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Abstract
Open relation extraction (OpenRE) aims to
identify relational facts within open-domain
corpora without relying on predefined relation
types. A significant limitation of current state-
of-the-art OpenRE approaches is their inabil-
ity to accurately self-assess their performance.
Which is caused by the reliance on pseudo-
labels, that treats all points within a cluster
equally, regardless of their actual relative posi-
tion according to the cluster center. This leads
to models that are often overconfident in their
incorrect predictions, significantly undermin-
ing their reliability. In this paper, we introduce
an approach that addresses this challenge by
effectively modeling a part of the epistemic
uncertainty within OpenRE. Instead of using
pseudo-labels that mask uncertainty, our ap-
proach is built to train a classifier directly with
the clustering distribution. Our experimental
results across various datasets demonstrate that
the suggested approach improves the reliability
of OpenRE by preventing overconfident errors.
Furthermore, we show that by improving the
reliability of the predictions, UOREX operates
more efficiently in a generative active learning
context where an LLM is the oracle, doubling
the performance gain compared to the state-of-
the-art.

1 Introduction

The extraction of relations between entities from
unstructured text is an essential component of
knowledge graph construction (Church and Bian,
2021; Mirtaheri, 2021). These graphs enable nu-
merous downstream applications, such as web
search (Xiong et al., 2017), question-answering
(Yu et al., 2017), and more recently, Retrieval Aug-
mented Generation (RAG) based on LLMs (Pan
et al., 2024; Ren et al., 2023; Loconte et al., 2023).
Traditionally, relation extraction has been limited
to identifying predefined relations, leading to either
the misclassification of new relations—adding inac-
curacies to the knowledge graph—or labeling them
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Figure 1: Comparison of the quality of Knowledge
Graphs after filtering low-confidence predictions. In
Case (a), where the OpenRE approach has poor uncer-
tainty modeling, the filtered KG remains noisy due to
overconfident errors. In Case (b), with good uncertainty
modeling, the filtered KG is more reliable.

as "unknown" (Zhao et al., 2023), which avoids
misinformation but still overlooks valuable new
connections. To address this limitation, open rela-
tion extraction has emerged as an essential research
area for discovering and extracting new relation
types from open-domain text.

Most recent OpenRE research has focused on
unsupervised relation discovery (URD) (Yao et al.,
2011; Shinyama and Sekine, 2006; Simon et al.,
2019), that aims to discover new relations classes
in an open-domain corpora. Initial breakthroughs
in this area were made by (Hu et al., 2020), fol-
lowed by weakly-supervised or semi-supervised
approaches like (Zhao et al., 2021), (Wu et al.,
2019), (Wang et al., 2022a) and (Hogan et al.,
2023). These methods employ a set of known rela-
tions as a starting point to discover new, unknown
relations from documents. A common theme across
these approaches is that they use clustering in a
smaller space to guide a classifier that will discover
relations in a much larger space. The main issue
with this method is its reliance on pseudo-labels,
which treat all points within a cluster equally, re-
gardless of their actual relative position according
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to the cluster center.
This leads to three challenges: (1) Overconfi-

dence in OpenRE models, complicating their in-
tegration into real systems due to the high risk of
introducing noise into knowledge graphs as illus-
trated in Figure 1. (2) The need for thorough post-
training evaluation of OpenRE methods. Given
the nature of current OpenRE approaches, they are
not inherently transparent; therefore, after training,
there is no clear indication of their performance be-
cause the confidence of their predictions is forced
to be high. This often requires the labeling of a
significant portion of the target documents, which
contradicts the inherent self-supervised nature of
OpenRE. (3) Inefficient use of an LLM oracle in a
generative active learning context. Because these
models are overly confident, it’s challenging to use
them effectively in generative active learning sce-
narios (Settles, 2009; Xiao et al., 2023; Zhu et al.,
2024) where an LLM serves as the oracle. Their
inability to accurately model uncertainty means
that even their least confident predictions include a
large amount of correct answers, making the use of
the oracle less efficient.

In this paper, we propose UOREX (Uncertainty-
Aware Open Relation EXtraction) an approach that
falls under the URD category and addresses the
previously mentioned challenges.

Specifically, our approach is semi-supervised.
We start with a set of labeled data containing
known relations and our goal is to discover novel
relations in the unlabeled data. We encode
the contextual information of sentences and then
project this encoded information into a smaller
space. The adaptation of this space is achieved
by optimizing a clustering loss that encourages
labeled points to gather around their relational cen-
ters. As a result, unlabeled data points are separated
based on their expressed relations. This separation
is mainly related to the space learning the under-
lying concept behind relations. By taking advan-
tage of this separation, we employ soft clustering
to obtain a clustering distribution. This distribu-
tion captures an uncertainty that is epistemic in
nature, arising from incomplete knowledge of re-
lational patterns. We refer to this uncertainty as
relational uncertainty and it is primarily linked
to the number of known relations and is inversely
proportional to the initial separation observed in
the unlabeled data. More known relations result in
less relational uncertainty and greater separation.
On top of the encoded space, we train two clas-

sifiers: one for discovering relations and another
for refining these discoveries. The discoverer is di-
rectly guided by the reordered distribution resulting
from soft clustering using Kullback-Leibler (KL)
divergence, thus passing the relational uncertainty
to the discoverer which mitigates overconfident
predictions. The refinement of discoveries is then
facilitated by the second classifier that is trained to
classify both labeled and unlabeled data.

