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Abstract

Preference modeling techniques, such as di-
rect preference optimization (DPO), has shown
effective in enhancing the generalization abili-
ties of large language model (LLM). However,
in tasks involving video instruction-following,
providing informative feedback, especially for
open-ended conversations, remains a signifi-
cant challenge. While previous studies have ex-
plored using large multimodal models (LMMs)
as reward models for guiding preference mod-
eling, their ability to accurately assess the qual-
ity of generated responses and their alignment
with video content has not been conclusively
demonstrated. This paper introduces a novel
framework that utilizes detailed video captions
as a proxy of video content, enabling language
models to incorporate this information as sup-
porting evidence for scoring video Question
Answering (QA) predictions. Our approach
demonstrates robust alignment with OpenAI
GPT-4V model’s reward mechanism, which di-
rectly takes video frames as input. Furthermore,
we show that applying our reward mechanism
to DPO algorithm significantly improves model
performance on open-ended video QA tasks.

1 Introduction

This paper addresses the challenge of aligning
LMMs, particularly in tasks that involve video in-
struction following. Despite recent advancements
in reinforcement learning (RL) (Ouyang et al.,
2022; Bai et al., 2022; Lee et al., 2023; Sun et al.,
2023b) and DPO (Rafailov et al., 2024; Chen et al.,
2024d; Hosseini et al., 2024), which have been ef-
fective in guiding LLMs towards generating more
honest, helpful, and harmless content, their effec-
tiveness in video domain remains limited. The crit-
ical obstacle lies in developing a robust reward sys-
tem capable of distinguishing preferred responses
from less preferred ones based on video inputs.

*Equal contribution.

The challenge is further complicated by the cov-
erage and potential inaccuracies in generated con-
tent, stemming from the scarcity of alignment data
across different modalities (Liu et al., 2023b; Sun
et al., 2023a).

While human preference data is valuable, it
is challenging to scale due to its cost and labor-
intensive nature, as highlighted by the LLaVA-
RLHF (Sun et al., 2023a) paper, which collected
10k human-evaluated instances at a considerable
cost of $3000. Existing approaches for distilling
preferences, such as those for image data using
GPT-4V (Li et al., 2023d), encounter scalability
issues, especially for video inputs that require an-
alyzing multiple frames. While (Ahn et al., 2024)
leverage a supervised finetuning (SFT) model for
self-evaluation, the efficacy of the SFT model re-
mains uncertain, particularly in accurately assess-
ing the factuality of responses in relation to their
corresponding videos.

To tackle the aforementioned challenges, we in-
troduce a cost-effective reward mechanism that is
both computationally and financially efficient for
evaluating the quality of responses generated by
video LLMs, serving as a basis for further on-policy
preference optimization. We propose the use of de-
tailed video captions as a proxy for video content,
enabling a language model analyze the content and
assess the quality of an LMM’s response to related
questions. The language model generates natural
language feedback as a chain-of-thought step, and
produces a numerical score as the reward, thereby
creating an efficient feedback system.

However, high-quality video captions are essen-
tial for this process. To mitigate the shortage of
high-quality video captions, we have developed a
comprehensive video caption dataset, SHAREG-
PTVIDEO, using a simple prompting technique
with the GPT-4V model, comprising 900k cap-
tions that encompass a wide range of video content,
including temporal dynamics, world knowledge,
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Concatenate a sequence of frames to represent a video

GPT-4v

ChatGPT

SFT Data

A: They perform a sequence of movements 
including running, skillful footwork …

Q: What do the individuals perform in the video?

Imagining yourself as a customer service agent overseeing an 
uploaded video. The video comprises a sequence of frames…

Prompt

The video takes place on a grass soccer 
field with white boundary lines. It features 
two individuals, one wearing a light-colored 
football kit …

Detailed Video Caption

(A) Prompting for 
caption generation

LMM-SFT

(B) Video instruction 
Fine-tuning

Sampled Responses

Pred1: They are playing football.
Pred2: They are resting on grass.

…
Pred6: They are practicing wrestling.(C) Factually-enhanced DPO

sample

feedback

Figure 1: Workflow diagram showing: a) the use of GPT-4V for creating a detailed caption dataset for videos; b)
generating video instruction data for SFT; c) integrating captions into a feedback loop for DPO, improving the
model’s performance on video instruction-following tasks.

object attributes, and spatial relationships. With
this video caption dataset available, we verify that
our reward mechanism, which utilizes video cap-
tions as a proxy, is well-aligned with evaluations
derived from the more powerful, albeit costlier,
GPT-4V model-generated rewards. Employing this
reward mechanism as the basis for DPO algorithm,
we train LLAVA-HOUND-DPO that achieves an
8.1% accuracy improvement over the SFT counter-
part. This marks a significant advancement in video
LMM alignment and represents the first successful
application of a DPO method in this domain.

Our contributions are outlined as follows:

1. We release a large-scale detailed video cap-
tion (900k) and instruction-following (900k)
dataset covering a wide range of video content,
which facilitates video LMM model training
and research.

2. We demonstrate the effective application of
DPO to improve model performance by lever-
aging the language model feedback as reward,
which substantially improves model perfor-
mance on open-ended video QA tasks.

3. We propose an automated development
benchmark for evaluating video instruction-
following capability, serving as a cost-
effective way to validate model performance.

2 Related Work

2.1 Large Multi-Modal Models

LMMs (Liu et al., 2023b,a; Bai et al., 2023; Chen
et al., 2023; Li et al., 2023a) have enabled instruc-
tion following across modalities by utilizing LLM
as backbones. In the context of video understand-
ing, LLMs have been adapted to process video
content (Zhang et al., 2023a; Maaz et al., 2023; Li
et al., 2023b; Luo et al., 2023; Liu et al., 2023c; Jin
et al., 2024; Ahn et al., 2024; Zhang et al., 2024).
Models such as Qwen2-VL (Wang et al., 2024) and
InternVL-2.5 (Chen et al., 2024c), which scale in
both model size (ranging from 1 billion to 78 bil-
lion parameters) and training data volume, have
demonstrated highly competitive performance in
image and video understanding tasks. However,
these studies fall outside the scope of this research.
Our work adopts Video-LLaVA (Lin et al., 2023a)
backbone, focusing on model enhancement through
preference modeling with the DPO technique.

2.2 Video-text Datasets

Existing video-text datasets typically provide brief
sentences or mere keywords as captions, as indi-
cated by (Bain et al., 2021a; Wang et al., 2023;
Yu et al., 2019; Jang et al., 2017; Xu et al., 2016).
(Shvetsova et al., 2023). Video-ChatGPT (Li et al.,
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LMM-DPO

What is the second symbol 
drawn on the paper? 

Query LMM-SFT

The second symbol is a pound sign.
Sampled Output No. 1

The second symbol that is drawn on the blank piece of paper is 
"¥" which stands for Japanese Yen.

Sampled Output No. 2

Sampled Output No. 6
…The second symbol that is drawn is a dollar sign.

