
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5212–5237

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Exploiting Edited Large Language Models as General Scientific Optimizers

Qitan Lv1, Tianyu Liu1*, Hong Wang1†,
1 University of Science and Technology of China

{qitanlv, tianyu_liu, wanghong1700}@mail.ustc.edu.cn

Abstract

Large language models (LLMs) have been
widely adopted in mathematical optimization
in scientific scenarios for their extensive knowl-
edge and advanced reasoning capabilities. Ex-
isting methods mainly focus on utilizing LLMs
to solve optimization problems in a prompt-
based manner, which takes observational feed-
back as additional textual descriptions. How-
ever, due to LLM’s high sensitivity to the
prompts and tendency to get lost in lengthy
prompts, these methods struggle to effectively
utilize the observational feedback from each
optimization step, which severely hinders the
applications for real-world scenarios. To ad-
dress these challenges, we propose a concep-
tually simple and general bi-level optimization
method, namely General Scientific Optimizers
(GSO). Specifically, GSO first utilizes inner-
level simulators as experimental platforms to
evaluate the current solution and provide obser-
vational feedback. Then, LLMs serve as knowl-
edgeable and versatile scientists, generating
new solutions by refining potential errors from
the feedback as the outer-level optimization.
Finally, simulations together with the expert
knowledge in LLMs are jointly updated with
bi-level interactions via model editing. Exten-
sive experiments show that GSO consistently
outperforms existing state-of-the-art methods
using six different LLM backbones on seven
different tasks, demonstrating the effectiveness
and a wide range of applications.

1 Introduction

Optimization is ubiquitous across a wide range of
scientific domains, spanning mathematics, physics,
chemistry, pharmacology, etc (Amari, 1993; In-
triligator, 2002; Cova and Pais, 2019). Various
research endeavors innovate within its field, cre-
ating methods tailored to its specific challenges
and nuances to automate and accelerate the process

*Equal Contributions.
†The Corresponding author.

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(HOMO-LUMO)

Molecule Property
(LUMO)

Constitutive
Law (Linear)

Molecule
Property (HOMO)

Constitutive
Law (Non-linear)

Travel Salesman
Problem

Linear System Regression

Figure 1: GSO achieves state-of-the-art performance
on a broad range of scientific optimization tasks com-
pared with existing methods, using LLama 3 8B (Team,
2024b) as the backbone. Results of other five LLMs are
in Figures 10 and 11.

of mathematical optimization in scientific scenar-
ios (Wang et al., 2023b). However, the need for
customization of optimization algorithms to ad-
dress specific challenges highlights the absence of
a universally applicable philosophy (Popper, 2005;
Fortunato et al., 2018), which is crucial for estab-
lishing a standardized optimization framework and
enhancing the efficiency of scientific research. We
aim to transcend specific domains and provide a
generalized approach to boost mathematical opti-
mization in scientific scenarios.

Standing out as versatile tools with vast knowl-
edge repositories, large language models (LLMs)
have recently risen to prominence in optimiza-
tion across scientific domains for their expansive
knowledge bases, advanced reasoning capabili-
ties, and human-friendly natural language inter-
face (AI4Science and Quantum, 2023). Exten-
sive research efforts have been devoted to boost-
ing general mathematical optimization in scien-
tific scenarios. Canonical methods mainly focus
on fine-tuning LLMs using domain-specific data

5212

to align natural language with scientific informa-
tion, such as chemical structures (Li et al., 2024b;
Chithrananda et al., 2020) or drug structures (Liu
et al., 2021). However, these approaches are con-
strained to specific domains and require substan-
tial amounts of data and extensive computation re-
sources for broader applicability. Recently, prompt-
based iterative optimization methods—which en-
hance the inherent capabilities of pre-trained LLMs
by incorporating the optimization feedback to
LLMs—have emerged as a promising approach
for advancing scientific optimization (Yang et al.,
2023). Extensive researches have explored lever-
aging LLMs as optimizers or agents (Zhang et al.)
for tasks such as mathematical problem-solving
(Romera-Paredes et al., 2024a; Yang et al., 2023),
conducting chemical experiments (Boiko et al.,
2023), advancing physical scientific discovery (Ma
et al.), molecular discovery (Li et al., 2024a), and
drug discovery (Sharma and Thakur, 2023).

Albeit with multiple benefits of the prompt-
based methods, they confront one significant
challenge that severely hinders their general
applications—struggling to effectively utilize ob-
servational feedback. This challenge primarily
stems from two limitations inherent in existing
prompt-based methods: (i) LLMs are shown to
be sensitive to the prompt format (Lu et al.,
2022; Wei et al., 2023; Madaan and Yazdanbakhsh,
2022). In particular, semantically similar prompts
can yield drastically different performance (Kojima
et al., 2022; Zhou et al.; Yang et al., 2023), and
the optimal prompt formats may be model-specific
and task-specific, which severely limits the gen-
eralizability across different scientific tasks. (ii)
LLMs may get lost in lengthy prompt (Lv et al.,
2024). In multi-round iterative optimization, the
input prompt can become increasingly lengthy to
trace the optimization trajectory, which may dis-
tract the LLMs’ reasoning and result in the lost in
the middle issue (Shi et al., 2023). Despite LLMs’
ability to process long contexts, performances sig-
nificantly decrease as the input grows longer, even
for models explicitly designed for long contexts
(Lv et al., 2024).

To address this challenge, we propose a concep-
tually simple, flexible, and general method, namely
General Scientific Optimizers (GSO). Specifically,
GSO is a bi-level optimization method involving
inner-level optimization and outer-level optimiza-
tion, together with bi-level interaction between
them. For a given optimization task, GSO will

iteratively conduct the following process: (i) the
inner-level optimization first employs simulators
serving as an experimental platform to provide ob-
servational feedback for reasoning and refining; (ii)
the outer-level optimization then utilizes knowl-
edgeable LLMs as reasoning agents to generate
hypotheses, reason with observational feedback,
and refine the previous hypothetical solutions. It
also devises a dynamic exploit-and-explore strat-
egy to adaptively adjust the LLM reasoning trajec-
tory based on observational feedback; (iii) finally,
the bi-level optimization jointly updates the sim-
ulations together with the knowledge embedded
within LLMs via model editing.

GSO is a novel framework to boost general math-
ematical optimization in scientific scenarios. As
shown in Figure 1, extensive experiments demon-
strate the effectiveness and generalization of our
GSO, leading significant and consistent superiority
using six different LLM backbone on seven differ-
ent tasks than existing state-of-the-art methods.

2 Preliminaries

Model Editing Model editing mainly focuses on
altering the internal knowledge within LLMs. It
aims to update a range of intricate learned concepts,
such as logical reasoning, spatial awareness, and
numerical understanding, to make tailored adjust-
ments to the model’s behavior. In this paper, we
follow (Zhong et al., 2023; Zhang et al., 2024b) to
update factual knowledge represented as (subject
s, relation r, object o). An LLM is expected to
retrieve a memory corresponding to o when given a
natural language prompt. Editing a fact involves re-
placing the existing knowledge triple (s, r, o) with
a new one (s, r, o∗). For simplicity, an edit is de-
noted as e = (s, r, o, o∗). Given a set of edits
E = {e1, e2, . . .} and an original model fθ0 , se-
quential model editing applies each edit consecu-
tively, i.e., F(fθn−1 , en) = fθn , where fθn refers
to the model after n edits.

3 Related Work

Model Editing Model editing involves modify-
ing the memorized knowledge contained in LLMs.
Various kinds of complex learned beliefs such as
logical, spatial, or numerical knowledge are ex-
pected to be edited. Many studies explore the
role of MLP layers in Transformers, revealing that
these layers store knowledge, which can be lo-
calized to specific neurons and edited (Da et al.,

5213

Simulator

𝒗𝟏 𝒗𝟐

𝒗𝟒 𝒗𝟑

Current
Solution:
𝑣1 → 𝑣2 → 𝑣3
→ 𝑣4 → 𝑣1

𝒗𝟏 𝒗𝟐

𝒗𝟒 𝒗𝟑

Inner-level Optimization

Outer-level Optimization

Bi-level Interaction

k-th

iter

𝒗𝟏 𝒗𝟐

𝒗𝟒 𝒗𝟑

Simulation:
Total distance is

feedback:
(𝑣4, 𝑣1) has a larger distance than (𝑣2, 𝑣4)

Propose hypothesis:
𝑣1 → 𝑣2 → 𝑣4 → 𝑣3 → 𝑣1

Bilevel Interaction

Inner-level Optimization

Outer-level Optimization

Bi-Level Interaction

…
Inner-level Optimization

Outer-level Optimization

Bi-level Interaction

…

Simulator to LLM

observations

feedbacks

LLM

model
editingSimulator

LLM to Simulator

LLM Simulator

Provide the distance
of (𝑣2, 𝑣4)

Find another edge
pass 𝑣1

interaction

LLM

Give me a trace that has a
length lower than any of
the above and traverses
all points once.

