages. Second, we empirically selected the
XLM-RoBERTa-base (Conneau et al., 2019) as our
neural feature encoders to extract vector represen-
tations of documents, and other language models
may be alternatives. Performance improvements
by the other language models may vary during real
deployment and practice. In this study, we chose
the base model as the it achieved the best perfor-
mance in the classification tasks (Conneau et al.,
2019) and the baselines. To enhance fair compar-
isons, we kept the same base model as our baselines
in this study, while alternative language models
will be evaluated in our future studies. Third, we
created four temporal domains by averaging doc-
ument distribution across different years for the
review data. However, we did not explore alterna-
tive domain-splitting strategies. Different domain-
splitting methods (e.g., unequal time intervals or
document-type-based partitions) could potentially
yield varying insights into temporal effects and
adaptation performance. Future studies could eval-
uate such alternative strategies to generalize our
findings.
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A Related Work

A.1 Model Generalizability

Maintaining model performance across various sce-
narios and settings is an essential challenge in ma-
chine learning. Model generalizability is a broad
concept that encompasses the ability to handle chal-
lenges such as data imbalance (Jones et al., 2024),
varying data sizes (Jin et al., 2023), and shifts in
data distributions (Su et al., 2023). Time is a crit-
ical yet under-explored aspect of model general-
izability. Recent research on time as a factor in
machine learning models has largely focused on
a model’s temporal awareness, such as temporal
reasoning (Xiong et al., 2024a; Yang et al., 2024)
and time prediction (Xiong et al., 2024b), tempo-
ral generalizability—ensuring that models main-
tain performance under time-evolving data distri-
butions—remains less explored. In this study, we
fill this gap by treating time as a domain and devel-
oping a domain adaptation based approach called
Mixture of Temporal Experts (MoTE), to dynami-
cally adapt models to data temporal shifts.

A.2 Domain Adaptation

Domain adaptation (DA) (Daume III and Marcu,
2006; Blitzer et al., 2006; Ben-David et al., 2010;
Farahani et al., 2021) is a set of model optimiza-
tion and data augmentation methods to promote
model performance, assuming that data distribu-
tions change between training and test steps. DA
has several major directions to improve text classifi-
cation robustness, including pivot features (Blitzer
et al., 2006; Li et al., 2022), instance weight-
ing (Jiang and Zhai, 2007; Lv et al., 2023), and
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domain adversaries (Ganin and Lempitsky, 2015;
Kong et al., 2024; Zeng et al., 2024). However, very
few studies have treated time as domains and de-
veloped new domain adaptation methods to model
temporal shifts. Our study treats time as domains
and develops a multi-source adaptation approach,
MoTE, to learn time and promote model generaliz-
ability.

Previous works have considered adapting tem-
poral effects in text classifiers, such as continu-
ously pre-training language models (Röttger and
Pierrehumbert, 2021; Agarwal and Nenkova, 2022;
Shang et al., 2022) and diachronic word embed-
dings (Huang and Paul, 2019; Rajaby Faghihi and
Kordjamshidi, 2021; Dhingra et al., 2022). How-
ever, domain adaptation has not been fully ex-
plored in those studies. Several recent works have
employed domain adaptation to address temporal
shifts (He et al., 2023; Ott et al., 2022) on structured
data (sensor data) by the pivot feature approach
that sets the feature space of the target domain as
a pivot and aligns feature vectors of the source do-
main towards the pivot. However, such approaches
may not be applicable to the unstructured text data,
which has high dimensional features and sequential
dependencies –– the focus of our study.

In contrast, our study proposes a multi-source
domain adaptation approach (MoTE) to model tem-
poral effects into classification models. Particularly,
the existing studies primarily focus on English data
leaving multilingual classification scenarios under-
explored, which has been examined in our study.