Given the following inputs:
1. **Ground Truth Video Caption**: {caption}
2. **Question Related to the Caption**: {query}
3. **Ground Truth Answer**: {answer}
4. **Model Predicted Answer**: {sampled_output}

Follow the guidelines to generate reward …

ChatGPT

(B) Language-based Feedback from ChatGPT as Reward

(C) Build Preference Dataset (highest paired with lowest, skip if all ≥ 3 or all <3)

Explanation: In the caption of the video, 
the second symbol drawn is a Japanese 
Yen, so the “dollar sign” in the model 
prediction is not accurate …. 
Reward: 2/5

No.6No.5No.4No.3No. 2No. 1Sampled Output

533421Scores

win:

lose:

No.6

No.1

(A) Sample Multiple Outputs from LLM with Temperate=1.0

Figure 2: Detailed illustration of the proposed factually-enhanced DPO method.

2023b) employs human effort to create high-quality
video instructions, albeit limited to the Activi-
tyNet domain with only 100k instruction pairs.
Short2Story (Han et al., 2023) and Vript (Yang
et al., 2024) employ GPT-4V for video captioning,
with audio details as outputs. Concurrent work
(Chen et al., 2024b) leverages GPT-4V to label
video captions. Furthermore, previous studies (Xu
et al., 2017; Grunde-McLaughlin et al., 2021; Wu
et al., 2024) have employed language models or
predefined question templates to generate question-
answer pairs. While these approaches can produce
a substantial volume of questions and answers, they
frequently result in low-quality questions that fail
to accurately reflect real-world user inquiries. Our
work leverages the GPT-4V model to generate de-
tailed video captions and introduces a paradigm
for producing question-answer pairs, which can be
effectively utilized for training video LLMs. Addi-
tionally, we release this resource as a community
asset for LMM training.

2.3 Preference Modeling for LMMs

Preference modeling techniques, such as
DPO (Deng et al., 2024; Yu et al., 2024; Li et al.,
2023d; Gunjal et al., 2023; Sun et al., 2023a)
and PPO (Sun et al., 2023a), have been applied
to LMM alignment. More recently, (Ahn et al.,
2024) employed reinforcement learning based on
AI feedback to enhance video LMM performance.
Our work extends DPO to video LMM alignment

by incorporating detailed captions as factual
evidence for reward modeling.

3 Method

As shown in fig. 1, our methodology enhances
video LMM alignment through DPO method using
rewards from a language model. We elaborate on
constructing a video caption dataset in section 3.1.
Subsequently, in section 3.2, we discuss the gener-
ation of video instruction data and the fine-tuning
process of our model. Lastly, section 3.3 details the
incorporation of generated captions as a feedback
mechanism for DPO method to refine our model’s
factual alignment in video instruction-following
tasks.

3.1 Prompting GPT-4V Model for Detailed
Video Caption Distillation

The selection of dataset includes videos from three
sources: WebVid (400k) and VIDAL (450k) Activ-
ityNet (50k) datasets. WebVid and VIDAL videos
are in the general domain sourced from YouTube,
and ActivityNet videos focus on human activities.
The three datasets together result in a comprehen-
sive collection of 900k videos. To accommodate
the requirement that GPT-4V only takes images as
input, we preprocess videos by uniformly extract-
ing ten frames per video content. These frames
are then concatenated into a sequence to serve as a
proxy for the video. We use GPT-4V to generate
a coherent caption for the represented video based
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Original Caption: When you flip a pancake (pt.26) #shorts

GPT-4V Annotation: The video begins with a close-up view of a pancake
on a griddle or pan, which has not been flipped yet, showing its
uncooked, batter side. The pancake is pale in color with bubbles forming
on the surface, typical of a pancake as it cooks. There is a spatula with a
novelty design. It resembles a Stormtrooper helmet from the Star Wars
franchise placed beside the pancake. Text urging the viewer to "Send this
to your bestie!" along with a Snapchat handle are overlaid on top of the
video. The spatula is then slid underneath the pancake, which is then
flipped over to reveal a cooked side featuring the drawing of a cartoon
crab and the phrase "U R CLAWSOME!" written on it. The cooked side of
the pancake has a golden-brown color, and the cartoon and text appear
to be created with some dark-colored substance, possibly chocolate or
some edible ink.

Figure 3: Example annotation in SHAREGPTVIDEO:
Our dataset provides more detailed video caption an-
notations. The red box demonstrates that textual in-
formation in the video is accurately extracted into the
caption, while the blue box illustrates the connection to
real-world knowledge, such as identifying the spatula’s
shape as resembling a Stormtrooper helmet from Star
Wars.

on the frame sequence. The prompt (fig. 19) ad-
heres to guidelines covering temporal dynamics,
world knowledge, object attributes, spatial relation-
ships, aesthetic assessments, etc., with the goal of
comprehensively understanding the video contents
(examples in fig. 3 and fig. 9).

3.2 SFT with Generated Video Instruction
Data from Detailed Caption

To generate video instruction-following data for
SFT, we adopt a similar methodology outlined
in Video-ChatGPT (Li et al., 2023b). Specifi-
cally, we first randomly sample 300k video cap-
tions and then employ ChatGPT to generate 3
question-answer pairs conditioned on each caption
(prompt in fig. 20). We release the 900k instruction-
following data to public, but we only use a random
subset of 240k for our training. This approach en-
sures that the instructional data remains factually
consistent with the content of the detailed captions.

3.3 DPO with Language Model Reward

Acquiring high-quality on-policy preference data
can be costly and labor-intensive. Although GPT-
4V can be used for reward distillation, for video
data, its high computation cost1, slow response, and

1Video representation is typically encoded with 2048 to-
kens, while our captions only uses roughly 140 tokens.

limited accessibility hinder scalability. We propose
a cost-efficient method to generate reward data for
DPO using detailed video captions as supporting
evidence, as shown in fig. 2.

Initially, we randomly select a subset of 20k
instruction pairs from the dataset described in sec-
tion 3.2. The SFT model generates six responses
per input at a temperature of 1.0. This proce-
dure results in 120k question-answer pairs. Subse-
quently, we employ ChatGPT to evaluate the model
responses based on the ground truth answer and
detailed description (prompt in fig. 22). ChatGPT
generates an output that includes a natural language
explanation as chain-of-thought step, followed by
a numerical reward score on a scale from 1 to 5,
indicating the overall quality.

For each video and question pair, we randomly
select an answer with a score ≥ 3 as positive
example, and an answer with a score below 3
as negative. Cases where all responses are uni-
formly scored above or below 3 are excluded from
the dataset. After the selection process, approx-
imately 17k training instances are compiled for
DPO training. Formally, the dataset is denoted as
DDPO = {(V, x, yw, yl)}, where V is the video,
x is the question, yw and yl are the positive and
negative responses. The DPO objective is defined
as below:

LDPO (πθ;πref) = −E(V,x,yw,yl)∼DDPO

[

log σ

(
β log

πθ (yw | x,V)
πref (yw | x,V) − β log

πθ (yl | x,V)
πref (yl | x,V)

)]
,

where πθ is the policy model to be optimized and
πref is the base reference model, both models are
initialized with SFT weights. σ is the logistic func-
tion and β is set to 0.1.