This results in a model that understands the lim-
its of its knowledge, thus enabling self-assessment
of its performance using what we call overall confi-
dence, a measure of average prediction confidence.
Additionally, by modeling relational uncertainty,
our approach encourages the model to assign lower
confidence to its incorrect predictions. This means
that errors are more likely to appear among low-
confidence predictions, enhancing the efficiency
of integrating our method into a generative active
learning context.

In summary, the contributions of this paper are
summarized as follows:

• (1) We introduce UOREX, a reliable OpenRE
framework designed to mitigate overconfident
errors often present in current SOTA OpenRE
approaches.

• (2) We reduce the need for exhaustive post-
training evaluation by enabling the overall
confidence to represent the quality of the train-
ing.

• (3) We enhance OpenRE’s efficiency in gener-
ative active learning contexts, thereby improv-
ing its overall performance gain.

Preliminary results demonstrate the effectiveness
of our methodology in enhancing the overall relia-
bility of OpenRE.

2 Related Work

Open Relation Extraction
OpenRE has rapidly evolved into an essential

technique for knowledge graph construction, par-
ticularly due to its capability to extract emerging
relation types from text without being limited to
predefined categories. Early efforts in OpenRE
employed tagging-based methods (Etzioni et al.,
2008; Yates et al., 2007; Fader et al., 2011), where
relations were directly extracted from text as spans.
However, these methods often lacked generality
due to the different ways the same relation could
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Figure 2: UOREX Architecture Overview. (1) The labeled data is used to pretrain the projection space enabling it to
capture relational knowledge, (2) The soft clustering of unlabeled data produces a clustering distribution that we
reorder to keep the learning consistent, (3) the clustering distribution is passed to train the discoverer, while the
general classifier trains on the labeled data and the predicted discoverer distributions to refine the learning.

be expressed, and additionally, some relations are
implicit and cannot be captured using spans. More
recently Unsupervised Relation Discovery emerged
as a new paradigm for OpenRE. This paradigm
primarily relies on clustering-based methods to au-
tonomously organize textual data into meaningful
relational clusters. In this context, (Hu et al., 2020)
introduced a self-supervised framework that ex-
ploits pretrained language models for adaptive clus-
tering. More recent methodologies have leaned into
the use of transferable knowledge. Prompt-based
approaches like those of (Wang et al., 2022a) and
(Hogan et al., 2023), along with methods such as
(Zhao et al., 2021) and (Wu et al., 2019), employed
predefined relational instances to train a model that
can generalize to discover new, contextually rel-
evant relations in an open-world setting. These
methods leverage the relational knowledge embed-
ded in these labeled instances to guide a clustering
process, ensuring that newly discovered relations
align more closely with realistic semantic contexts.

Uncertainty in Machine Learning

In machine learning (ML), accurately represent-
ing uncertainty is essential for ensuring the safety
and reliability of models in various applications, en-

hancing their effectiveness across diverse domains
(Lambrou et al., 2011; Varshney, 2016). Uncer-
tainty in ML is typically divided into two cate-
gories: aleatoric and epistemic. Aleatoric uncer-
tainty stems from the inherent randomness in model
inputs and is irreducible. Epistemic uncertainty, on
the other hand, originates from incomplete knowl-
edge about the optimal model but can be reduced
through the acquisition of more data or enhanced
insights (Kiureghian and Ditlevsen, 2009). In semi-
supervised learning, multiple sources of uncertainty
are identified. Predictive uncertainty arises from
the inherent variability in the data and the unpre-
dictable nature of model outputs (Nguyen et al.,
2019). Model uncertainty is associated with the
selection of an appropriate hypothesis space, re-
flecting potential mismatches in model specifica-
tion. Approximation uncertainty refers to the gap
between the ideal hypothesis and the hypothesis
estimated by the learning algorithm.