User

The optimized trace is
𝒗𝟏 → 𝒗𝟐 → 𝒗𝟒 → 𝒗𝟑 → 𝒗𝟏

LLM

Reasoning:
To make solution valid, we need to
replace an edge to pass .
We need the exact value of (𝑣2, 𝑣4)

Analysis:
We can replace
(𝑣4, 𝑣1) with
(𝑣2, 𝑣4)

𝒗𝟏 𝒗𝟐

𝒗𝟒 𝒗𝟑

(𝐢)

(𝐢𝐢)

(𝐢𝐢𝐢)

Figure 2: The overview of GSO. For a given optimization task, GSO iteratively conducts the inner-level optimization,
outer-level optimization, and bi-level interaction sequentially. The workflow is as follows: (i) the inner-level
simulator Φ conducts numerical simulations based on the current step’s hypothetical solution sk (v1 → v2 →
v3 → v4 → v1) and returns observational feedback fk,Lk (the edge (v4, v1) has a larger distance than the edge
(v2, v4), current total distance: 108); (ii) the outer-level LLM Mθk generates new hypothetical solutions sk+1

(v1 → v2 → v4 → v3 → v1) based on the observational feedback fk,Lk; (iii) the bi-level interaction jointly
updates simulations in conjunction with the expert knowledge within the LLMs through model editing.

2021; Geva et al., 2020, 2022). KE (De Cao et al.,
2021) and MEND (Mitchell et al.) train a hypernet-
work to compute gradient adjustments for updating
model parameters. ROME (Meng et al., 2022) and
MEMIT (Meng et al.) apply the Locate-Then-Edit
strategy, which first locates MLP storing factual
knowledge, and then edits such knowledge by in-
jecting a new key-value pair in the MLP module.

LLMs for Scientific Optimization A recent line
of research explores methods to enhance LLM per-
formance by incorporating natural language feed-
back as prompts to revise model outputs in im-
proving reasoning (Shinn et al., 2023; Madaan
et al., 2024), code generation (Chen et al., 2023;
Olausson et al., 2023), dialogue applications (Nair
et al., 2023; Yuan et al., 2024; Liu et al., 2024b),
and so on (Wang et al., 2023a; Kim et al., 2024).
LLMs have also been demonstrated to optimize
complex problems by utilizing tools (Sumers et al.).
AlphaGeometry’s (Trinh et al., 2024) success in
solving complex geometry problems without hu-
man demonstrations underscores the potential of

LLMs in automating complex tasks. OPRO (Yang
et al., 2023) employs LLMs as black-box optimiz-
ers for complex reasoning tasks. Eureka (Ma et al.,
2023b) generates multiple solutions in each step to
increase the success rate of produced codes. Fun-
search (Romera-Paredes et al., 2024b) utilizes an
evolutionary strategy to avoid local optima by us-
ing LLMs along with a systematic evaluator. SGA
(Ma et al.) introduces a bilevel optimization frame-
work to enhance the knowledge-driven capabilities
of LLMs by integrating simulations.

4 Method

4.1 Bi-level Optimization Pipeline

We first briefly outline the bi-level pipeline of our
GSO, describing how the inner-level and the outer-
level optimization are jointly conducted. Specifi-
cally, for a scientific optimization task y (e.g., the
traveling salesman problem), GSO aims to predict
the optimal solution ŝ, by which GSO iteratively
optimizes the solution sk from an initial solution
s0, where k denotes the iteration step. Each itera-

5214

tion consists of three parts: the inner-level simula-
tion platform, outer-level LLM optimization, and
bi-level interactions. An overview of GSO is in
Figure 2.

The inner-level simulator first serves as an exper-
imental platform, where a simulator Φ is employed
to take a intermediate solution sk and its scientific
expression Ek (e.g., coordinates of the nodes in the
TSP task) as inputs, and outputs the correspond-
ing observational feedback fk and the optimization
objective Lk (e.g., the total distance of the current
route in the TSP task):

fk,Lk = Φ(sk; Ek) .

The outer-level optimization then utilizes an
LLM with its parameter θk (denote by Mθk) as
a reasoning agent, propose a new hypothesis to
optimize the current solution sk:

Ek+1, sk+1 = Mθk

(
{Li, fi, Ei, si}ki=0 ;P

)
.

Here P denotes the input prompt to LLM, and
{Li, fi, Ei, si}ki=0 represents the historical opti-
mization trajectory.

The bi-level interaction finally utilizes the feed-
back fk from inner-level simulation and the solu-
tions sk provided by the outer-level LLM as a new
key-value pair to update the LLM parameters θ
through model editing:

Mθk+1
= F (Mθk , sk, fk) ,

where θk+1 represents the new parameter matrix
obtained by applying a model editing step to the
previous parameters θk, Mθk+1

represents the ac-
cording updated LLM, and F denotes the model
editing process. We can then define the overall
optimization task:

min
s

L (y (E , s; Φ))
s.t. G (E , s; Φ) ≤ 0,

where G (·) ≤ 0 indicates that the current solution
satisfies the constraints of the given optimization
problem (for example, in the TSP task, the solution
must visit all points and return to the starting point).

4.2 Inner-level Simulation Platforms

The inner-level optimization conducts numerical
simulations for a hypothetical solution. Simu-
lations can provide domain-specific knowledge,

transferring information from the simulation to op-
timization outputs (e.g., feedback in the form of
total distance for the TSP task). These outputs,
paired with the predicted solution s, are then fed
back into the LLMs to iteratively refine the hypoth-
esis. The feedback can include the simulation loss
relative to the target metric L, as well as auxiliary
information during the optimization process, which
can provide more insights for improving solutions.
For instance, if L represents the total distance of
a solution for a TSP task, the auxiliary informa-
tion may include the specific distance between two
given points or the relative magnitude of distances
between pairs of points (e.g. simulator can pro-
vide auxiliary information that (v4, v1) has a larger
distance than (v2, v4) in Figure 2).

4.3 Outer-level LLM Optimization
Many studies have demonstrated that LLMs are ca-
pable of discovering high-quality solutions and can
match or even outperform hand-designed heuris-
tic algorithms (Yang et al., 2023; Romera-Paredes
et al., 2024c). Therefore, we design outer-level op-
timization to: (i) analyze the current optimization
task and make reasonable hypotheses; (ii) utilize
the feedback from the simulations (including exper-
imental phenomena and loss values, etc.), and up-
date the LLM’s knowledge through model editing;
(iii) design and propose new potential solutions
and input into the simulation platforms.

Inspired by the scientific optimization process by
human scientists, we observe that when confronted
with a new problem, scientists tend to be daring
adventurers, utilizing expert knowledge and prob-
lem parameters to thoroughly explore the search
space, eliminating improbable parameter regions.
This may significantly reduce the subsequent solu-
tion space, yielding solutions that satisfy optimiza-
tion constraints, though they may not be optimal
(Wuestman et al., 2020). Then, after gaining a
deeper understanding of the problem through ini-
tial attempts, they change to be cautious followers
to keep the trajectory and trail previous solutions,
adhering more closely to previous optimizations.
This allows them to continually improve the met-
rics while satisfying optimization constraints, ulti-
mately approaching the optimal solution. We thus
design a dynamic exploitation and exploration
strategy to mimic this process.

Specifically, we calculate the loss change as
∆L =

Lprev−Lcur
Lprev

. If ∆L > 0, this indicates that
the current hypothetical solutions are better than

5215

the previous ones. We then apply a lower decod-
ing temperature to allow the LLM to follow the
trace, i.e., Tcur = Tpre ×

(
1

1+∆L

)
; if ∆L < 0, this

indicates that current solutions are worse than the
previous ones. We thus apply a higher decoding
temperature to be more exploratory and adventur-
ous, i.e., Tcur = Tpre × (1 + |∆L|). We also clip
the temperature to [0, 1] in case that Tcur < 0 or
Tcur > 1. Empirically, we divide solutions into
Sexploit and Sexplore. We observe that (i) Sexploit of-
ten contains repetitive solutions from previous iter-
ations, and (ii) Sexplore tends to yield solutions to be
informative for guiding optimization, or otherwise
infeasible.