For on-policy reward generation, our method in-
curs a cost of less than $20, under a pricing model
of $1.5 per million tokens. In comparison, previ-
ous methods of preference data collection, such as
in (Sun et al., 2023a), required an expenditure of
$3,000 to gather 10k human preference data points.
Additionally, the method proposed by (Li et al.,
2023d), which employs GPT-4V for reward data
labeling, incurs a significantly higher cost—$30
per million tokens—and demonstrates considerably
slower inference speeds.
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75.53%

Majority of

ChatGPT scores

are within

GPT-4v scores
±σ = 1.31

(ChatGPT score
− GPT-4v score)

WebVid 45 111 71.2%

Vidal 31 88 73.9%

ActNet 31 87 73.7%

RateName Disagree Agree

Figure 4: Assessing Evaluator Quality Using Captions in Place of Frames. The left figure shows the distribution of
evaluation score differences between ChatGPT (with caption as proxy) and GPT-4V (directly on frames) evaluations.
The right figure shows the rate of preference agreement between ChatGPT and GPT-4V as evaluators.

4 Assessment of Evaluator with GPT-4V
Caption as Video Content

To assess the effectiveness of our proposed reward
assignment method, we conducted a comparative
analysis the GPT-4V used as a video QA evaluator.
Our method utilizes detailed captions as a proxy of
actual video frames, while GPT-4V directly takes
in video frames as inputs. Both reward systems
follow the same set of guidelines for scoring reward
(prompt in fig. 23).

To compare the two methods, we sample 200
videos from each of the WebVid, VIDAL, and Ac-
tivityNet datasets, each associated with one ques-
tion and two model predictions from our SFT
model, with one preferred and one dispreferred
by ChatGPT. This results in 1, 200 examples, for
which we used GPT-4V to assign scores. Filter-
ing through the Azure API backend resulted in 196,
151, and 143 videos from each dataset, respectively,
having both answers evaluated. The average scores
of all examples from ChatGPT and GPT-4V eval-
uations were 2.9 and 3.5 respectively, indicating a
tendency of GPT-4V to yield slightly positive evalu-
ations. The Pearson Correlation Coefficient (PCC)
of 0.47 (p < 0.01) suggests a moderate positive
correlation. In fig. 4 (left), the distribution of the
difference between ChatGPT and GPT-4V scores
reveals that majority (> 75%) of ChatGPT scores
fall within one standard deviation (σ = 1.31) of
GPT-4V scores. Additionally, in fig. 4 (right), the
agreement on preference between ChatGPT and
GPT-4V, excluding ties, exceeded 70%. These find-
ings cautiously support our benchmark’s applica-
bility in video QA evaluation. Further refinements
for better alignment—such as incorporating Likert
scales (Zhou et al., 2023) or GPT-4 evaluation—are

areas for future research.
Human Annotation of Captions: To evaluate the
quality of the distilled captions, we conducted hu-
man annotations focusing on two aspects: cover-
age and accuracy (hallucination). Annotators were
asked to assess each caption by identifying the num-
ber of missing items and the number of incorrect
facts. The assessment was performed on a sample
of 75 videos, with 25 from each domain. The re-
sults showed that annotators identified a total of
21 inaccurate items across 14 videos (accuracy:
81%) and 12 missing items across 8 videos (accu-
racy: 89%). Annotated examples are provided in
appendix D.

5 Experiments

We adopt Video-LLaVA (Lin et al., 2023a) as the
backbone of our video LMM, but our method can
be applied to any other architectures as well.
Caption Pre-training Stage (LLAVA-HOUND-
PT): We use captioning data including 650k image
caption data from ALLaVA (Chen et al., 2024a)
and our distilled 900k video caption. We freeze the
visual encoder and fine-tune the MLP projector and
LLM, with learning rate 2e-5 and batch size 128.
SFT Stage (LLAVA-HOUND-SFT): We use 600k
image instruction data from ALLaVA and our gen-
erated 240k video instruction data, with learning
rate 5e-6 and batch size 128.
DPO training Stage (LLAVA-HOUND-DPO):
We use the 17k preference data introduced in sec-
tion 3.3 for DPO training. Following (Ivison et al.,
2023), we train our policy model with full model
training for 3 epochs with learning rate 5e-7, and
a batch size of 128. All the experiments are per-
formed on 8 A100 gpus.
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Existing Video QA Benchmark from (Maaz et al., 2023)

Methods LLM Size MSVD-QA MSRVTT-QA TGIF-QA

Acc. Score Acc. Score Acc. Score

FrozenBiLM (Yang et al., 2022)∗ 1B 32.2 - 16.8 - 41.0 -
VideoLLaMA (Zhang et al., 2023a)∗ 7B 51.6 2.5 29.6 1.8 - -
LLaMA-Adapter (Zhang et al., 2023b)∗ 7B 54.9 3.1 43.8 2.7 - -
VideoChat (Li et al., 2023b)∗ 7B 56.3 2.8 45.0 2.5 34.4 2.3
BT-Adapter (Liu et al., 2023c)∗ 7B 67.5 3.7 57.0 3.2 - -
Video-ChatGPT (Maaz et al., 2023) 7B 68.6 3.8 58.9 3.4 47.8 3.2
Chat-UniVi (Jin et al., 2023) 7B 70.0 3.8 53.1 3.1 46.1 3.1
VideoChat2 (Li et al., 2023c) 7B 70.0 3.9 54.1 3.3 - -
Video-LLaVA (Lin et al., 2023b) 7B 71.8 3.9 59.0 3.4 48.4 3.2
LLaMA-VID (Li et al., 2023e) 7B 72.6 3.9 58.7 3.4 49.2 3.3
LLaMA-VID (Li et al., 2023e) 13B 74.3 4.0 59.8 3.4 50.8 3.3
VLM-RLAIF (Ahn et al., 2024)∗ 7B 76.4 4.0 63.0 3.4 - -

LLAVA-HOUND-SFT 7B 75.7 3.9 58.7 3.3 53.5 3.3
LLAVA-HOUND-DPO 7B 80.7 4.1 70.2 3.7 61.4 3.5

Table 1: Evaluation of Model Performance on Zero-Shot Video Question Answering Benchmarks Using
gpt-3.5-turbo-0613. Models denoted with ∗ have their results directly sourced from their original publications.
Caution is advised when interpreting these results; see Appendix A for an in-depth analysis of evaluation challenges.
All other baseline models were reproduced by our team.

No. Methods Next-QA

Acc. Score

[1] Video-ChatGPT (Maaz et al., 2023) 45.23 2.09
[2] LLaMA-VID-7B (Li et al., 2023e) 49.43 3.24
[4] Chat-UniVi (Jin et al., 2023) 47.62 3.14
[5] Video-LLaVA (Lin et al., 2023b) 48.97 3.25

[6] LLAVA-HOUND-SFT 60.60 3.51
[7] LLAVA-HOUND-DPO 74.27 3.74

Table 2: Evaluation on Next-QA benchmark using gpt-
3.5-turbo-0611 on official test set.