In our approach the relational uncertainty falls
under the class of epistemic uncertainty, and is con-
sidered as part of the approximation uncertainty,
as more labeled data reduces this uncertainty and
further improves the performance of the estimated
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hypothesis, note that our uncertainty is modeled by
the soft clustering, the main challenge is to pass it
to the rest of the components

3 Proposed approach: UOREX

The architecture of UOREX consists of four ma-
jor components: Encoder, Projector, Discoverer,
and General Classifier. As illustrated in Figure
2, we first employ the Encoder module to encode
the contextual information of the relation using the
entity pairs. The Projector then projects the en-
coded labeled data into a projection space. This
projection space is then optimized for center-based
clustering by herding the labeled data points close
to their average relational center. Subsequently,
we cluster the projected unlabeled data points us-
ing soft clustering. As the clustering classes of
soft clustering change for each iteration, the dis-
tribution of soft assignments is reordered using
a space-independent cluster similarity that maps
the clusters to the previous cluster order. The Dis-
coverer uses these reordered soft assignments to
refine the Encoder space, initiating a cyclical op-
timization process. To prevent the Encoder space
from collapsing in this cycle, a General Classifier
is trained on the labeled data, which constrains the
Encoder from merely following the descent direc-
tions of the Discoverer optimization. Additionally,
the General Classifier is trained on the discoverer
output distribution using a transfer loss to refine
the learning. The approach results in obtaining two
classifiers: one specialized in classifying new rela-
tions and a more general classifier for all existing
relations.

3.1 Preliminaries

Let us define Dl as the set of labeled data points,
and Yl as the associated labels and Nl = |Dl| as the
count of these points. The set of known relations
within Dl is denoted as Rknown.

For unlabeled data, let Du represent the set of
unlabeled data points, with Nu = |Du|, and Rnew
identifies the new relations.

The combined dataset, D = Du ∪ Dl, encom-
passes both labeled and unlabeled data points, to-
taling NT = |D|. The space of all the entity-pair
sentences is denoted by SE , and we have D ⊆ SE .

The different mappings are defined as follows:
The encoder f : SE → RN maps an entity-pair
sentence into an N -dimensional encoded space.
The projector head g : RN → RM projects

this space into the projection space of dimension
M . The decoder head d : RM → RN inverses
the projection head behavior. The Discoverer,
µ : RN → R|Rnew|, classifies the new relations
based on the encoder space. The General Classifier,
u : RN → R|Rnew|+|Rknown|, classifies both known
and new relations.

3.2 Sentence Representation
Consider a set sp = {xp, e1p, e2p} as an element
from D. Here, xp represents the sequence of tokens
in a sentence, while e1p and e2p denote the positions
of two specific entities within the sentence. These
positions are defined as tuples e1p = (b1p, e

1
p) and

e2p = (b2p, e
2
p), where b1p and b2p are the starting

indices, and e1p and e2p are the ending indices of the
entities in the token sequence.

We use BERT (Devlin et al., 2019) to encode
the contextual information of each token in the
sentence xp:

Hp = BERT(xp) (1)

The result of the encoding step is Hp, a list of
contextual embeddings for each token in xp. Next,
similar to (Hu et al., 2020) we apply max pooling
over the range defined by the entity start and end
indices. This is done to capture the most significant
features of the encoded vectors that correspond to
each entity:

t0p = MaxPooling(Hp[b
1
p : e

1
p]) (2)

t1p = MaxPooling(Hp[b
2
p : e

2
p]) (3)

Finally, these vectors are concatenated to form
a single feature vector tp for the pair of entities in
sentence sp. This vector serves as the output of the
encoder for sp and is defined as follows:

f(sp) = tp = t0p ⊕ t1p (4)

3.3 Projector
After the initial sentence encoding, the output is
then passed through the projector. The primary
function of the projector is to utilize data points
from Dl to establish an appropriate space for clus-
tering. We achieve that by minimizing the clus-
tering loss, LClust, that encourages data points to
migrate towards their respective relational centers
Crp , with:

LClust =
1

Nl

∑

rp∈Rknown

∑

tj∈rp
∥g(tj)− Crp∥2 (5)
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Crp =
1

|rp|
∑

tj∈rp
g(tj) (6)

Here, rp represents the set of elements that ex-
press the relation rp between two entities. And
Crp is the center of each cluster associated with a
relation rp. To prevent the collapsing of the space,
a decoder d is introduced alongside the projection
head. The corresponding collapsing loss, Lcol, is
defined as:

Lcol =
1

NT

NT∑

p=1

(tp − d(g(tp)))
2 (7)

The total loss for the projector, denoted as LP, is
then expressed as a weighted sum of the clustering
and collapsing losses:

LP = LClust + γLcol (8)

The unlabeled data points are then clustered us-
ing Fuzzy c-means clustering (Bezdek et al., 1984),
with the soft assignments being represented by Yu.

Yu = Fuzzy-cmeans (g (f(Du))) (9)

we note yup as the soft assignment for an unlabeled
data point tp.

3.4 Discoverer
Before passing the soft assignments to the Discov-
erer, we reorder the clusters by assigning each to
the cluster from the previous iteration with the high-
est similarity. This process involves calculating a
similarity invariant to spatial changes, focusing
solely on the comparison of the indices of data
points between clusters, the similarity that satisfies
these conditions is the number of shared indices
between clusters:

Sij = |Ci ∩ Cj | (10)

where Ci and Cj represent the sets of indices
of elements in the ith and jth clusters, respec-
tively. To maximize the overall similarity of the
clusters matching, we employ the Hungarian al-
gorithm (Kuhn, 2010), which effectively matches
clusters to maximize their mutual similarity based
on the calculated S matrix.