A.3 Multilingual Classification
The remarkable success of language models has
led to significant advancements in multilingual
text classification, addressing challenges such as
multilingual long-text classification (Chalkidis,
2023) and parameter-efficient multilingual classifi-
cation (Razuvayevskaya et al., 2024). For example,
in order to solve the challenge of multilingual long
text classification, (Chalkidis et al., 2022) uses a hi-
erarchical attention mechanism to improve the con-
text window of pre-trained language models. Addi-
tionally, researchers have leveraged the advanced
capabilities of multilingual LLMs (Xue et al., 2021;
Ma et al., 2021) for multilingual classification in
both few-shot (Wang et al., 2020) and zero-shot
(Yin et al., 2019) settings. As an instance, recent
studies have evaluated the performance of Chat-
GPT (Lai et al., 2023) and m-GPT (Shliazhko et al.,
2023) on multilingual text classification tasks in

a zero-shot setting, demonstrating the generaliza-
tion capability of these large language models on
unseen multilingual datasets.

However, due to the significant disparity be-
tween English and other languages in high-quality
corpus data, existing state-of-the-art approaches
typically leverage the language model’s English
capability to enhance classification in other lan-
guages, as exemplified by machine translation-
augmented text classification (King, 2024) and
cross-lingual in-context learning (Cueva et al.,
2024). Consequently, recent studies only focus
on the temporal adaptation of English classification
task (Agarwal and Nenkova, 2022; Dhingra et al.,
2022), the impact of temporal shifts and trends in
non-English languages on multilingual text classi-
fication performance remains largely unexplored.
In contrast, our work propose the Mixture of Tem-
poral Experts (MoTE), aims to investigate the tem-
poral shifts in multilingual text classification data.

B Algorithm Details

We provide the pseudocode of the proposed MoTE
architecture, which consists of two key modules:
the Clustering-Based Shift Evaluator and the Tem-
poral Router Network. Both modules operate on
top of a frozen feature encoder, which extracts data
representations from the input. The Clustering-
Based Shift Evaluator module evaluates shifts in
data distributions using historical data representa-
tions and computes cluster-based shift vectors, as
described in Algorithm 1. The Temporal Router
Network then uses these shift vectors and warmup
data to train a temporal router network that dynam-
ically assigns experts to different data representa-
tions, as shown in Algorithm 2.

C Hardware and Software

The experiments on reciew data are conducted on
a device equipped with 2 NVIDIA 4090 GPUs
(24GB memory) and an AMD Ryzen 9 7950X
CPU, running Ubuntu 22.04. The system utilizes
PyTorch 2.0 (Paszke et al., 2019) alongside Hug-
gingFace Transformers 4.26 (Wolf et al., 2020).
The experiments on legal data are conducted on a
machine from iTiger GPU cluster equipped with
8x H100 GPUs, 2x EPYC Genoa 9334 CPUs, and
768GB of RAM. The system runs on Linux kernel
5.14.
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Algorithm 1 Clustering-Based Shift Evaluator

Require: T (Number of clusters), Zsource (Historical data), Z (Current data)
Ensure: WarmupData, {vij} (Shift vectors)

1: {(Cj , Lj)}Tj=1 ← KMeans(Zsource, T )
2: WarmupData← {(zi, li)} ▷ Store labeled data from clustering
3: cj ← 1

|Cj |
∑

z∈Cj
z ∀j ∈ {1, . . . , T} ▷ Compute centroids

4: vij ← zi − cj ∀zi ∈ Z,∀j ∈ {1, . . . , T} ▷ Compute shift vectors
5: return WarmupData, {vij}

Algorithm 2 Temporal Router Network

Require: WarmupData(Z,L) = {(zi, li)}, V = {vij}, Z∗, K, λ, Wg, Θ = {Θ1, ...,ΘT }
Ensure: Prediction ŷ

1: Warmup Router:
2: for zi ∈ Z do
3: G(zi)← softmax(Wgzi) ▷ Compute gating scores
4: Optimize Wg using Lrouter = −

∑
log liG(zi)

5: end for
6: Train Router and Experts:
7: for zi ∈ Z∗ do
8: G(zi)← TopK(softmax(Wgzi),K) ▷ Select top-K experts
9: for each j ∈ TopK do

10: hj ← Θj(zi)⊕ vij ▷ Concatenate expert output with shift vector
11: pj ← ClassificationLayer(hj)
12: end for
13: ŷ ← 1

|K|
∑

j∈TopK Gj(zi) · pj ▷ Aggregate expert outputs
14: end for
15: Compute loss: L = CE(y, ŷ) + λLaux
16: Update: Wg,Θ
17: return Prediction ŷ

D Data

We use a public multi-lingual review data (Hovy
et al., 2015) and a legal document data EU-
RLEX (Chalkidis et al., 2021) for our study. The
review data spans years between 2007 and 2014
and covering four language corpora, Danish, En-
glish, French, and German 4. The legal data spans
the years 1958 to 2016 and covers 23 languages5.