5.1 Benchmark Evaluation

Dataset and Testing Environment We evaluate
model performance on four benchmark datasets:
MSVD-QA (Chen and Dolan, 2011), MSRVTT-
QA (Xu et al., 2016), TGIF-QA (Jang et al., 2017),
and Next-QA (Xiao et al., 2021) using ChatGPT
with version gpt-3.5-turbo-0611 to assess model
predictions. The evaluation prompts follow (Maaz
et al., 2023). In our experiment, we found that
different ChatGPT versions have high impact on
absolute score of metric, but the overall ranking of
models is relatively stable. We select gpt-3.5-turbo-
0613 due to its closeness to the reported score in
Video-LLaVA paper. Further details on the selec-
tion rationale and evaluation pitfalls are discussed
in Appendix A.

Baseline Selection We select video LMM mod-
els that have demonstrated SOTA performance with
with accessible code and checkpoints at the time of
paper writing, specifically including Video-LLaVA,
which is also our choice of architecture. We repli-
cate results including Video-ChatGPT (Maaz et al.,
2023), LLaMA-VID (Li et al., 2023e) (7B and
13B), Chat-UniVi (Jin et al., 2023), and Video-
LLaVA (Lin et al., 2023b). We copy the re-
sults from additional baselines including Frozen-
BiLM (Yang et al., 2022), VideoChat (Li et al.,
2023b) and VideoLLaMA (Zhang et al., 2023a),
sourced from their original publication.

Results In table 1, our analysis shows that
within the SFT models, LLaMA-VID-7B and
Video-LLaVA exhibit comparable performance,
with LLaMA-VID-13B performing the best. Our
LLAVA-HOUND-SFT model achieves compara-
ble performance to LLaMA-VID-13B. Incorporat-
ing preference modeling, LLAVA-HOUND-DPO
achieves an average accuracy of 70.75%, surpass-
ing LLAVA-HOUND-SFT, which has an aver-
age accuracy of 62.65%, by 8.1%. Furthermore,
LLAVA-HOUND-DPO exhibits superior accuracy
compared to other RL methods such as VLM-
RLAIF. In table 2, our model demonstrated consis-
tent result on a relative new benchmark Next-QA.

Error Analysis Figure 5 illustrates two exam-
ples. In the left example, LLAVA-HOUND-SFT
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Proposed Video QA Benchmark (In-domain)

No. Methods ActivityNet-QA VIDAL-QA WebVid-QA

Acc. Score Acc. Score Acc. Score

[1] Video-ChatGPT (Maaz et al., 2023) 34.17 2.19 29.35 2.10 38.88 2.27
[2] LLaMA-VID-7B (Li et al., 2023e) 36.54 2.27 30.58 2.15 36.99 2.24
[3] LLaMA-VID-13B (Li et al., 2023e) 37.33 2.29 32.50 2.18 39.73 2.30
[4] Chat-UniVi (Jin et al., 2023) 39.35 2.32 31.40 2.16 40.05 2.31
[5] Video-LLaVA (Lin et al., 2023b) 41.35 2.38 34.30 2.24 42.47 2.39

[6] LLAVA-HOUND-SFT 66.62 3.05 60.50 2.88 71.07 3.17
[7] LLAVA-HOUND-DPO 76.62 3.18 70.06 3.04 79.82 3.29
[8] LLAVA-HOUND-PT + Image Inst. 69.31 3.09 60.57 2.85 68.03 3.02
[9] LLAVA-HOUND-PT + VChat 67.34 3.02 62.33 2.89 68.98 3.00

[10] LLAVA-HOUND-DPO + training MLP 71.89 3.10 65.57 2.95 75.37 3.21
[11] LLAVA-HOUND-SFT + Self-play 64.11 2.85 56.28 2.68 67.89 2.95
[12] LLAVA-HOUND-DPO w/ lr3e-7 71.13 3.08 64.90 2.92 73.25 3.17

Table 3: Our proposed video QA benchmark evaluation on in-domain dataset using gpt-3.5-turbo-0301, with detailed
captions as supporting evidence.

Proposed Video QA Benchmark (Out-of-domain)

Methods MSVD-QA MSRVTT-QA TGIF-QA SSV2-QA

Acc. Score Acc. Score Acc. Score Acc. Score

Video-ChatGPT (Maaz et al., 2023) 34.06 2.20 25.65 1.98 31.35 2.09 19.36 1.75
LLaMA-VID-7B (Li et al., 2023e) 34.14 2.21 25.02 1.99 27.18 2.00 22.16 1.84
LLaMA-VID-13B (Li et al., 2023e) 35.81 2.25 26.34 2.02 27.58 2.01 21.98 1.83
Chat-UniVi (Jin et al., 2023) 35.61 2.23 25.89 2.01 33.23 2.13 20.59 1.79
Video-LLaVA (Lin et al., 2023b) 39.46 2.37 30.78 2.15 32.95 2.18 24.31 1.90

LLAVA-HOUND-SFT 66.99 3.09 57.82 2.85 66.13 3.07 35.07 2.23
LLAVA-HOUND-DPO 73.64 3.12 68.29 2.98 74.00 3.12 48.89 2.53
LLAVA-HOUND-PT + Image Inst. 65.19 2.96 48.66 2.52 53.83 2.62 29.60 2.04

Table 4: Our proposed video QA benchmark evaluation on out-of-domain dataset using gpt-3.5-turbo-0301, with
detailed captions as supporting evidence.

provides an accurate description of the video’s first
half but introduces a hallucination with the phrase
“I’m not scared of space," absent in the video con-
tent. LLAVA-HOUND-DPO yields a more accu-
rate inference. In the right example, both LLAVA-
HOUND-SFT and Video-LLaVA models produce
incorrect inferences, whereas LLAVA-HOUND-
DPO successfully correctly identifies the subject
in the video.

5.2 Open-ended QA Analysis

In this section, we conduct analysis on open-
ended long-form QA with a proposed development
benchmark. Specifically, we select 2,000 videos
from each source: WebVid (Bain et al., 2021b),
VIDAL (Zhu et al., 2023), ActivityNet (Fabian
Caba Heilbron and Niebles, 2015), MSRVTT (Xu

et al., 2016), MSVD (Chen and Dolan, 2011),
TGIF (Jang et al., 2017), and Something-something
V2 (SSV2) (Goyal et al., 2017). For each video,
ChatGPT was utilized to generate three QA pairs
based on the detailed captions, and we evaluate
model predictions with our reward mechanism.
WebVid, VIDAL, ActivityNet are classified as in-
domain, which are involved in the model’s training
pipeline. MSRVTT, MSVD, TGIF, SSV2 are clas-
sified as out-of-domain.