4.4 Bi-level Interactions

The key challenge in integrating the two levels of
optimization is developing a protocol that facili-
tates efficient, structured, and flexible communi-
cation between them. Therefore, we propose an
interaction strategy considering the two aspects.
On the one hand, from simulation platforms to
LLMs, drawing upon (Meng et al., 2022), we in-
corporate the feedback from simulation platforms
as new knowledge edited into the model. We first
locate how facts are stored within the parameters
of LLMs. We begin by analyzing and identifying
which specific layers and their parameters W have
the strongest causal effect on predictions of indi-
vidual facts through causal tracing (Meng et al.,
2022) (Detailed steps and results of the causal trac-
ing for different LLMs are in Appendix B). Next,
we integrate the experimental results from the sim-
ulation platforms as new knowledge, formatted as
triples, into the model. For instance, in the con-
text of the TSP problem, suppose the simulation
platform’s feedback template includes: (i) the path
length for the solution v1 → v2 → v3 → v4 is
108, (ii) the distance between v1 and v4 is greater
than that between v2 and v4, and etc. These state-
ments are then transformed into triples, such as
(v1 → v2 → v3 → v4, has distance of, 108) and
(v1, v4), greater than, (v2, v4)), which are subse-
quently edited into the model. Finally, by col-
lecting such triples (s, r, o), we compile a series
of key-value pairs for a set of vector keys S =
[s1, s2, . . . , sn] and corresponding vector values
O = [o1, o2, . . . , on] in each iteration step. There-
fore, for the u new (s, r, o) pairs obtained from the
next iteration step, the objective of editing can be
given by the following formula:

W1 ≜ argmin
Ŵ

(
n∑

i=1

∥∥∥Ŵsi − oi

∥∥∥
2

+

n+u∑

i=n+1

∥∥∥Ŵsi − oi

∥∥∥
2
)

Here, W denotes the original matrix and W1 de-
notes the edited weight matrix. Due to this straight-
forward algebraic structure, any fact can be inserted
directly once (s, o) is determined. We can update
the parameters of the LLM by editing the newly
obtained u parameter-feedback pairs all at once,
which adaptively utilizes the feedback from each
simulation platform interaction into the LLM. It
directly updates the LLM’s weight parameters and
prevents the input prompt length from increasing
with iterations, alleviating the loss-in-the-middle
issue during long-text and multi-round optimiza-
tion processes. On the other hand, from LLMs
to simulation platforms, we leverage the LLM as
a domain expert to guide the setup of each subse-
quent simulation based on the results of the pre-
vious results. This process is akin to an experi-
enced scientist providing tailored guidance for the
experimental configuration of the next step simu-
lation based on the current results. The simulation
platforms can then continue running experiments
based on the guidance of the LLM to provide ob-
servational feedback. Specifically, each time the
outer-level LLM receives feedback from the pre-
vious iteration of simulation platforms, it can si-
multaneously request intermediate results from the
inner-level platforms to aid in its reasoning. Taking
the TSP problem as an example, when the LLM
provides the solution v1 → v2 → v3 → v4 → v1,
it can also request the platforms to provide the spe-
cific distance between two points. This additional
feedback can then assist in refining the reasoning
for the next iteration.

5 Experiments

5.1 Problem Descriptions
We provide a brief definition of each task. More de-
tailed definitions are in Appendix F. For the linear
system regression task, the objective is to esti-
mate the linear coefficients to model relationships
between input and corresponding output (Fisher,
1922). We use "#steps" (optimization steps for suc-
cessfully finding the optimal solution) as the met-
ric. We follow the same dataset setting as OPRO
(Yang et al., 2023). For the TSP task, the objective
is that given a set of n nodes with known coordi-
nates, it seeks to find the shortest possible route

5216

Table 1: Results of our GSO against 6 baselines using GPT-J 6B, Llama3 8B, and Mistral 7B as three representative
backbone models (for more results of different backbone models, please see Appendix E). Our experiments
encompass 7 different tasks, which are divided into linear system regression (LSR) (a), travel salesman problem
(TSP) (b), constitutive law prediction (c-d), and molecule property prediction (e-g). We report the mean ± standard
error of each optimization result. The symbol N/A indicates that the model cannot provide a feasible solution for
the current task. A lower value is preferable across all tasks. The best results are highlighted in bold text.

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

GPT-J 6B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 N/A N/A N/A N/A N/A
Funsearch 29.7 ± 10.2 0.9 ± 0.1 77.4 ± 19.5 58.7 ± 17.2 230.8 ± 30.0 301.6 ± 51.9 34.9 ± 6.8
Eureka 45.1 ± 19.8 1.9 ± 0.8 155.3 ± 31.2 91.7 ± 18.5 390.0 ± 33.8 388.0 ± 70.3 55.3 ± 8.4
OPRO 41.0 ± 18.0 0.4 ± 0.2 60.9 ± 22.6 81.3 ± 10.2 455.9 ± 83.3 155.8 ± 18.9 23.7 ± 4.0
SGA 23.9 ± 5.0 0.2 ± 0.1 84.7 ± 17.9 73.2 ± 21.0 238.1 ± 17.5 89.5 ± 13.0 15.5 ± 3.1
GSO (ours) 12.3 ± 4.8 0.0 ± 0.0 15.7 ± 5.0 55.4 ± 8.0 70.1 ± 17.7 83.1 ± 13.9 8.5 ± 2.0

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Llama3 8B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 3397.0 ± 298.9 N/A N/A N/A N/A
Funsearch 15.7 ± 8.3 1.3 ± 0.5 198.9 ± 30.8 335.9 ± 112.1 433.7 ± 25.5 175.5 ± 28.8 91.4 ± 19.8
Eureka 18.3 ± 5.1 2.1 ± 0.2 255.6 ± 80.9 401.3 ± 98.0 260.7 ± 38.9 130.1 ± 15.9 155.1 ± 28.3
OPRO 17.0 ± 4.7 0.3 ± 0.1 74.1 ± 10.3 227.8 ± 33.2 537.1 ± 69.7 115.5 ± 35.3 51.9 ± 10.4
SGA 10.2 ± 3.7 0.5 ± 0.1 89.1 ± 5.9 150.0 ± 40.3 235.1 ± 55.7 94.1 ± 22.0 30.5 ± 15.3
GSO (ours) 5.1 ± 1.0 0.0 ± 0.0 8.1 ± 2.1 20.1 ± 3.9 30.1 ± 14.9 20.9 ± 9.3 9.7 ± 3.6

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Mistral 7B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 N/A N/A N/A N/A N/A
Funsearch 67.3 ± 14.7 1.3 ± 0.3 317.9 ± 43.0 199.4 ± 31.0 335.9 ± 61.3 310.4 ± 33.1 86.8 ± 17.4
Eureka 37.9 ± 13.1 2.5 ± 0.8 337.3 ± 51.1 379.0 ± 139.1 201.3 ± 33.7 331.7 ± 25.4 110.4 ± 19.5
OPRO N/A 0.3 ± 0.1 88.6 ± 12.1 275.7 ± 54.1 55.7 ± 13.9 252.4 ± 31.7 12.5 ± 3.9
SGA 27.9 ± 5.8 0.3 ± 0.1 145.1 ± 11.7 227.3 ± 19.9 130.5 ± 33.1 55.7 ± 12.1 55.4 ± 18.4
GSO (ours) 5.6 ± 3.0 0.1 ± 0.0 3.2 ± 1.7 13.0 ± 2.1 23.9 ± 5.1 2.8 ± 1.5 1.7 ± 0.4

that visits each node once and returns to the start-
ing point. We follow the same dataset setting as
OPRO (Yang et al., 2023) and use the Gurobi solver
(Gurobi Optimization, LLC, 2024) to construct the
oracle solutions and compute the optimality gap
as the metric (the difference between the distance
in the solution by the evaluated approach and by
the oracle solution, divided by the distance of the
oracle solution). For the constitutive law pre-
diction task, we consider both fitting linear and
non-linear materials and follow the same dataset
setting as SGA (Ma et al.). We use mean square
error (MSE) as the metric. For the molecular
property prediction task, we consider three tasks:
predict a molecule’s highest occupied molecular
orbital (HOMO), lowest unoccupied molecular or-
bital (LUMO), and the HOMO-LUMO gap based
on their conformations and quantum mechanical
properties. We follow SGA to use the QM9 dataset
(Ramakrishnan et al., 2014) for experiments. We
also use MSE as the metric.

5.2 Experiment Setups

Implementation Details. We apply LLMs in-
cluding GPT-J 6B (Radford et al., 2019), Llama3
8B (Team, 2024b), Mistral 7B (Jiang et al., 2023),
Llama2 13B (Team, 2023c), Yi9b (Young et al.,
2024), and Internlm 7B (Team, 2023b). We follow
(Ma et al., 2023b) to conduct all experiments five
times using different random seeds to guarantee
stable and reproducible results. More details of
implementation details are in Appendix F.