The Discoverer is then guided by the clustering
distribution to optimize the encoded space towards
optimal separation for relation discovery. Given an
instance sp from Du, we aim to minimize:

LDisc(sp) = KL
(
yup , µ(tp)

)
(11)

By minimizing this loss, the Discoverer influ-
ences the encoder space, enhancing the separation
between data points in the projection space based
on their respective confidence levels. Consequently,
less certain data points are not forcibly pushed into
a cluster if the projector space does not accurately
recognize their relational class, thereby avoiding
overconfident errors for the discoverer. Simultane-
ously, this loss propagates the relational uncertainty
captured in the projection space.

3.5 General classifier

The General Classifier (GC) is designed to break
the optimization cycle and refine the learning pro-
cess. We achieve that by employing a cross-entropy
loss over the set of labeled data, using as a target
distribution one hot encoded vectors ylp from Yl:

LKnown = − 1

Nl

Nl∑
ylp log u(tp) (12)

This forces the descent direction found by the op-
timization of the Discoverer to align with the clas-
sification of labeled data. Since we assume that the
optimal direction should push the model towards
separating all types of relations, this approach en-
sures that only beneficial directions are favored. To
further enhance the capabilities of the GC, a knowl-
edge transfer loss from the Discoverer to the GC is
applied. This loss, LTransfer, uses the KL divergence
with the target distribution ŷup = 0|Rknown| ⊕ yup :

LTransfer = KL(ŷup , u(tp)) (13)

The total GC loss, LGC, is then calculated as
the weighted sum of these two losses, where ρ
is a hyperparameter that modulates the extent of
knowledge transfer within the learning process:

LGC = LKnown + ρ · LTransfer (14)

3.6 General Algorithm

Algorithm 1 outlines our proposed method. Ini-
tially, we pretrain the projector by minimizing the
projector loss Lp with respect to its parameters
(lines 7-10). To enhance the relational knowledge
encapsulated within the initial cluster distributions,
we train the General Classifier (GC) on the la-
beled data for a limited number of epochs (lines
11-14). Subsequently, we enter the main training
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Algorithm 1 Algorithm for UOREX

1: Input:
2: Labeled Data Dl, Unlabeled Data Du

3: Projector parameters Π
4: Discoverer and Encoder parameters Φ
5: General Classifier and Encoder parameters Γ
6: Learning rate β, Discovery factor µd

7: Output: Γ, Π, Φ
8: for i = 1 to epochpretrain do
9: Π← Π− β∇ΠLp

10: end for
11: for i = epochpretrain to epochcontext do
12: Π← Π− β∇ΠLp

13: Γ← Γ− β∇ΓLKnown
14: end for
15: for i = epochcontext to epochs do
16: for p = 1 to d do
17: Perform Fuzzy C-means clustering

with random initialization
18: end for
19: Select the iteration with the best FPC
20: Φ← Φ− βµd∇ΦLDisc
21: Γ← Γ− β∇ΓLGC
22: Π← Π− β∇ΠLp

23: end for

loop, where, we first search for the optimal cluster-
ing by repeating the Fuzzy C-means algorithm d
times with random initialization (lines 16-18). We
select the clustering distribution that achieves the
highest fuzzy partition coefficient (FPC), ensuring
the stability of our approach (line 19). We then
optimize the Discoverer and the encoder parame-
ters with respect to LDisc , where µd is a tuning
parameter that balances the joint effect of the GC
and the Discoverer on the encoder. Concurrently,
LGC, which encompasses both transfer and known
losses, is optimized along with the projector loss to
adapt to the evolving encoder space (lines 20-22).

4 Experiments

4.1 Metrics

We evaluate the different compared approaches us-
ing the B3 measure F1 score (Bagga and Bald-
win, 1998), the V-measure F1 score (Rosenberg
and Hirschberg, 2007), and the Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985).

Similar to (Lakshminarayanan et al., 2017), we
use confidence thresholds to evaluate the uncer-
tainty modeling part of our approach, as we think it

is the clearest type of evaluation for our case, and
because in practice most models are used with a
confidence threshold.

4.2 Datasets

We conduct our experiments on two well-
established English relation extraction datasets:
FewRel and TACRED, to rigorously evaluate our
proposed model for relation discovery.

TACRED
The TAC Relation Extraction Dataset (TACRED)
(Zhang et al., 2017) is a large-scale, human-
annotated dataset having 42 unique relations and
106,264 samples. Similar to (Zhao et al., 2021) in
our setup, we exclude the no_relation. Our base re-
lations set comprises 31 relations, and 10 relations
as our unknown set for discovery. Finally, 15%
of instances from the unknown set are randomly
chosen to serve as our test set, while the remaining
instances are allocated to the training set.