The evaluation reveals insights into (1) the qual-
ity of long-form open-ended QA, (2) in-domain
and out-of-domain generalization, and (3) Abla-
tions on SFT and DPO experiments. Additionally,
we select our best performing model on the devel-
opment bench before evaluating on public bench-
marks, which avoids tuning hyperparameters on
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Question ID: v_video9990_0 (MSRVTT-QA)
Question: what do a show about on a cartoon show?
GT: superhero

Video-LLaVA Prediction: The video shows a cartoon show called 
"The Smurfs" and it features a character named Smurfette who 
is shown in a pink dress.

SFT: The video shows a cartoon character in a spacesuit floating in 
space with a speech bubble that reads "I'm not scared of space."

Question ID: v_uiLr9bdOL0M_23_30_2 (MSVD-QA)
Question: what moves a plastic glass containing liquid into 
a bowl? 
GT: bird

Video-LLaVA Prediction: A person’s hand moves the plastic 
glass containing liquid into the bowl.

SFT: A person’s hand moves a plastic glass containing liquid 
into a bowl.DPO: The show appears to be about adventure and 

exploration, as indicated by the animated characters and their 
actions.

DPO: The parrot moves a plastic glass containing liquid 
into a bowl.

Figure 5: Examples from MSRVTT-QA and MSVD-QA showcase that our LLAVA-HOUND-DPO generates better
responses, and reveal key limitations of the existing benchmark evaluation.

test data. Comparisons are shown in appendix E.
Domain Generalization: Table 3 and table 4
shows the in-domain and out-of-domain evaluation.
SFT with our data tends to perform better both in-
and out-of-domain, and DPO further enhances the
model performance, showing the effectiveness of
preference modeling.
Video LMM without Video Instruction: [8] in
table 3 is baseline trained with only image instruc-
tion fine-tuned on LLAVA-HOUND-PT, which
achieves an average accuracy of 65.97%, compara-
ble to the LLAVA-HOUND-SFT model’s 66.06%
in in-domain QA scenarios. However, its perfor-
mance significantly drops in out-of-domain QA
contexts (49.32% vs. 56.50%), suggesting that
Video QA training could potentially enhance gen-
eralization capabilities.
Quality of Generated SFT: [9] substitutes our gen-
erated video QA with the Video-ChatGPT dataset
for Video-LLaVA fine-tuning. A comparison be-
tween the findings of [9] and [6] reveals a marginal
performance disparity of 0.2% in average accu-
racy, indicating that the quality of our generated
QA closely parallels that of the existing video QA
datasets. Given the similar quality in SFT data,
the large gain of [6] over [5] can be reasonably
concluded from large-scale pre-training on video
captions.
Unfreeze MLP: The comparison between [10] and
[7] reveals a significant decrease in performance
when the MLP is unfrozen during DPO training.
Despite this drop, however, the performance re-
mains superior to that of the SFT baseline.
Smaller Learning Rate: The comparison between
[12] and [7] reveals that using a smaller learning

rate of 3e-7 (vs. 5e-7) results in a decreasing of
model performance. This highlights the future im-
provements by finding better hyperparameters.

Self-Play vs. DPO: (Chen et al., 2024d) introduced
a self-play methodology for DPO training, which
designates ground truth answers as preferred and
model-generated responses as dispreferred. When
comparing the results of [11] with those in [6], a
notable decrease in accuracy by 3% from the SFT
model is observed, suggesting that self-play may
be less effective for video LMM alignment, and
introducing reward model is helpful.

DPO Accuracy vs. Training Epochs. The left of
fig. 6 depicts the generalization performance of the
model on out-of-domain video QA tasks with re-
spect to the number of training epochs. We observe
a consistent enhancement in model performance
among datasets during the initial 0 to 2 epochs,
with peak performance materializing at around 2.5
epochs, which corresponds to 350 training steps.

Test-time Compute. Previous works have demon-
strated that leveraging test-time compute by gen-
erating and evaluating multiple candidates can en-
hance model performance (Hosseini et al., 2024).
In this study, we assess the effectiveness of test-
time compute and compare its performance with
direct inference using our DPO model. For ranking,
we employ the DPO model as a ranker to score can-
didate answers produced by the SFT model, oper-
ating at a temperature setting of 1.0. As illustrated
on the right in fig. 6, we present the test accuracy
progression when selecting the best among N can-
didates using the DPO ranker. Initial observations
reveal that the SFT model, when set to a tempera-
ture of 1.0, attains a lower accuracy (43.3%) com-
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Figure 6: The left figure shows the test set accuracy of the DPO model w.r.t the number of training epochs. The
right figure shows a comparison of DPO model performance as generator vs. ranker.

pared to greedy decoding (57.8%). A consistent
improvement in performance is observed as the
number of candidates increases, eventually plateau-
ing at approximately 62% accuracy with 64 candi-
dates. However, this performance remains inferior
to direct answer generation using the DPO model,
which achieves an accuracy of 68.29%. This dis-
crepancy suggests that the DPO model exhibits
stronger generalization in answer generation, de-
spite being trained with a reward classification loss.
The contrasting results compared to (Hosseini et al.,
2024) may stem from task differences, specifically
Math QA versus Video QA. Refer to appendix F
for more results.

6 Conclusion

We study the techniques for effective video LMM
alignment. Specifically, we propose an cost-
effective reward system that utilizes detailed cap-
tions as proxies for video content. We have shown
the reward scores is well-aligned with the evalua-
tion metrics of GPT-4V, and DPO training greatly
enhances model performance. In addition, we have
released 900k detailed video caption, 900k video
instruction-following data, and 17k preference data
pairs, with a complete code pipeline including pre-
training for video captioning, fine-tuning for video
instruction following and reinforcement learning
with DPO for better LMM alignment.

7 Limitations

Firstly, several evaluation datasets, such as Video-
MME (Fu et al., 2024) featuring multiple-choice
questions, were not included in our study. These

datasets were available at or before the completion
of our manuscript. Given our focus on enhancing
open-ended question answering, multiple-choice
datasets were not incorporated into our training pro-
cess. Consequently, we did not retrain the model
to include this data.

Secondly, the benchmark we developed is fully
automated and does not incorporate human cor-
rections for captions and QA. Human annotations
indicate that caption accuracy ranges from 80% to
90%, inherently introducing errors. Therefore, we
recommend using this benchmark solely for model
development and hyperparameter tuning, treating
performance metrics as indicative rather than defini-
tive.
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A Effect of ChatGPT Version on Official Benchmark Evaluation