We consider six strong baselines for evalua-
tion: (i) vanilla LLMs without additional modules.
Vanilla LLMs represent the original capabilities
of LLMs. (ii) CoT prompting (Wei et al., 2022)
solves the problem by looking at step-by-step so-
lutions from examples. We provide 5 examples
with explanations as the initial solutions. (iii) Fun-
search (Romera-Paredes et al., 2024b) utilizes evo-
lutionary strategy to avoid local optimum. (iv) Eu-
reka (Ma et al., 2023b) generates multiple solu-
tions in each iteration to improve the success rate.

5217

Table 2: The results of the ablation study of our GSO on the seven scientific optimization tasks, using Llama3 8B as
the backbone model (We provide more results for the other five backbone models, in Appendix G).

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit 33.7 ± 10.1 0.7 ± 0.3 116.1 ± 30.1 141.5 ± 36.9 307.7 ± 31.4 331.2 ± 89.2 164.3 ± 38.9
GSOw/o dynamic 6.5 ± 3.5 0.0 ± 0.0 23.7 ± 9.9 76.9 ± 11.4 35.0 ± 17.1 45.0 ± 19.3 21.9 ± 7.3

GSO 5.1 ± 1.0 0.0 ± 0.0 8.1 ± 2.1 20.1 ± 3.9 30.1 ± 14.9 20.9 ± 9.3 9.7 ± 3.6

Funsearch Eureka OPRO SGA GSO (ours)

Z
oo

m
 I

n

Figure 3: We visualize the average MSE loss values of
each method for the non-linear Constitutive Law task (d)
across five random seeds at the same optimization steps
using Mistral 7B as the backbone model, with shading
representing the standard deviation.

(v) OPRO (Yang et al., 2023) highlights the advan-
tages of involving a sorted optimization trajectory.
(vi) SGA (Ma et al.) utilizes a top-k heap to gener-
ate more diverse solutions.

5.3 Main Results

We conduct our experiments on the 7 designed
tasks using GPT-J 6B, Llama3 8B, and Mistral 7B
as three representative backbone models in Table
1. We also provide more results for other three
different backbone models in Table 5 in Appendix
E to demonstrate the versatility of our GSO across
different backbones. GSO enables tasks, which are
challenging to effectively optimize with traditional
Vanilla and CoT methods, to become feasible. We
also observe that GSO significantly and consis-
tently outperforms existing methods on the scien-
tific optimization tasks, which demonstrates the ef-
fectiveness of our GSO. Notably, for the molecule
property prediction task on predicting the HOMO-
LUMO gap, GSO achieves a maximum precision
improvement of over 32.6× when utilizing Mistral
7B as the backbone model. These results under-
score the importance of effectively utilizing the
observational feedback to adaptively adjust its opti-
mization directions. The universality of six popular
open-source backbone models in Appendix E also
suggests the generalizability of our GSO.

5.4 Ablation Study

To further investigate the contribution of each com-
ponent within GSO, we conduct a series of ablation
experiments on the entire framework. Specifically,
we denote GSO without edit as GSOw/o edit, GSO
without the dynamic strategy as GSOw/o dynamic,
respectively. We use Llama3 8B as the backbone
model, the results of other backbone models are
in Appendix G. We present the ablation results of
GSO using Llama 3 8B as the backbone model in
Table 2. More Results using the other five different
backbone models are in Appendix G. As shown in
Table 2, the absence of any component within GSO
results in a performance degradation of the entire
framework. Notably, GSOw/o edit exhibits more
significant impacts on the performance of GSO,
which demonstrates the importance of effectively
utilizing the observational feedback to adaptively
adjust the optimization direction.

5.5 Case Study

Robustness of the Prompt As mentioned in Sec-
tion 1, one appealing feature of our GSO com-
pared to other methods is its robustness to prompts.
Prompts with similar semantics do not require
meticulous crafting to yield consistently promis-
ing results. To provide more insights into our GSO,
we manually generated two prompts and used Ope-
nAI o1 to rewrite an additional three based on the
original task prompts for each task (details of the
generated prompts are in Appendix D). As shown
in Table 3, we observe that prompt-based methods
tend to be sensitive to the prompts, with semanti-
cally similar prompts often leading to fluctuating
results across many tasks. This necessitates signifi-
cant effort from users to perform prompt ’tuning’
during application. In contrast, our GSO consis-
tently produces robust results across different
prompts, with minimal variation between se-
mantically similar prompts. This reduces the
need for extensive prompt "tuning," highlighting
its potential for broader real-world applications.

5218

Table 3: We evaluate our GSO against other baseline methods on five prompts that vary in format but are semantically
similar, and report their average results of each method, using Mistral 7B as the representative backbone model.
The symbol N/A indicates that the model cannot provide a feasible solution for the current task.

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Mistral 7B

Funsearch 52.2 ± 29.4 2.4 ± 1.5 411.0 ± 193.4 254.9 ± 109.3 473.3 ± 130.2 403.1 ± 135.0 173.0 ± 66.3
Eureka 60.25 ± 29.2 3.5 ± 2.6 303.7 ± 180.3 179.0 ± 65.8 219.0 ± 40.6 287.9 ± 99.0 148.9 ± 55.0
OPRO N/A 0.4 ± 0.3 107.6 ± 61.4 224.8 ± 34.2 94.3 ± 50.6 593.7 ± 266.8 40.5 ± 28.0
SGA 38.7 ± 20.3 0.3 ± 0.2 55.4 ± 43.9 203.2 ± 22.3 211.7 ± 98.0 73.0 ± 18.8 62.9 ± 33.2
GSO (ours) 8.3 ± 3.3 0.1 ± 0.0 5.5 ± 3.1 20.9 ± 8.3 18.8 ± 7.0 3.9 ± 2.1 2.2 ± 0.4

Table 4: Results of our GSO against popular closed-source LLMs, including GPT-4o and Claude-3.5. We present
the results of our GSO Mistral 7B as the backbone model for comparison.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GPT-4o 6.4 ± 1.5 0.2 ± 0.0 59.7 ± 7.4 45.5 ± 9.1 181.4 ± 33.7 313.5 ± 45.4 67.8 ± 10.9
Claude-3 12.1 ± 2.0 0.2 ± 0.1 128.1 ± 13.5 103.0 ± 5.2 162.3 ± 21.2 519.3 ± 37.4 37.8 ± 8.3

GSO 5.6 ± 3.0 0.1 ± 0.0 3.2 ± 1.7 13.0 ± 2.1 23.9 ± 5.1 2.8 ± 1.5 1.7 ± 0.4

Loss Curve and Decoding Temperature We
also investigate the impact of the number of lengthy
input prompts as optimization iterations increase
on each method. We present the feedback loss
trend for the non-linear constitutive law task (d) in
Figure 3 as an example. We observe that GSO
achieves significantly lower loss and exhibits a
clear convergence trend compared to existing base-
lines. This demonstrates that GSO can effectively
leverage feedback from each iteration to achieve
stable and consistent improvements in scenarios
involving lengthy prompts. Notably, some meth-
ods show improvement at the beginning (i.e., loss
reduction) when the initial prompt is short and the
optimization space is large, but as the number of
optimization steps increases, the feedback loss fluc-
tuates, making further optimization difficult. In
contrast, GSO effectively leverages each step feed-
back to adaptively adjust its optimization direction,
leading to a stable and consistent loss decrease.
These results demonstrate that GSO can effectively
observational feedback from lengthy prompts
to facilitate further optimization, thereby allevi-
ating the loss in the middle issue.

Comparison with Advanced Closed-source
LLMs We also compared our GSO framework
on open-source models with the current state-of-
the-art closed-source model, GPT-4o1 and Claude-
3-Sonnet2. As shown in Table 4, our GSO utilizing
Mistral 7B can consistently outperform GPT-4o

1https://openai.com/o1/
2https://www.anthropic.com/news/claude-3-5-sonnet

and Claude-3-Sonnet, demonstrating the effective-
ness of our approach. Note that our method is
orthogonal to the choice of backbone model, mak-
ing it a versatile plug-and-play module that can be
directly applied to more advanced LLMs to further
achieve enhanced results.