FewRel
We use FewRel (Han et al., 2018) as the second
dataset for our experiments. FewRel is a large-
scale, manually annotated dataset designed for few-
shot relation classification, containing over 70,000
instances across 80 relation types. Similar to (Zhao
et al., 2021) the base relations set is formed with 64
relations, and the unknown relations set is formed
with 16 relations, we randomly chose 15% of the
instances as a test set and we train on the rest.

4.3 Experimental Setup

To evaluate the effectiveness of our approach, we
compare it with the following SOTA OpenRE meth-
ods: SelfORE (Hu et al., 2020), which operates
under a fully unsupervised framework; and RSN
(Wu et al., 2019), along with RoCORE (Zhao et al.,
2021) that operates under a semi-supervised frame-
work, and KNoRD (Hogan et al., 2023) a prompt-
based OpenRE approach. For a fair comparison
we reimplemented all the 4 approaches under the
same configuration, we used a dichotomic search to
calibrate their softmax temperature to all match the
same data percentage above the 90% confidence
threshold at the evaluation.

The hyperparameter configuration and the more
detailed implementations and the specifics of our
approach and the compared models are provided in
the Appendix.
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Threshold Approach TACRED FewRel
B3_F1 V _F1 ARI B3_F1 V _F1 ARI

α = 0

SelfORE 0.523184 0.561328 0.353498 0.744433 0.818325 0.702539
RSN 0.608203 0.624036 0.442216 0.579155 0.698053 0.445216

RoCORE 0.842116 0.877084 0.780052 0.850129 0.894083 0.805180
KNoRD 0.840056 0.883089 0.880075 0.859067 0.878059 0.913068

UOREX 0.839162 0.863098 0.806241 0.858129 0.888087 0.842140

α = 50

SelfORE 0.555345 0.603450 0.374590 0.748426 0.822317 0.707533
RSN 0.608203 0.624036 0.442216 0.579155 0.698053 0.445216

RoCORE 0.869277 0.901232 0.825371 0.865188 0.908129 0.822238
KNoRD 0.861067 0.899089 0.904056 0.866059 0.879068 0.925075

UOREX 0.878129 0.902120 0.852187 0.896106 0.921060 0.884127

α = 80

SelfORE 0.622429 0.660424 0.423625 0.787366 0.856248 0.758478
RSN 0.608203 0.624036 0.442216 0.579155 0.698053 0.445216

RoCORE 0.902380 0.921304 0.872558 0.893207 0.933130 0.856244
KNoRD 0.925089 0.943056 0.970078 0.883068 0.867075 0.935059
UOREX 0.940082 0.951077 0.948188 0.949067 0.965043 0.939072

α = 90

SelfORE 0.653459 0.685380 0.464688 0.808342 0.872211 0.786457
RSN 0.732612 0.701532 0.550342 0.690455 0.777348 0.577567

RoCORE 0.911554 0.930465 0.884874 0.908230 0.942140 0.885339
KNoRD 0.932075 0.948056 0.978089 0.907059 0.870068 0.948067
UOREX 0.980036 0.981052 0.986095 0.961049 0.974032 0.952052

Table 1: Evaluation of the approaches at varying confidence thresholds for TACRED and FewRel. Subscripts
denotes standard deviation (e.g., 0.948188 represents 0.948± 0.0188). The best result for each metric is bolded,
and the second-best is underlined.

4.4 Overall Performance

Table 1 presents the evaluation results of the com-
pared approaches under different prediction con-
fidence thresholds α. From these results, we can
draw two conclusions:

(1) UOREX outperforms the state-of-the-art
by a large margin in terms of reliability. This
is displayed by how our approach avoids overcon-
fident errors, where increasing α drastically aug-
ments the performance, achieving for α = 90 im-
provements over the second best performing ap-
proach of +5.1%, +3.4%, and +0.8% on TACRED
for the B3, F1 V-measure, and ARI, respectively.
Similarly, for FewRel, we observe improvements
of +5.8%, +3.3%, and +0.4% for the B3, F1 V-
measure, and ARI, respectively, indicating that the
majority of incorrect model predictions are made
with low confidence.

(2) UOREX achieves competitive results in
normal settings while being more reliable. Our
method achieves competitive performance com-
pared the second best performing approach, show-
ing variations of -1.4% and -2.3% on TACRED,
and -0.1% and -0.7% on FewRel for the B3 score,
F1 V-measure respectively. While the ARI vari-
ation is slightly higher -9.1% on TACRED and
-8.4% on FewRel, this is acceptable because ARI

Figure 3: Self-Assessment comparison, (left) UOREX
(middle) KNoRD (right) RoCORE, the red curve is the
evolution of Overall confidence, the blue curve is the
evolution of the B3 F1 score, the x axis values corre-
spond to the infection percentage of the data

emphasizes exact cluster alignment and is sensitive
to minor misalignments, and compared to KNoRD
our approach is superior by a variation of +11.3%
for the F1 V-measure on Fewrel. This demonstrates
UOREX’s capability to compete effectively while
maintaining greater reliability.