Methods LLM Size MSVD-QA MSRVTT-QA TGIF-QA Summary

Acc. Score Acc. Score Acc. Score Avg Acc. Rank
gpt-3.5-turbo-0301 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 78.62 4.00 71.67 3.63 56.31 3.45 68.87 6
LLaMA-VID (Li et al., 2023e) 7B 82.57 4.12 71.94 3.65 59.00 3.63 71.17 4
LLaMA-VID (Li et al., 2023e) 13B 83.72 4.16 73.63 3.68 59.72 3.66 72.36 3
Chat-UniVi (Jin et al., 2023) 7B 80.52 4.02 66.92 3.41 57.73 3.49 68.39 7
Video-LLaVA (Lin et al., 2023b) 7B 81.44 4.08 73.29 3.65 58.34 3.61 71.02 5
LLAVA-HOUND-SFT 7B 85.65 4.10 73.85 3.62 64.98 3.65 74.83 2
LLAVA-HOUND-DPO 7B 88.50 4.20 82.10 3.84 75.48 3.81 82.03 1

gpt-3.5-turbo-0613 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 68.55 3.80 58.90 3.36 47.83 3.21 58.43 6
LLaMA-VID (Li et al., 2023e) 7B 72.62 3.92 58.73 3.38 49.21 3.28 60.19 4
LLaMA-VID (Li et al., 2023e) 13B 74.29 3.96 59.82 3.41 50.83 3.33 61.65 3
Chat-UniVi (Jin et al., 2023) 7B 70.01 3.79 53.08 3.14 46.09 3.12 56.39 7
Video-LLaVA (Lin et al., 2023b) 7B 71.75 3.88 58.97 3.39 48.39 3.24 59.70 5
LLAVA-HOUND-SFT 7B 75.70 3.86 58.73 3.31 53.51 3.30 62.65 2
LLAVA-HOUND-DPO 7B 80.73 4.07 70.15 3.66 61.38 3.46 70.75 1

gpt-3.5-turbo-1106 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 73.02 4.01 62.09 3.61 47.76 3.36 60.96 6
LLaMA-VID (Li et al., 2023e) 7B 75.49 4.08 62.09 3.61 51.72 3.47 63.10 4
LLaMA-VID (Li et al., 2023e) 13B 76.97 4.10 63.16 3.61 52.53 3.50 64.22 3
Chat-UniVi (Jin et al., 2023) 7B 72.22 3.92 55.02 3.35 48.16 3.31 58.47 7
Video-LLaVA (Lin et al., 2023b) 7B 74.76 4.04 62.70 3.60 51.21 3.45 62.89 5
LLAVA-HOUND-SFT 7B 81.09 4.08 64.13 3.57 58.05 3.53 67.76 2
LLAVA-HOUND-DPO 7B 86.05 4.23 76.75 3.85 70.02 3.71 77.61 1

Table 5: Performance Evaluation Across ChatGPT Versions on Zero-Shot Video Question Answering Bench-
marks. This table compares the performance of state-of-the-art video LMMs evaluated under different ChatGPT
versions. The absolute performance metrics scored by ChatGPT vary by versions. However, the comparative ranking
of models under the same ChatGPT version is relatively stable.

In Table 5, we show impact of using different ChatGPT versions on metric scores within zero-shot
video question answering benchmarks. Our analysis reveals significant variations in the absolute scores
across ChatGPT versions, but based on the average accuracy metric, the relative ranking of models under
the same ChatGPT version shows consistency.

This comparison underscores a critical issue: many prior studies neglect to specify the ChatGPT
version used, potentially leading to inaccurate conclusions during evaluation. We advocate for the explicit
designation of the ChatGPT version in future evaluations. Analysis from Table 5 indicates that the version
gpt-3.5-turbo-0613 aligns most closely with the performance of the Video-LLaVA (Lin et al., 2023a)
model, serving as the benchmark for model performance comparison in our study.
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B Evaluation of Captioning Ability from pre-training
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Figure 7: Training subsets exhibit varying levels of generalization difficulty. The WebVid subset (left) requires less
data compared to the VIDAL subset (right)
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Figure 8: The video caption ability w.r.t number of training data evaluated on both in-domain and out-of-domain
test videos using GPT-4V.

In Figure 8, we present the video captioning ability of models across various datasets, with a total of
900k distilled data instances. GPT-4V is employed for self-evaluation (fig. 21), serving as the upper-bound
performance, while the Video-LLaVA serves for comparative analysis, establishing a baseline. Notably,
Video-LLaVA is trained on 54k video QA data instances. However, our first checkpoint, utilizing only
10% of the data, is trained on 90k high-quality caption data instances, likely accounting for the observed
performance disparity in the video captioning task. Our results demonstrate that incorporating more
distilled data contributes to improved model performance across both in-domain and out-of-domain
datasets. Despite these improvements, a performance discrepancy with the GPT-4V model remains.
Further, we evaluate the generalization potential in specific data subsets, as shown in fig. 7 in the
Appendix. These subsets reveal varying degrees of generalization challenges for different types of dataset.
For example, the WebVid subset, which concentrates on relatively static scenes, necessitates less data for
effective training compared to the VIDAL subset, which is marked by dynamic scene transitions and a
diversity of video themes.
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C GPT-4V Caption Distillation

Original Caption: When you flip a pancake (pt.26) #shorts

GPT-4V Annotation: The video begins with a close-up view of a pancake 
on a griddle or pan, which has not been flipped yet, showing its 
uncooked, batter side. The pancake is pale in color with bubbles forming 
on the surface, typical of a pancake as it cooks. There is a spatula with a 
novelty design. It resembles a Stormtrooper helmet from the Star Wars 
franchise placed beside the pancake. Text urging the viewer to "Send this 
to your bestie!" along with a Snapchat handle are overlaid on top of the 
video. The spatula is then slid underneath the pancake, which is then 
flipped over to reveal a cooked side featuring the drawing of a cartoon 
crab and the phrase "U R CLAWSOME!" written on it. The cooked side of 
the pancake has a golden-brown color, and the cartoon and text appear 
to be created with some dark-colored substance, possibly chocolate or 
some edible ink.

Original Caption: Time-lapse of purple iris flowers blooming.

GPT-4V Annotation: The video captures a close-up time-lapse 
of purple irises with bright yellow accents against a black 
background. Initially, the buds are tightly closed, with green 
sepals protecting the petals. As the frames advance, the buds 
begin to open slowly, revealing the velvety texture and deep 
purple hue of the petals. The blooming is sequential, with 
some buds opening earlier than others, offering a dynamic 
contrast between the stages of bloom. At final bloom, the 
yellow stamen stands out against the purple petals. 
Throughout the sequence, the number of visible flowers 
changes.

Figure 9: A showcase of our dataset for detailed video caption automatically distilled from GPT-4V via our prompt
technique in section 3.

D Human Annotated Examples of Distilled Captions

GPT-4V Caption
Initially, the video displays a curved road lined with multiple orange traffic 
cones and greenery on either side. The focus shifts to a large, dark-colored 
truck approaching, its engine sound becoming increasingly prominent. The 
camera angle changes to the rear of the truck, revealing a runner, wearing a 
blue top with a white number bib marked '108', passing the truck on its left 
side. The video concludes with the truck's rear-end seen driving away with the 
traffic cones visible in the background.

Human Annotation
Inaccuracy (Hallucination):
1. The truck is driving away instead of approaching
Coverage:
1. The runner is holding a cup-like item

WebVid Video ID: 2994286

Figure 10: Human Annotation Analysis: The video frames depict a truck driving away from the camera, but the
distilled caption incorrectly describes the direction, which is identified as a hallucination. Additionally, human
annotators noted that the GPT-4V model failed to recognize a man holding a cup.