6 Conclusion

In this paper, we propose a novel General Scientific
Optimizers method, effectively enabling LLMs to
utilize observational feedback from each optimiza-
tion step. Specifically, GSO consists of a bi-level
optimization framework: outer-level LLMs func-
tion as knowledgeable and versatile scientists, gen-
erating new hypotheses to optimize experimental
hyperparameters; inner-level simulations function
as experimental platforms to perform numerical
simulations to these hypotheses and provide obser-
vational feedback; a bi-level interaction then update
the simulators together with the expert knowledge
within LLMs via model editing. GSO effectively
guides LLMs to derive a more precise and stable
optimization direction, yielding superior optimiza-
tion results. Extensive experiments on six differ-
ent open-source and seven different scientific tasks
demonstrate the superiority of our GSO, delivering
consistent, robust, generalizable, and nearly mono-
tonic improvement. We view our GSO as a trail-
blazer, establishing a new paradigm for utilizing
LLMs and simulations as bi-level optimization to
further advancements in scientific optimizations.3

3More discussions on GSO are in Appendix K.

5219

Acknowledgements

The authors would like to thank all the anonymous
reviewers for their insightful comments.

7 Limitations

We consider a few limitations and future directions.
(i) The content generated by LLMs exhibits a cer-
tain degree of randomness, and the optimization
process cannot guarantee interpretability or trans-
parency. (ii) LLM inference requires large compu-
tational resources and thus increases expense. It
paves the way for research on LLM inference ac-
celeration to expedite our GSO (Leviathan et al.,
2023; Liu et al., 2024a). (iii) GSO requires access
to model weights, which limits its applicability
to closed-source models like GPT-4 and Claude
3.5. We believe that as the community progresses
and the performance gap between open-source and
closed-source models narrows, our GSO will be
able to demonstrate its capabilities more effec-
tively.

References
Microsoft Research AI4Science and Microsoft Azure

Quantum. 2023. The impact of large language mod-
els on scientific discovery: a preliminary study using
gpt-4. arXiv preprint arXiv:2311.07361.

Shun-ichi Amari. 1993. Backpropagation and stochas-
tic gradient descent method. Neurocomputing, 5(4-
5):185–196.

Daniil A Boiko, Robert MacKnight, Ben Kline, and
Gabe Gomes. 2023. Autonomous chemical research
with large language models. Nature, 624(7992):570–
578.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Angelica Chen, David Dohan, and David So. 2024a.
Evoprompting: language models for code-level neu-
ral architecture search. Advances in Neural Informa-
tion Processing Systems, 36.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Hanzhu Chen, Xu Shen, Qitan Lv, Jie Wang, Xiaoqi
Ni, and Jieping Ye. 2024b. Sac-kg: Exploiting large

language models as skilled automatic constructors for
domain knowledge graph. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4345–
4360.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference
on Learning Representations.

Xinyun Chen and Yuandong Tian. 2019. Learning to
perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing
systems, 32.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang,
Richard Zhang, David Dohan, Kazuya Kawakami,
Greg Kochanski, Arnaud Doucet, Marc’aurelio Ran-
zato, et al. 2022. Towards learning universal hyper-
parameter optimizers with transformers. Advances in
Neural Information Processing Systems, 35:32053–
32068.

Seyone Chithrananda, Gabriel Grand, and Bharath Ram-
sundar. 2020. Chemberta: large-scale self-supervised
pretraining for molecular property prediction. arXiv
preprint arXiv:2010.09885.

Tânia FGG Cova and Alberto ACC Pais. 2019. Deep
learning for deep chemistry: optimizing the predic-
tion of chemical patterns. Frontiers in chemistry,
7:809.

Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, and
Antoine Bosselut. 2021. Analyzing commonsense
emergence in few-shot knowledge models. arXiv
preprint arXiv:2101.00297.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Michel Deudon, Pierre Cournut, Alexandre Lacoste,
Yossiri Adulyasak, and Louis-Martin Rousseau. 2018.
Learning heuristics for the tsp by policy gradient. In
Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 15th Interna-
tional Conference, CPAIOR 2018, Delft, The Nether-
lands, June 26–29, 2018, Proceedings 15, pages 170–
181. Springer.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W Cohen. Differentiable reasoning over a
virtual knowledge base. In International Conference
on Learning Representations.

Vanessa Didelez and Iris Pigeot. 2001. Causality: mod-
els, reasoning, and inference.

R. A. Fisher. 1922. On the mathematical foundations of
theoretical statistics. Philosophical Transactions of
the Royal Society of London. Series A, 222:309–368.

5220

Santo Fortunato, Carl T Bergstrom, Katy Börner,
James A Evans, Dirk Helbing, Staša Milojević,
Alexander M Petersen, Filippo Radicchi, Roberta
Sinatra, Brian Uzzi, et al. 2018. Science of science.
Science, 359(6379):eaao0185.

Elias Frantar and Dan Alistarh. 2023. Qmoe: Practical
sub-1-bit compression of trillion-parameter models.
arXiv preprint arXiv:2310.16795.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Bruce Golden, Lawrence Bodin, T Doyle, and W Stew-
art Jr. 1980. Approximate traveling salesman algo-
rithms. Operations research, 28(3-part-ii):694–711.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
Finding neurons in a haystack: Case studies with
sparse probing. Transactions on Machine Learning
Research.

Gurobi Optimization, LLC. 2024. Gurobi Optimizer
Reference Manual.

Gregory Gutin and Abraham P Punnen. 2006. The trav-
eling salesman problem and its variations, volume 12.
Springer Science & Business Media.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2024. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Advances in Neural Information Pro-
cessing Systems, 36.

Shibo Hao, Bowen Tan, Kaiwen Tang, Bin Ni, Xiyan
Shao, Hengzhe Zhang, Eric Xing, and Zhiting Hu.
2023. Bertnet: Harvesting knowledge graphs with
arbitrary relations from pretrained language models.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5000–5015.

Keld Helsgaun. 2017. An extension of the lin-
kernighan-helsgaun tsp solver for constrained travel-
ing salesman and vehicle routing problems. Roskilde:
Roskilde University, 12:966–980.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Michael D Intriligator. 2002. Mathematical optimiza-
tion and economic theory. SIAM.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey
Stomakhin, and Andrew Selle. 2016. The material
point method for simulating continuum materials. In
Acm siggraph 2016 courses, pages 1–52.

Michael Jünger, Gerhard Reinelt, and Giovanni Ri-
naldi. 1995. The traveling salesman problem. Hand-
books in operations research and management sci-
ence, 7:225–330.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2024. Language models can solve computer tasks.
Advances in Neural Information Processing Systems,
36.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Wouter Kool, Herke Van Hoof, and Max Welling. 2018.
Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475.

Joel Lehman, Jonathan Gordon, Shawn Jain, Ka-
mal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
2022. Evolution through large models. Preprint,
arXiv:2206.08896.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei,
Hui Liu, Jiliang Tang, and Qing Li. 2024a. Em-
powering molecule discovery for molecule-caption
translation with large language models: A chatgpt
perspective. IEEE Transactions on Knowledge and
Data Engineering.

Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao,
Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yao-
tian Yang, Xinrui Xiong, Weiyun Wang, Zhe Chen,

5221

https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2206.08896

Wenhai Wang, Wei Li, Shufei Zhang, Mao Su,
Wanli Ouyang, Yuqiang Li, and Dongzhan Zhou.
2024b. Chemvlm: Exploring the power of mul-
timodal large language models in chemistry area.
Preprint, arXiv:2408.07246.

Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao,
Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yao-
tian Yang, Xinrui Xiong, Weiyun Wang, Zhe Chen,
Wenhai Wang, Wei Li, Shufei Zhang, Mao Su,
Wanli Ouyang, Yuqiang Li, and Dongzhan Zhou.
2024c. Chemvlm: Exploring the power of mul-
timodal large language models in chemistry area.
Preprint, arXiv:2408.07246.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen
Zhu, and Winston Hu. 2024a. Parallel specula-
tive decoding with adaptive draft length. Preprint,
arXiv:2408.11850.