We can also note from Table 1 the behavior of the
compared approaches. Among all, RSN achieves
the worst performance in terms of reliability. This
is primarily because RSN infers similarity rather
than class membership, which leads to very over-
confident predictions, often close to 1. After recali-
bration, 0.9 was established as the point of separa-
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Data B3 F1 Score

Overall 0.917

UOREX Lowest 10% 0.899
KNoRD Lowest 10% 0.938
RoCORE Lowest 10% 0.948

Table 2: Performance of Oracle based on GPT-4o on
overall test data and 10% lowest confident predictions
for different approaches

tion, explaining RSN’s unchanged behavior until
the 0.9 threshold. For RoCORE, we observe that its
performance does not significantly improve as we
increase α, with only an +8.1% difference for the
B3 F1 score between the first and last thresholds,
in contrast, UOREX achieves a +16.8% difference.
KNoRD shows a good ARI scores overall and com-
petitive F1 scores, but as we increase α UOREX
shows a greater performance.

4.5 Self-Assessment Evaluation

In this experiment, we evaluate the self-assessment
capability of UOREX. To do so, we infect a percent-
age of the TACRED dataset sentences by replacing
60% of the words with random words, excluding
the entity arguments, and evaluate the overall confi-
dence evolution alongside the infection percentage.
Figure 3 shows the results for UOREX, KNoRD
and RoCORE. For RoCORE, as the infection per-
centage increases, the performance of the model
logically declines, but the overall confidence of
the predictions does not change. This results in
the model having an overall prediction confidence
of 81% at an infection percentage of 90%, with a
B3 F1 score of 0.505. For KNoRD, we observe a
slightly better self-assessment capability compared
to RoCORE. Nonetheless, the overall confidence
does not clearly correlate with the model’s per-
formance. The difference in overall confidence
between 20% and 90% infection percentages is ap-
proximately ±0.07. This small variance makes it
challenging to distinguish between correct and poor
performance based solely on the overall confidence.
In contrast, for UOREX, there is a clear correlation
between the model performance and the overall
confidence: as the infection percentage increases,
the overall confidence of the predictions decreases,
indicating that the model recognizes when it has
not performed well, unlike KNoRD or RoCORE.
This experiment further proves that UOREX is ca-
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Figure 4: Performance gain comparison before and after
retraining using oracle labeled data of the 10% lowest
confident predictions for different approaches

pable of reliable self-assessment of its performance,
reducing the need for exhaustive post-training eval-
uation for OpenRE.

4.6 Evaluating the Impact of GPT-4o Oracle

Given the high cost of recent LLMs, we evaluate
the efficiency of our approach by using GPT-4o
(Wu et al., 2024) as an oracle within a genera-
tive active learning framework, the oracle is con-
structed using a straightforward adaptation of cur-
rent prompting techniques to evaluate our OpenRE
approach. Mainly, our oracle operates through a
multi-step prompting process. It begins by align-
ing with the model’s class indices using the most
confident predictions from each class, then samples
different chains of thought responses. A majority
voting is then applied to select the final prediction
(Wang et al., 2022b). To measure the oracle’s effec-
tiveness in combination with the different OpenRE
approaches, we take the lowest 10% confident pre-
dictions for each approach and label them using
the oracle aligned predictions. Table 2 summa-
rizes the oracle’s performance across the entire
test dataset and the least confident predictions per
approach. We then retrain each model with the en-
hanced dataset. The results, displayed in Figure 4,
reveal that UOREX achieves a performance gain of
4.87%, which is over twice the improvement seen
in KNoRD (2.33%) and more than seven times that
of RoCORE (0.67%). Notably, although the oracle
performs lowest on UOREX’s least confident pre-
dictions (as shown in Table 2), UOREX benefits
the most from this retraining phase. This suggests
that UOREX’s lowest-confidence predictions cor-
respond to challenging, often incorrect examples.
Consequently, despite lower oracle performance
on these difficult cases, the resulting label correc-
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tions yield substantial gains in model accuracy for
UOREX.

5 Conclusion

In this work, we introduce a novel and reliable
OpenRE approach UOREX, designed to address
the prevalent issue of overconfident errors in cur-
rent state-of-the-art OpenRE approaches caused by
the use of pseudo-labels. UOREX improves the
reliability of OpenRE, by modeling a relational
uncertainty, that enables the model to understand
the limits of its knowledge. As a result, UOREX
avoids confident mistakes, enables self-assessment
of performance using overall confidence after train-
ing, and doubles the performance gain of OpenRE
models from oracles in a generative active learning
context.