708



GPT-4V Caption
The cat is observed suspended by a limb caught in an electrical cable. It is a 
light-colored feline, possibly tan or cream, with a noticeably fluffy tail. Below, 
the person stands on what appears to be a blue stool or small ladder, reaching 
out towards the cat in an attempt to free it. The environment includes a green, 
neatly trimmed bush directly under the cat, and to the side, there appears a 
section of a vehicle – likely a car, suggesting the proximity to a driveway or 
parking spot. The pavement where these activities are occurring has a distinct 
pattern, likely tiles, surrounded by green grass, which borders a residential 
building. Above, an electrical pole is partially visible with thick cables extending 
from it – one of which the cat is caught in.

Human Annotation
Inaccuracy (Hallucination):
1.No blue stool or ladder visible

Coverage:
-

Vidal Video ID: -d3h9kQAMvw 

Figure 11: Human Annotation Analysis: GPT-4V incorrectly identified a man wearing blue pants as a man standing
on a blue ladder, which is labeled as a hallucination.
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GPT-4V Caption
Initially, two people are seen sitting on the floor with crafting materials. They both 
wear casual clothing: one in a dark blue long-sleeve top with "Johnny’s BBQ" 
written on it and the other in a red and black checkered shirt. They appear to be 
in a cozy room with a wooden floor and a heater in the background. The next 
scenes showcase the crafting process in detail, focusing on hands carefully 
placing square-shaped burgundy materials with patterned textures onto a lighter 
brown base. The precision of their movements suggests they are experienced in 
this type of work.

Human Annotation
Inaccuracy (Hallucination):
1. The text on shirt should be “Jimmy’s BBQ”
Coverage:
1. Missing text: “Step 3: Adhere Squares Together”

ActivityNet Video ID: v__Y4czVoIxvE-Scene-006 

Figure 12: Human Annotation Analysis: The example demonstrates OCR hallucination and a coverage issue. The
text on the woman’s t-shirt is incorrectly labeled as ‘Johnny’s BBQ’ instead of ‘Jimmy’s BBQ.’ Additionally, the
text ‘Step 3: Adhere Squares Together’ is missing from the description.

GPT-4V Caption
The video showcases multiple scenes from a soccer match being played on a 
field surrounded by an athletic track. It appears to be in the evening, and a 
scoreboard is visible in the background indicating the game is underway. The 
players, wearing contrasting uniforms, are seen running, maneuvering the ball, 
and aiming at the goal. The crowd can be faintly seen on the sidelines watching 
the game.

Human Annotation

Inaccuracy (Hallucination):
-

Coverage:
1. “Gopher” and “Coca Cola” on the board
2. Score board shows time left

ActivityNet Video ID: v__wITx73-BXw-Scene-003

Figure 13: Human Annotation Analysis: The caption does not contain any hallucinations, but some text recognized
by human annotators is missing, such as ‘Coca Cola’ and ‘Gopher’ on the scoreboard, as well as the time of the
score match shown.
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ActivityNet Video ID: v__Wag6CT_0j8-Scene-003

GPT-4V Caption
Throughout the video, there are multiple sequences featuring women in athletic 
attire engaged in a field hockey match. The players are distributed across a well-
maintained, green artificial turf field. Two teams are visible: one in dark blue and 
white striped jerseys, and the other in white jerseys with black numerals. The 
white-jersey team appears to be on defense, while the dark-jersey team is in an 
offensive posture, advancing the ball. Some of the key visual elements include the 
athletic gear, such as shin guards, field hockey sticks, and cleats that the players 
are wearing. The background includes features like team benches, spectator 
stands, and a scoreboard that shows "MONMOUTH 0 2nd RIDER 2". Throughout 
the various frames of the video, players can be seen running, likely maneuvering 
the ball, and repositioning to either defend or continue their offensive push. 
Ambient shadows suggest sunny weather conditions during the recording of this 
match.

Human Annotation

Inaccuracy (Hallucination):
-

Coverage:
1. Score transition from "MONMOUTH 0 2nd 
RIDER 2” to "MONMOUTH 1 2nd RIDER 2".

Figure 14: Human Annotation Analysis: The figures illustrate a scoring transition that is not recognized by the
GPT-4V model, highlighting the challenge of using static frames for accurate captioning.
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E Video QA Dataset Demonstration

To build the test dataset, we curated a dataset comprising 2,000 videos from each source: WebVid (Bain
et al., 2021b), VIDAL (Zhu et al., 2023), ActivityNet (Fabian Caba Heilbron and Niebles, 2015),
MSRVTT (Xu et al., 2016), MSVD (Chen and Dolan, 2011), TGIF (Jang et al., 2017), and Something-
something V2 (SSV2) (Goyal et al., 2017). For each video, ChatGPT was utilized to generate three
QA pairs based on the detailed captions. The first three datasets (WebVid, VIDAL, ActivityNet) are
classified as in-domain, since the captions and QA pairs derived from these sources are used in the model’s
training pipeline. Conversely, the remaining datasets (MSRVTT, MSVD, TGIF, SSV2) are classified as
out-of-domain, evaluating model’s zero-shot QA ability.

Appendix E compares our development benchmark with existing benchmark dataset, we identify several
issues with the existing evaluation methods: (1) the auto-generated questions from current benchmarks
may be grammatically incorrect or nonsensical, and (2) the answers are limited to a single word, which
is inadequate for evaluating LMMs in the context of long-form QA. We conduct further analysis on
open-ended long-form QA with a proposed development benchmark.

We apply our reward system as described in section 4 and report scores from ChatGPT. A score of ≥ 3
is considered correct for accuracy calculations. The development benchmark reveals insights into (1) the
quality of long-form open-ended QA, and (2) in-domain and out-of-domain generalization. Additionally,
our development benchmark results correlate with existing benchmarks. We recommend that models be
evaluated on the development benchmark first, followed by human evaluation.

Q: what is a suit man doing? 
A: talk

Q: who is speaking about the relevance 
of disorders? 
A: man

MSRVTT Video ID: video7012

Q: what does a man seated in a chair 
discuss?
A: health

Q: What decorative items are on the desk in the video and what does the lighting in the room look 
like?

A: The desk in the video features a couple of decorative items including a blue-striped spherical 
object and a small chrome lamp with a white shade. The lighting in the room is soft and comes from 
the person's left side, casting soft shadows.

Q: What is the person in the video doing and what does their appearance suggest?

A:  The person in the video is sitting in a leather chair against a wooden backdrop with framed art 
and a small light fixture on the wall and appears to be delivering a speech or presentation. Their 
appearance suggests that they are confident and engaged in the presentation or interaction.

Our Video QA Dataset

Existing Video QA Dataset

Figure 15: Comparing testing QA in existing benchmark with that in our proposed new benchmark.
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Q: what are girls and their 
mom doing?
A: marble

Q: what is kids doing?
A: color

Q: who does a woman teach how to 
paint eggs?
A: girl

Q: What is the purpose of the video?
A: The purpose of the video is to showcase the process of dyeing Easter eggs.