Tianyu Liu, Qitan Lv, Jie Wang, Shuling Yang, and
Hanzhu Chen. 2024b. Learning rule-induced sub-
graph representations for inductive relation predic-
tion. Advances in Neural Information Processing
Systems, 36.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Zhichao Liu, Ruth A Roberts, Madhu Lal-Nag, Xi Chen,
Ruili Huang, and Weida Tong. 2021. Ai-based lan-
guage models powering drug discovery and develop-
ment. Drug Discovery Today, 26(11):2593–2607.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong
Zhang, and Feng Wu. 2024. Coarse-to-fine high-
lighting: Reducing knowledge hallucination in large
language models. In Forty-first International Confer-
ence on Machine Learning.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng,
Joshua B Tenenbaum, Tao Du, Chuang Gan, and Wo-
jciech Matusik. 2023a. Learning neural constitutive
laws from motion observations for generalizable pde
dynamics. In International Conference on Machine
Learning, pages 23279–23300. PMLR.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo,
Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,

Chuang Gan, and Wojciech Matusik. Llm and sim-
ulation as bilevel optimizers: A new paradigm to
advance physical scientific discovery. In Forty-first
International Conference on Machine Learning.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2023b. Eu-
reka: Human-level reward design via coding large
language models. In The Twelfth International Con-
ference on Learning Representations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Aman Madaan and Amir Yazdanbakhsh. 2022. Text
and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh Interna-
tional Conference on Learning Representations.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam
Gaier, Arash Moradi, Amy K Hoover, and Joel
Lehman. 2023a. Language model crossover: Vari-
ation through few-shot prompting. arXiv preprint
arXiv:2302.12170.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam
Gaier, Arash Moradi, Amy K Hoover, and Joel
Lehman. 2023b. Language model crossover: Vari-
ation through few-shot prompting. arXiv preprint
arXiv:2302.12170.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. Fast model edit-
ing at scale. In International Conference on Learning
Representations.

Douglas C. Montgomery, Elizabeth A. Peck, and Geof-
frey G. Vining. 2021. Introduction to Linear Regres-
sion Analysis, 6th edition edition. Wiley.

Varun Nair, Elliot Schumacher, Geoffrey Tso, and
Anitha Kannan. 2023. Dera: enhancing large lan-
guage model completions with dialog-enabled resolv-
ing agents. arXiv preprint arXiv:2303.17071.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence
Snyder, and Martin Takác. 2018. Reinforcement
learning for solving the vehicle routing problem. Ad-
vances in neural information processing systems, 31.

5222

https://arxiv.org/abs/2408.07246
https://arxiv.org/abs/2408.07246
https://arxiv.org/abs/2408.07246
https://arxiv.org/abs/2408.07246
https://arxiv.org/abs/2408.11850
https://arxiv.org/abs/2408.11850
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Leland Gerson Neuberg. 2003. Causality: models, rea-
soning, and inference, by judea pearl, cambridge uni-
versity press, 2000. Econometric Theory, 19(4):675–
685.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Demystifying gpt self-repair for code genera-
tion. arXiv preprint arXiv:2306.09896.

OpenAI. 2020. Chatgpt: A large-scale generative model
for conversation.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Karl Popper. 2005. The logic of scientific discovery.
Routledge.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias
Rupp, and O Anatole Von Lilienfeld. 2014. Quan-
tum chemistry structures and properties of 134 kilo
molecules. Scientific data, 1(1):1–7.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. 2024a. Mathematical discoveries from
program search with large language models. Nature,
625(7995):468–475.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. 2024b. Mathematical discoveries from
program search with large language models. Nature,
625(7995):468–475.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. 2024c. Mathematical discoveries from
program search with large language models. Nature,
625(7995):468–475.

Daniel J Rosenkrantz, Richard E Stearns, and Philip M
Lewis, II. 1977. An analysis of several heuristics for
the traveling salesman problem. SIAM journal on
computing, 6(3):563–581.

George A. F. Seber and Alan J. Lee. 2012. Linear
Regression Analysis, 2nd edition edition. Wiley.

Gaurav Sharma and Abhishek Thakur. 2023. Chatgpt
in drug discovery.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366, 2(5):9.

Mohammad Shoeybi, Md.MostofaAli Patwary, Raul
Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. 2019. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. Cornell University - arXiv,Cornell University
- arXiv.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer.
1995. Application of a particle-in-cell method to
solid mechanics. Computer physics communications,
87(1-2):236–252.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. Cognitive architectures for
language agents. Transactions on Machine Learning
Research.

Anthropic Team. 2024a. The claude 3 model family:
Opus, sonnet, haiku.

Gemini Team. 2023a. Gemini: A family of highly capa-
ble multimodal models. Preprint, arXiv:2312.11805.

InternLM Team. 2023b. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

Llama2 Team. 2023c. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Llama3 Team. 2024b. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

PaLM Team. 2022. Palm: Scaling language modeling
with pathways. Preprint, arXiv:2204.02311.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476–482.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao
Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac,
et al. 2023b. Scientific discovery in the age of artifi-
cial intelligence. Nature, 620(7972):47–60.

5223

https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping
Wang, Yi Wu, and Furu Wei. 2023c. Bitnet: Scaling
1-bit transformers for large language models. arXiv
preprint arXiv:2310.11453.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. Interpretabil-
ity in the wild: a circuit for indirect object identifi-
cation in gpt-2 small. In The Eleventh International
Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023. Larger language
models do in-context learning differently. arXiv
preprint arXiv:2303.03846.

Mignon Wuestman, Jarno Hoekman, and Koen Frenken.
2020. A typology of scientific breakthroughs. Quan-
titative Science Studies, 1(3):1203–1222.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Weizhe Yuan, Kyunghyun Cho, and Jason Weston. 2024.
System-level natural language feedback. In Proceed-
ings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2773–2789.

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang
Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xi-
angyu Yue, Dongzhan Zhou, et al. 2024a. Chemllm:
A chemical large language model. arXiv preprint
arXiv:2402.06852.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024b. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Starkson Zhang, Alfredo Pearson, and Zhenting Wang.
Autonomous generalist scientist: Towards and be-
yond human-level automatic research using founda-
tion model-based ai agents and robots (a position).

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serv-
ing. Proceedings of Machine Learning and Systems,
6:196–209.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. Large language models are human-level prompt
engineers. In The Eleventh International Conference
on Learning Representations.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

5224

A More Related Works

A.1 Classical Language Model Methods for
Scientific Optimization

Besides the methods using LLMs for scientific op-
timization in Section 3, these are several classical
studies that have fine-tuned language models (LMs)
to function as mutation and crossover operators
within evolutionary algorithms (Meyerson et al.,
2023a; Zhang et al., 2024a; Li et al., 2024c). LMX
(Meyerson et al., 2023b) employs language models
guided by few-shot exemplars to generate evolu-
tionary crossovers in tasks like image and code gen-
eration, enhancing the model’s ability to adapt and
innovate across diverse domains. ELM (Lehman
et al., 2022) trains an LLM to generate code diffs,
which serve as the mutation operator, and intro-
duces a fine-tuning method to enhance performance
in the Sodarace domain for robotic simulation. Evo-
Prompting (Chen et al., 2024a) leverages large lan-
guage models to evolve neural network architec-
tures by integrating evolutionary search with soft
prompt tuning. OptFormer (Chen et al., 2022) in-
corporates trajectories as input for optimization by
training a transformer model on extensive hyper-
parameter optimization datasets. These methods
primarily focus on fine-tuning LLMs with domain-
specific data to align natural language with scien-
tific information. However, these approaches are
domain-bound and demand substantial data which
also limits their broader applicability.

A.2 Large Language Models

Language models such as GPT (Radford et al.,
2018), BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), and Megatron-LM
(Shoeybi et al., 2019) have led to a learning
paradigm shift in natural language processing
(NLP). Models are first pre-trained on extensive
volumes of unlabeled text corpora with language
modeling objectives and then fine-tuned on down-
stream tasks. Recently, large language models
(LLMs) including LLama (Team, 2024b, 2023c)
ChatGPT (OpenAI, 2020) GPT4 (OpenAI, 2023),
PaLM (Team, 2022), Gemini (Team, 2023a), and
Claude3 (Team, 2024a) have shown great perfor-
mance in both few-shot and even zero-shot sce-
narios (Brown et al., 2020). To further enhance
the interpretability of these LLMs, some research
endeavors explain LLMs through attribution analy-
sis (Wang et al.; Hanna et al., 2024; Gurnee et al.;
Chen et al., 2024b). Another line of work aims to

retrieve the knowledge explicitly from LLMs as the
basis for interpreting them, including the reasoning
task (Shi et al., 2023) and the QA task (Hao et al.,
2023; Dhingra et al.; Guu et al., 2020).

B Results of the Causal Tracing for
Different LLMs

Causal tracing has emerged as a pivotal method-
ology for dissecting and understanding the inter-
nal mechanisms of model (Didelez and Pigeot,
2001). This technique facilitates the identification
and modification of specific factual associations
within a model without necessitating comprehen-
sive retraining (Neuberg, 2003). In the context of
model editing, causal tracing enables precise inter-
ventions by isolating the neural correlates responsi-
ble for particular behaviors or outputs. We follow
(Meng et al., 2022) to build a causal graph (Neu-
berg, 2003) to describe dependencies between the
hidden variables. This graph illustrates numerous
pathways from the input on the left to the output
(next-word prediction) at the lower right. Our aim
is to determine whether specific hidden state
variables are more important than others in the
process of recalling a fact.