Experimental results on multiple datasets demon-
strate that UOREX not only enhances the over-
all reliability of OpenRE but also achieves com-
petitive performance. These advancements estab-
lish UOREX as a solution for more dependable
OpenRE models. For future work, we intend to
explore refining the uncertainty modeling using
bayesian approaches for an even greater model
reliability and extend the scope of the approach
to work for low ressource languages. More im-
portantly, we also plan to integrate the suggested
approach within an integrated intelligent platform
dedicated to support real-world applications for
public sector agencies.

6 Limitations

We acknowledge several limitations in the proposed
contributions. (1) UOREX relies on a large set of
predefined relations. (2) UOREX utilizes BERT
as its encoder, making it dependent on the perfor-
mance of BERT models. This reliance can pose
problems for low resource languages, where BERT
may not perform optimally due to limited training
data availability.
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A Appendix

A.1 Ablation Study
To study the contribution of each component in the
proposed method, we conduct ablation experiments
on the two datasets, Table 3 illustrates the found
results, UOREX w/o GC does not use a General
classifier, thereby using the labeled data for the
pretraining of the projector only, This leads to a
drastic drop in performance, as the optimization
cycle formed with the Encoder - Projector - Discov-
erer results in the encoder space collapsing. This
issue can also be viewed as a mismanagement of
known relation knowledge, which is not used to
supervise the encoder space, but only the projector.
Consequently, the model tends to converge toward
the initial clustering results after pretraining, by-
passing the refinement step. UOREX w/o Soft
Clustering uses fuzzy c-means with m = 1+10−4

which leads to hard assignments, ignoring the re-
lational uncertainty. UOREX w/o Pretrain do not
pretrain the projector before beginning to optimize
the Discoverer and the General Classifier. This
leads to poor performance, as the clustering dis-
tributions passed capture no relational knowledge,
resulting in the collapse of the projector space.

Dataset Model B3_F1 V_F1 ARI

TACRED

UOREX 0.839 0.863 0.806
w/o Soft Clustering 0.805 0.852 0.709

w/o GC 0.697 0.739 0.593

w/o Pretrain 0.318 0.257 0.108

FewRel

UOREX 0.858 0.888 0.842
w/o Soft Clustering 0.782 0.853 0.730

w/o GC 0.693 0.783 0.607
w/o Pretrain 0.229 0.285 0.108

Table 3: Ablation results on FewRel and TACRED

A.2 Implementation Details
We ran the training on NVIDIA A100 GPUs, al-
locating 6GB of memory for TACRED and 8GB
for FewRel. The reported training configuration
takes approximately 8 hours for TACRED and 14
hours for FewRel. For our experiments, we utilized
BERT-base uncased and unfroze the 8th layer, Ta-
ble 4 summarize the rest of the hyperparameters
used.

For the implementation of the compared ap-
proaches:

• SelfORE: We re-implemented the SelfORE
approach from scratch, following to the re-
ported configuration in the original publica-
tion.

• RSN: We utilized the existing RSN repository,
extended its data configuration for TACRED
compatibility.

• RoCORE: We re-implemented RoCORE
from scratch, selecting a low transfer coef-
ficient (0.001) as it gave the best results.

• KNoRD: For KNoRD, we used the open im-
plementation and adapted it to our test and
train set. For TACRED we used the origi-
nal paper configuration changing the setup to
classify unlabeled data only. For FewRel we
changed the hyperparameter from the original
paper, to find better results we used a high
quality data threshold of 0.06 instead of 0.15
in the original paper.
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Initial State After Pretraining

After Refining

Figure 5: The Projection space evolution, for different
stages, for each stage we have (Left) real labels (Right)
the predictions of the discoverer with the confidence
level represented by the opacity of the point.

A.3 Evolution of the space of representations

Figure 5 illustrates the evolution of the relational
space with correct labels (left) and the predictions
made by the discoverer (right), where the color
intensity represents confidence levels. We utilize
t-SNE (Hinton and Roweis, 2003) to visualize this
space in 2D. Initially, the projector weights are
randomly initialized, causing the data points to be
dispersed randomly across the space without rela-
tional considerations. A slight separation can be
observed, attributable to the contextual informa-
tion encoded by BERT in its initial state. After
the projector’s pretraining, the space shows sig-
nificantly improved separation, and some relation
classes become more apparent. Although part of
the relation classes are mixed, the application of
soft clustering ensures the gradual refinement of
these classes until they converge. Once the refining
stage is completed, the separation between classes
becomes more distinct, with uncertain data points
lying in the areas between clusters.

Hyperparameter Value
Optimizer Adam

Learning Rate (β) 1× 10−4

Batch Size 100
L2 Regularization (λ) 10−5

epochs 100
max length 160

Discovery Factor (µd) 0.01
Weighting Factor (γ) 0.001

Knowledge transfer factor (ρ) 0.01
cluster fuzziness factor (m) 1.3

Pre-training Epochs (epochpretrain) 10
Context Epochs (epochcontext) 11

Clustering trials number (d) 30

Table 4: Hyperparameters used

A.4 Errors among the lowest 10% confident
predictions

Approach Percentage

UOREX 0.746
KNoRD 0.620
RoCORE 0.538

Table 5: Error percentage among the lowest 10% confi-
dent predictions

Table 5 illustrates the difference in error percent-
ages among the lowest 10% confident predictions.
This explains why UOREX performs significantly
better within a generative active learning frame-
work, as the majority of labeled data from the ora-
cle are mistakes. This implies that UOREX gains
the most from retraining by effectively learning
from errors.