Q: What are the tools and materials used in the video?
A: The tools used in the video are a wire egg holder, and the materials are a variety of colorful dyes, 
eggs, and a tablecloth.

Q: What is the significance of the tablecloth in the video?
A: The tablecloth is adorned with whimsical fish designs and protects the workspace where the 
dyeing process takes place.

Our Video QA Dataset

Existing Video QA Dataset

MSRVTT Video ID: video7016

Figure 16: Comparing testing QA in existing benchmark with that in our proposed new benchmark, example 2.
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F Additional DPO Results
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Figure 17: Test Set Accuracy of the DPO Model vs. Training Epochs. The figure illustrates a consistent trend
in both in-domain and out-of-domain video QA, with peak performance occurring at approximately epoch 2.5,
equivalent to 350 training steps.
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Figure 18: Comparison of DPO Model Performance: Ranker vs. Generator. The DPO model serves as a ranker,
assigning reward scores to candidate answers generated by the SFT model with a temperature setting of 1.0.
Employing the DPO model directly for answer generation results in superior performance compared to its use as a
ranker.
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G Prompts for GPT-4V and ChatGPT Queries

Picture yourself as a customer service agent managing user-uploaded video. The
uploaded video, captioned with '{}', consists of a seires of images. All the
analysis should be video-level. Your duty is to summarize video content,
highlighting actions and object relationships. Follow this with a detailed
description. The summary briefly covers actions and relationships, while the
detailed description delves into factual, visible details with a logical
structure, considering elements like color, shape, attribute, and count.

Then craft a dialogue between the agent ('A') and the customer ('C') in a manner
suggesting that the agent is actively viewing the video and answering the
customer's questions. Frame questions using 'how many', 'what,' 'how,' 'when,'
'which,' and 'why' to ensure precise and definitive answers, rooted in video
content. Pose varied questions encompassing the visual content, such as object
types, counting objects, object actions, object locations, and relative positions
between objects. Ensure each question has a definite answer, either observed in
the video or confidently determined to be absent. Avoid questions with uncertain
answers.

Ouput format:
Summary: <your summary>
Detail: <your detailed description>
Conversation: <your quesion-answer conversation, clearly labeling the customer
and agent as 'C' and 'A'>

Figure 19: GPT-4V prompt for the generation of video summary, detailed caption and conversation generation. We
only use detailed caption for experiments.
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Task Instructions:

Given a caption that summarizes the content of a video, generate three
question-answer pairs that relate directly to the information and context
provided in the caption. The questions should be grounded to the understanding of
the video content.

Guidelines for QA Generation:

1. Helpfulness: Answers should provide sufficient detail and depth to fully
address the question. They should include relevant explanations, or context where
appropriate, to enhance understanding.

2. Faithfulness: The answers must accurately reflect the information presented in
the video caption. Avoid speculation or the inclusion of information not
contained or implied by the caption to maintain the integrity of the content.

3. Diversity: Craft questions that cover different aspects of the video caption
to provide a comprehensive understanding of the content. This includes factual
inquiries, inferential questions, and those that may elicit explanatory
responses.

Input Video Caption:
{caption}

Output format:
Q1: <question1>
A1: <answer1>
Q2: <question2>
A2: <answer2>
Q3: <question3>
A3: <answer3>

Figure 20: ChatGPT for instruction generation.

Your role is to serve as an impartial and objective evaluator of a video caption
provided by a Large Multimodal Model (LMM). Based on the input frames of a video,
assess primarily on two criteria: the coverage of video elements in the caption
and the absence of hallucinations in the response. In this context,
'hallucination' refers to the model generating content not present or implied in
the video, such as incorrect details about objects, actions, counts, or other
aspects not evidenced in the video frames.

To evaluate the LMM's response:

Start with a brief explanation of your evaluation process.
Then, assign a rating from the following scale:

Rating 6: Very informative with good coverage, no hallucination
Rating 5: Very informative, no hallucination
Rating 4: Somewhat informative with some missing details, no hallucination
Rating 3: Not informative, no hallucination
Rating 2: Very informative, with hallucination
Rating 1: Somewhat informative, with hallucination
Rating 0: Not informative, with hallucination

LMM Response to Evaluate
{LLM_response}

Output format:
Judgment: <your judgment>
Score: <integer value rating>

Figure 21: GPT-4V evaluation prompt for video captioning.
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Given the following inputs:

1. **Ground Truth Video Caption**: {caption}
2. **Question Related to the Caption**: {question}
3. **Ground Truth Answer**: {answer}
4. **Model Predicted Answer**: {prediction}

Your task is to evaluate the model's predicted answer against the ground truth
answer, based on the context provided by the video caption and the question.
Consider the following criteria for evaluation:

- **Relevance**: Does the predicted answer directly address the question posed,
considering the information provided in the video caption?
- **Accuracy**: Compare the predicted answer to the ground truth answer. Does the
prediction accurately reflect the information given in the ground truth answer
without introducing factual inaccuracies?
- **Clarity**: Assess the clarity of the predicted answer. Look for issues such
as repetition, unclear descriptions, or any grammatical errors that could hinder
understanding.
- **Completeness**: Determine if the predicted answer fully covers the scope of
the ground truth answer. Does it leave out critical information or does it
include all necessary details?

**Output Format**:
Explanation: <brief judgement of prediction>
Score: <a integer score of quality from 1-5>

Figure 22: ChatGPT-Evaluation Prompt for Video Question Answering. This prompt takes in a detailed caption,
question, ground truth answer, and model prediction, subsequently generating an assessment of the prediction’s
quality alongside a corresponding score based on predefined criteria. A score value ≥ 3 will be considered correct
for accuracy calculation.

Your task is to act as an impartial and objective assessor of answers generated
by a Large Multimodal Model (LMM) for video-based questions. Utilizing video
frames, a posed question, and the model's provided answer, your evaluation should
focus on the following aspects:

- **Relevance**: Does the predicted answer directly address the question posed,
considering the information provided in the video caption?
- **Accuracy**: Compare the predicted answer to the ground truth answer. Does the
prediction accurately reflect the information given in the ground truth answer
without introducing factual inaccuracies?
- **Clarity**: Assess the clarity of the predicted answer. Look for issues such
as repetition, unclear descriptions, or any grammatical errors that could hinder
understanding.
- **Completeness**: Determine if the predicted answer fully covers the scope of
the ground truth answer. Does it leave out critical information or does it
include all necessary details?

**Input**:
Question: {question}
Model Predicted Answer: {prediction}

**Output Format**:
Explanation: <brief judgement of prediction>
Score: <an integer score of quality from 1-5>

Figure 23: GPT-4V Evaluation Prompt for Video Question Answering. Together with video frames input in GPT-4V
API, this prompt takes in a question, and model prediction, subsequently generating an assessment of the prediction’s
quality alongside a corresponding score based on predefined criteria. A score value ≥ 3 will be considered correct
for accuracy calculation. This is used to assess the quality of ChatGPT evaluation in fig. 22.
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