To quantify each state’s contribution to a cor-
rect factual prediction, we analyze all of LLM’s
internal activations across three runs: a clean run
that accurately predicts the fact, a corrupted run
where the prediction is impaired, and a corrupted-
with-restoration run that evaluates the ability of a
single state to restore the correct prediction.

Let P[o], P∗[o], and P∗, clean hl
i
[o] denote the

probability of emitting the given entity o under the
clean, corrupted, and corrupted-with-restoration
runs, respectively; dependence on the input x is
omitted for notational simplicity. The total effect
(TE) is defined as the difference between two prob-
abilities:

TE = P[o]− P∗[o].

The indirect effect (IE) of a specific mediating
state ĥi

l
is defined as the difference between the

probability of o under the corrupted condition and
the probability of o when that state is restored to
its clean version, while the subject remains in a
corrupted state:

IE = P∗,clean hi
l [o]− P∗[o].

By averaging over a sample of statements, we
can derive the average indirect effect (AIE) for

5225

Table 5: Results of our GSO against 6 baselines using Llama2 13B, Yi 9B, and Internlm 7B as the backbone models.
Our experiments encompass 7 different tasks, which are divided into linear system regression (LSR) (a), travel
salesman problem (TSP) (b), constitutive law prediction (c-d), and molecule property prediction (e-g). For the LSR
task, we use the number of steps of successfully finding the optimal solution as the metric. For the TSP task, we use
the optimality gap as the metric. For the rest five tasks, we use MSE loss as the metric. We calculate the mean ±
standard error of each optimization result. The symbol N/A indicates that the model is unable to provide a feasible
solution for the current task. A lower value is preferable across all tasks. The best results are highlighted in bold
text.

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Llama2 13B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 N/A N/A N/A N/A N/A
Funsearch N/A 2.5 ± 1.0 170.9 ± 20.1 255.1 ± 31.1 108.5 ± 13.0 115.5 ± 20.7 59.7 ± 8.3
Eureka N/A 2.7 ± 1.5 211.7 ± 50.4 131.7 ± 21.9 98.2 ± 11.3 220.1 ± 30.1 39.3 ± 13.9
OPRO 28.7 ± 10.8 0.9 ± 0.3 55.8 ± 10.4 165.8 ± 52.9 168.5 ± 31.7 355.4 ± 43.7 35.9 ± 10.7
SGA 30.0 ± 10.2 0.2 ± 0.1 31.7 ± 10.1 55.4 ± 15.8 87.1 ± 17.0 89.5 ± 17.7 27.6 ± 5.4
GSO (ours) 5.0 ± 1.6 0.1 ± 0.1 2.9 ± 1.3 7.4 ± 3.1 48.1 ± 12.0 79.1 ± 13.3 8.3 ± 3.2

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Yi 9B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 N/A N/A N/A N/A N/A
Funsearch 19.6 ± 6.0 2.2 ± 0.2 201.4 ± 10.3 229.5 ± 31.3 201.0 ± 55.3 198.9 ± 40.1 135.0 ± 20.7
Eureka 8.6 ± 4.0 1.8 ± 0.6 130.1 ± 22.1 381.1 ± 98.8 1559.1 ± 100.7 301.9 ± 38.7 98.3 ± 10.1
OPRO 9.5 ± 4.4 0.3 ± 0.2 94.0 ± 23.3 163.2 ± 28.9 850.7 ± 94.0 746.9 ± 31.0 129.1 ± 23.5
SGA 22.5 ± 5.1 0.7 ± 0.4 50.3 ± 7.9 104.4 ± 19.3 133.9 ± 23.1 168.4 ± 59.0 39.6 ± 5.3
GSO (ours) 3.0 ± 0.8 0.0 ± 0.0 5.9 ± 2.1 89.1 ± 33.9 67.9 ± 23.1 172.9 ± 43.1 5.5 ± 2.1

Backbone Method
Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓

Internlm 7B

Vanilla N/A 6.0 ± 2.0 N/A N/A N/A N/A N/A
CoT N/A 4.4 ± 1.9 N/A N/A N/A N/A N/A
Funsearch 19.1 ± 1.3 0.8 ± 0.2 193.8 ± 30.9 318.3 ± 87.1 110.4 ± 19.3 150.0 ± 23.7 70.3 ± 10.9
Eureka 29.5 ± 4.2 1.3 ± 0.4 211.0 ± 30.3 230.5 ± 39.9 211.1 ± 40.1 139.6 ± 38.2 50.8 ± 9.4
OPRO 27.6 ± 3.8 0.2 ± 0.1 59.6 ± 16.2 130.8 ± 19.1 257.9 ± 93.0 195.1 ± 33.9 45.3 ± 9.7
SGA 14.6 ± 5.5 0.0 ± 0.0 133.5 ± 29.3 191.4 ± 15.0 93.7 ± 25.4 94.8 ± 19.3 17.9 ± 4.5
GSO (ours) 10.0 ± 2.1 0.0 ± 0.0 10.4 ± 3.1 37.0 ± 12.9 47.2 ± 10.8 73.5 ± 19.6 4.2 ± 2.3

Table 6: We consider an imaginary constitutive law set-
ting to prevent the LLM from cheating by memorization
and report the results using Mistral 7B as the represen-
tative backbone model.

Funsearch Eureka OPRO SGA GSO

201.1 ± 39.0 291.0 ± 20.8 190.0 ± 10.3 59.7 ± 5.9 17.1 ± 4.0

each hidden state variable. Specifically, when
restoring hidden states from the original run, we
substitute the values computed originally for the
corresponding layer and token, allowing subse-
quent computations to proceed without further
modification. Taking Llama3 8B as an example,
as shown in Figure 4, we observe that the 18-22th
layers for the last subject token demonstrate the
most causality in the AIE metric. Therefore, we
use the 18-22th MLP layers as the layers where
model edits are applied to update knowledge by
modifying the parameters. We also visualize other

mentioned LLMs in Figures 5, 6, 7, 8, and 9 to
provide a more comprehensive results.

C Prompt Templates for Each Task

We list the prompt templates for different tasks to
offer more visually intuitive results for each task
in Table 7, respectively. More detailed prompt
information for the best performance of each task
and dataset can be seen within the code.

D Details of Augmented Prompts

As mentioned in Section 5.5, we discussed the
robustness of the GSO method compared to tra-
ditional prompt-based approaches when handling
semantically similar prompts. Specifically, we man-
ually generated five prompts and used OpenAI o1
to rewrite an additional five prompts based on the
original task prompts. We now list these augmented
prompts in Tables 8 and 9 to provide more insights

5226

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts 1000Avg Indirect Effect of Attn over 1000 prompts

0 5 10 15 20 25 30
Layer number in Llama3 8B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 5 10 15 20 25 30
Layer number in Llama3 8B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 5 10 15 20 25 30
Layer number in Llama3 8B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 4: Causal tracing visualization results for Llama3 8B. The causal impact on output probability is mapped for
(a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c) the effect of
attention activations alone. We also give according to mean causal traces of over a sample of 1000 factual statements,
shown as a line plot with 95% confidence intervals, which is below the first three figures. The confidence intervals
confirm that the distinctions between peak and non-peak causal effects at both early and late sites are significant.

into our GSO.

E More Results of Different Edited
Models

As mentioned in Section 5.3, we select GPT-J 6B,
Llama3 8B, and Mistral 7B as representative mod-
els in Table 1. In this section, to further demon-
strate the generalization and versatility of GSO,
we also conducted experiments on several popular
open-source LLMs at different scales, including
Llama2 13B, Yi-9B, and Internlm 7B. As shown in
Table 5, we can still observe that our GSO method
significantly outperforms existing baselines. This
further demonstrates the effectiveness of our GSO
approach. We also present radar charts for each
model to provide a more intuitive performance com-
parison in Figures 10 and 11. We apply a linear
mapping to assign a score of 100 to values with a
zero loss. Higher loss values correspond to progres-
sively lower scores, with an inability to answer the
question resulting in a score of zero. For formatting
reasons, we also provide the radar chart of Llama3
8B. The effectiveness of our GSO across various
popular open-source models further demonstrates
its strong versatility and generalization capabilities.

F More Details of Experiment Setups and
Task Definitions

We present more details of experiment setups and
task definitions in this section.