A.5 Oracle Implementation Details
To implement the oracle, we used
gpt-4o-2024-08-06 from the OpenAI API.
We sampled 5 answers per query, and selected 10
confident examples from each class for indices
alignment. The process followed this pipeline:

1. Among the k (number of novel relations) most
confident classes, retrieve the 10 most confi-
dent examples from each predicted class.

2. Construct a prompt following the Alignment
Template (see Appendix A.6.1).

3. After deducing the relation names for each
class ID, we use another prompt to review
the homogeneity of these classes by incor-
porating examples from the labeled data to
guide the LLM (see Refinement Prompt in Ap-
pendix A.6.2).

4. Once the relation list is refined, we prompt
the LLM to provide potential extensions of
these classes and exhaustive definitions (see
Extension Prompt in Appendix A.6.3).

5. After obtaining a broad analysis of
each relation class represented by
{extended_classes}, we classify data
instances using the Classification Prompt (see
Appendix A.6.5).

6. Using the previous prompt, we sample 5 po-
tential answers and employ majority voting.
An example of a response is provided in Ap-
pendix A.6.4.
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A.6 Prompt Templates

A.6.1 Alignment Template

Alignment Template

I have unlabeled data, and my model gen-
erated predictions in the form of prediction
class indices. For each prediction index, I
need you to deduce the relation name that
corresponds to that class.
{
class_id_1: {
ex1: sentence, entities
},
class_id_2: {
ex2: sentence, entities
},
. . .
}
For each class, go through the sentences
and entities carefully, explain your reason-
ing step-by-step, and provide the relation
name between the entities. Once you’ve
deduced all relation names, summarize by
listing each relation name corresponding to
the different classes.

A.6.2 Refinement Prompt

Refinement Prompt

Now, provide the list of relation names, en-
suring that each class represents a distinct
relation. Be careful with granularity, as
some classes may appear similar but hold
subtle differences that are important to cap-
ture. For example, city of birth and state of
birth may seem alike but represent different
levels of detail. Similarly, distinctions like
date of employment vs. year of employment
or manager of vs. employer of are crucial
to reflect accurately.
Please list each relation name, paying at-
tention to these nuances to ensure precise
representation of each class.

A.6.3 Extension Prompt

Extension Prompt

Examine the provided relation classes criti-
cally and assess whether some categories
may be too narrowly defined. In cases
where the current class names are highly
specific, it’s important to reframe them into
more inclusive categories that capture a
wider range of relationships between enti-
ties. Think about how each relation could
encompass more generalized associations,
rather than being limited to precise, nar-
rowly defined roles. The goal is to ensure
that the relation classes remain versatile
enough to cover various cases, thus reduc-
ing the risk of overfitting to overly specific
situations.
When analyzing each relation, consider how
it might be grouped into a broader category
that captures related associations without
sacrificing relevance. This approach will
make the classification more flexible and
applicable across diverse contexts, avoiding
overly restrictive interpretations that may
miss key relational nuances.
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A.6.4 Sample Response

Sample Response

To determine the appropriate relation class
for the entities “Ble Goude” and “Guiber-
oua” in the given sentence, we should ana-
lyze the relationship between the head and
tail entities.
Analysis:

• Sentence: “Ble Goude was born in
1972 in Gbagbo’s centre west home
region, Guiberoua.”

• Head Entity: Ble Goude

• Tail Entity: Guiberoua

• Relation: The sentence mentions Ble
Goude’s birthplace, indicating a rela-
tionship between a person and their
birth location.

Matching to Existing Class:
Looking at the generalized relation cate-
gories and the existing classes:

• Class 9: Person-BornIn-City with the
generalized relation Person-BornIn-
Location fits this scenario as it de-
scribes a person’s place of birth, which
is precisely the relationship described
in the sentence.

• Other Classes: None of the other
classes primarily focus on a person’s
birthplace.

Conclusion:
Therefore, the relationship between “Ble
Goude” and “Guiberoua” should be classi-
fied under the class that captures a person’s
birthplace.
Here is the JSON response with the index
and the class ID:
[language=json] "index": 1, "classid” : 9
This classification reflects Class 9’s focus,
which fits the relationship depicted here, tak-
ing into account the broader interpretation
of birthplace as any location.

A.6.5 Classification Prompt

Classification Prompt

Assign a relation class to the relation be-
tween these two entities:
{example}
Return a JSON with the index and the
class ID in the form {"index": idx,
"class_id": id}. You need to find the
closest class. The following is the extended
description of each class:
{extended_classes}
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