D.1 Data Partition

To examine temporal effect on the multilingual
data, we use the review data corpora (four lan-
guages) and partitioned each language corpus into
four distinct time domains. For English, French,
and German, these domains correspond to the years

4The data files are available from the original authors at:
https://bitbucket.org/lowlands/release/src/master/WWW2015/data/

5The data files are available from the original authors
at: https://huggingface.co/datasets/coastalcph/
multi_eurlex

[2011, 2012, 2013, 2014]. The Danish corpus, due
to its longer time span, was divided into [2007-
2008, 2009-2010, 2011-2012, 2013-2014]. To en-
sure comparability across time domains, we down-
sampled the data in each domain to match the size
of the smallest domain. This sampling process
was conducted with a fixed random seed (random
state=1) for reproducibility. Within each time do-
main, we further split the data into training and
testing sets, allocating 70% for training and 30%
for testing. This partition was also performed using
a fixed random seed (random state=1) to maintain
consistency across experiments.

To evaluate the effectiveness of our proposed
method compared to baseline models for time adap-
tation, we use the data form two domains: the re-
view and the legal data. For the review data, we
re-split the data, holding 20% of the most recent
time period from each corpus as the target time
domain, with the remaining data used as the source
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Language ISO Train/Test Docs Length I-ratio
English en 55,000 / 5,000 1200 50.11
German de 55,000 / 5,000 1085 50.11
French fr 55,000 / 5,000 1280 50.11
Italian it 55,000 / 5,000 1210 50.11

Spanish es 52,785 / 5,000 1380 49.15
Polish pl 23,197 / 5,000 1200 37.8

Romanian ro 15,921 / 5,000 1500 32.4
Dutch nl 55,000 / 5,000 1230 50.11
Greek el 55,000 / 5,000 1230 50.11

Hungarian hu 22,664 / 5,000 1120 37.25
Portuguese pt 23,188 / 5,000 1290 49.63

Czech cs 23,187 / 5,000 1170 37.73
Swedish sv 42,490 / 5,000 1130 46.05

Bulgarian bg 15,986 / 5,000 1480 32.22
Danish da 55,000 / 5,000 1080 50.11
Finnish fi 42,497 / 5,000 890 46.06
Slovak sk 15,986 / 5,000 1180 37.9

Lithuanian lt 23,188 / 5,000 1070 37.96
Croatian hr 7,944 / 2,500 1490 26.14
Slovene sl 23,184 / 5,000 1170 37.79
Estonian et 23,126 / 5,000 950 37.56
Latvian lv 23,188 / 5,000 1080 37.75
Maltese mt 17,521 / 5,000 1250 32.47

Table 5: EURLEX statics per language: ISO language
code; number of documents in train, development, and
test splits; average document length (rounded up); and
label imbalance ratio. The imbalance ratio is calculated
as the frequency of the most common label divided by
the least common label across the entire dataset.

time domain. For the legal data, we followed the
standard train-test split of the EURLEX dataset,
using the training split as the source time domain.

E Experimental Details

We use XLM-RoBERTa-base (Conneau et al., 2019)
as the base model and feature encoder in our tem-
poral effect analysis experiments. We use the train-
ing data of each time domain to fine-tune the base
model. For review data, each model is trained 10
epoches and configured with a maximum token
length of 128, a learning rate of 3e-5, a batch size
of 32 per device, and gradient accumulation steps
set to 2. For legal data, each model follow same
setting except models are trained 5 epoches and
maximum token length set to 521 due to longer text
length. We save the checkpoints of the last epoch
for testing performance on both the same and the
other time domain’s test data (the in-time-domain
and cross-time-domain evaluation) One of the time
domain is chosen as source domain by the largest
performance disparity in cross-time-domain evalu-
ations, and the corresponding model is called the
Source Model. We compare our proposed method

with the source model and baseline methods.
All experiments are run with three random seeds:

41, 42 and 43, and we report the average perfor-
mance in our paper.

E.1 Baseline Methods

E.1.1 Self Labeling
Following the paper’s (Agarwal and Nenkova,
2022) setting. We use the saved source model,
as mentioned in last section, to label the test data
in the target domain. The silver-labeled target data,
along with the gold-labeled source data, is then
used to fine-tune XLM-RoBERTa-base (Conneau
et al., 2019) model with the same training configu-
rations as the source model: 10 epochs, a learning
rate of 3e-5, a batch size of 32 per device, and gra-
dient accumulation steps set to 2, and a maximum
token length of 128 for the review data and 512 for
the legal documents.

E.1.2 Anti-CF
We implement the Anti-CF (Su et al., 2023) frame-
work in classification task. We maintain the same
optimization goal and hyper parameters as de-
scribed in their paper (learning rate = 5e-5 and
parameter α = 0.2 for the loss). We apply Anti-CF
adaptation to the source model and test the adapted
model’s performance on the target domain test data.

E.1.3 ChronosLex
For ChronosLex (Santosh et al., 2024), we follow
their setting and train the model sequentially using
data from chronologically ordered 4 time periods.
Each iteration initializes the model with weights
from the previous time step and fine-tunes it on
data from the current period before moving to the
next, while maintaining the model architecture and
loss function.

E.2 Main Experiments

In our Mixture of Temporal Experts (MoTE) adap-
tation method, we use source model as the base
model and feature encoder. We build a tempo-
ral routing network including a router and a mix-
ture of experts on the base model. We apply a
TopK gating to the router, with the K set to 2.
For the training process, we use the AdamW opti-
mizer with learning rate of 1e-4 for router warm-up
and experts training. We use cross-enropy loss in
the warmup process, and add an auxiliary load-
balancing loss (Shazeer et al., 2017) with a 0.01
weight following their paper’s best setting. We
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Method English French German Danish
F1-ma AUC Fair ↓ F1-ma AUC Fair ↓ F1-ma AUC Fair ↓ F1-ma AUC Fair ↓

Best-baseline 47.48 78.51 2.23 41.21 75.94 1.99 38.09 74.78 2.17 47.45 81.71 2.14
Source Model 48.63 78.17 2.21 34.86 72.19 1.96 33.64 74.82 2.16 49.51 82.32 2.16
MoTE (ours) 49.29 79.81 2.18 42.06 76.68 1.98 40.22 75.66 2.16 50.34 83.61 2.05

Table 6: Performance on distant period testing across the four languages corpus in the review data.

warmup the router 20 epoches and another 20
epoches train the whole temporal routing network,
with batch size of per device set to 32, and gradient
accumulation steps set to 2.

F Supplementary Experiments Results

F.1 Experiments on Distant Period Testing
We conducted experiments on review data using
only the first time-domain’s data, and test it on
the last time-domain’s test set. The results indicate
that our method consistently improves performance
across various languages and metrics, as shown in
Table 6.

As shown in Table 6, our method consistently
outperforms the best-baseline (ChronosLex) and
the source model across all evaluation metrics. For
example, in English, MoTE achieves an F1-ma
of 49.29, surpassing the best-baseline (47.48) and
the source model (48.63). The AUC score also
improves to 79.81 compared to 78.51 from the
baseline. Notably, MoTE maintains a competitive
fairness score of 2.18.

In French, our method shows significant im-
provements, with an F1-ma of 42.06 compared to
41.21 from the baseline and 34.86 from the source
model. Additionally, the AUC improves to 76.68
while keeping the fairness score at 1.98. Similar
performance gains are observed across German
and Danish, demonstrating the robustness of our
method in distant period settings.
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