Experiment Setups For the experimental setup,
we apply several representative open-source LLMs:
Llama3 8B4, GPT-J-6B5, Llama2 13B6, Yi 9B7,
InternLM 7B8, and Mistral 7B9. Other open-source
models can also be replaced based on specific re-
quirements. All experiments were conducted on a
single Nvidia A100 GPU (80GB). Our approach is
implemented using PyTorch 2.4.110 and Hugging-
face’s Transformers 4.44.211. For each task, we set
a maximum of 100 iterations, with a limit of 2048
tokens generated per iteration. The optimization
process terminates if no performance improvement
or accurate result is observed after 10 consecutive
iterations, or if an accurate result is reached earlier.
More detailed configurations for the best perfor-

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

5https://huggingface.co/EleutherAI/gpt-j-6b
6https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf
7https://huggingface.co/01-ai/Yi-1.5-9B-Chat
8https://huggingface.co/internlm/internlm2_

5-7b-chat
9https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.3
10https://pytorch.org/
11https://github.com/huggingface/transformers

5227

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/internlm/internlm2_5-7b-chat
https://huggingface.co/internlm/internlm2_5-7b-chat
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://pytorch.org/
https://github.com/huggingface/transformers

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts 1000Avg Indirect Effect of Attn over 1000 prompts

0 5 10 15 20 25
Layer number in GPT-J 6B

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 5 10 15 20 25
Layer number in GPT-J 6B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 5 10 15 20 25
Layer number in GPT-J 6B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 5: Causal tracing visualization results for GPT-J 6B. The causal impact on output probability is mapped
for (a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c) the
effect of attention activations alone. We also give according to mean causal traces of over a sample of 1000
factual statements, shown as a line plot with 95% confidence intervals, which is below the first three figures.
The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early
and late sites are significant.

mance of each task and dataset can be seen within
our code.

For task definitions, we provide a more detailed
of each task definition and setting.

Linear System Regression In linear system re-
gression, the objective is to estimate the linear
coefficients that most effectively model the rela-
tionship between input variables and their corre-
sponding responses, within a probabilistic frame-
work (Fisher, 1922). We follow the dataset setting
as OPRO (Yang et al., 2023) which we include
437 samples. Linear system regression is a funda-
mental technique in statistics and machine learning,
widely applied in both theoretical and practical set-
tings (Montgomery et al., 2021; Seber and Lee,
2012).

Traveling Salesman Problem (TSP) The Trav-
eling Salesman Problem (TSP) (Jünger et al., 1995;
Gutin and Punnen, 2006) is a classical combinato-
rial optimization problem that has garnered signifi-
cant attention in the literature, with numerous algo-
rithms proposed, ranging from heuristic methods
to exact solvers (Rosenkrantz et al., 1977; Golden
et al., 1980; Gurobi Optimization, LLC, 2024; Hels-
gaun, 2017). Recently, the problem has also been
approached through the use of deep neural net-
works (Kool et al., 2018; Deudon et al., 2018; Chen
and Tian, 2019; Nazari et al., 2018), underscor-

ing its adaptability to modern machine learning
techniques. Formally, given a set of n nodes with
known coordinates, the TSP seeks to determine the
shortest possible route that visits each node exactly
once and returns to the starting point.We follow
the dataset setting as OPRO (Yang et al., 2023),
which we include 177 TSP problems. At each opti-
mization step, a maximum of 8 new solutions are
generated. To evaluate the performance of various
methods, we utilize the Gurobi solver (Gurobi Op-
timization, LLC, 2024) to generate oracle solutions
and compute the optimality gap. The optimality
gap is defined as the relative difference between the
distance of the solution obtained by the tested ap-
proach and that of the oracle solution, normalized
by the oracle solution’s distance.

Constitutive Law Prediction Identifying consti-
tutive laws from elastic material remains one of the
most challenging tasks in fields such as physics,
materials science, and mechanical engineering. In
this paper, we follow the dataset settings as (Ma
et al., 2023a; Ma et al.), including 357 different
linear and non-linear materials and utilizing dif-
ferentiable Material Point Method (MPM) simula-
tors (Sulsky et al., 1995; Jiang et al., 2016). The
primary objective of this task is to uncover both the
discrete structure and continuous parameters of a
constitutive law, specifically identifying the mate-
rial models φ(·) along with their associated mate-

5228

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts 1000Avg Indirect Effect of Attn over 1000 prompts

0 10 20 30 40
Layer number in Llama2 13B

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 10 20 30 40
Layer number in Llama2 13B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 10 20 30 40
Layer number in Llama2 13B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 6: Causal tracing visualization results for Llama2 13B. The causal impact on output probability is
mapped for (a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c)
the effect of attention activations alone. We also give according to mean causal traces of over a sample of 1000
factual statements, shown as a line plot with 95% confidence intervals, which is below the first three figures.
The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early
and late sites are significant.

rial parameters θ, from a ground-truth trajectory of
particle positions X̂t∈[1,...,T], where T represents
the number of time steps. In this context, we con-
sider two classes of constitutive laws: φE(·; θE)
for modeling elastic materials and φP (·; θP) for
modeling plastic materials, both of which contain
both linear and non-linear materials and are for-
mally defined as the following:

φE (F; θE) 7→ τ

φP (F; θP) 7→ Fcorrected,

where F ∈ R3×3 is the deformation gradient,
τ ∈ R3×3 is the Kirchhoff stress tensor, Fcorrected ∈
R3×3 is the deformation gradient after elastic
return-mapping correction, and θE and θP are the
continuous material parameters for elastic and elas-
tic constitutive laws respectively. Given a specific
constitutive law, we input it to the differentiable
simulation and yields a particle position trajectory:

Xt∈[1,...,T] = sim (φ (·; θ)) ,

and we optimize the constitutive law by fitting the
output trajectory to the ground truth X̂t∈[1,...,T].

Molecule Property Prediction Predicting the
Highest Occupied Molecular Orbital (HOMO),
Lowest Unoccupied Molecular Orbital (LUMO),
and HOMO-LUMO gap value of molecules is a key

challenge in computational chemistry, particularly
in the fields of quantum chemistry, material science,
and drug design. In this task, we aim to predict the
HOMO value based on molecular descriptors, such
as molecular weight, Topological Polar Surface
Area (TPSA), Octanol-water partition coefficient
(logP), etc (maximum to 2k different properties).
Although traditional quantum mechanical meth-
ods such as Density Functional Theory (DFT) are
widely used for HOMO calculations, their compu-
tational cost can be prohibitive for large datasets.
In this work, we adopt a machine learning approach
to predict the HOMO value using these physical-
chemical properties as input features. We follow
the dataset settings as (Ma et al., 2023a; Ma et al.),
including 238 different molecules.

The primary goal of this task is to construct a
model that accurately predicts the HOMO energy
level ϵHOMO by learning a mapping ψ(·) between
the input molecular properties x ∈ Rn, such as
molecular weight, TPSA, and logP, and the HOMO
energy ϵHOMO ∈ R. The machine learning model
is trained on a dataset containing known molecular
properties and their corresponding HOMO values,
and optimized to minimize the prediction error rel-
ative to the true HOMO values ϵ̂HOMO.

Given a set of molecular descriptors, the model
outputs the predicted HOMO value:

ϵHOMO = ψ(x),

5229

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts 1000Avg Indirect Effect of Attn over 1000 prompts

0 10 20 30 40
Layer number in Yi 9B

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 10 20 30 40
Layer number in Yi 9B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 10 20 30 40
Layer number in Yi 9B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 7: Causal tracing visualization results for Yi 9B. The causal impact on output probability is mapped
for (a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c) the
effect of attention activations alone. We also give according to mean causal traces of over a sample of 1000
factual statements, shown as a line plot with 95% confidence intervals, which is below the first three figures.
The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early
and late sites are significant.

and the objective is to minimize the loss function,
defined as the difference between the predicted and
true HOMO values:

L = ∥ψ(x)− ϵ̂HOMO∥2 .

This approach provides a computationally efficient
alternative to traditional quantum mechanical meth-
ods, offering the potential for high-throughput
screening of molecular libraries for their electronic
properties, including HOMO values.

G More Results of Ablation Study

In Section 5.4, we report the results of the abla-
tion study using Llama3 8B as the backbone model.
In this section, we will further present the results
using GPT-J-6B, Llama2 13B, Yi 9B, InternLM
7B, and Mistral 7B as backbone models to obtain
more insights into the individual components con-
stituting GSO across various backbone models. As
illustrated in Tables 11, 12, 13, 14, and 15, we still
observe that the absence of each component within
GSO leads to a decline in performance across di-
verse domains for almost all applied backbone mod-
els in the seven tested scientific optimization tasks,
which further demonstrates that GSO organically
integrates the two-level optimization into a unified
framework as well. We also observe that the ab-
sence of model editing leads to a more significant
decline in accuracy, which further demonstrates the

importance of effectively utilizing observational
feedback to adaptively adjust the optimization di-
rection.

H More Case Study on Generalization or
Memorization

To investigate whether the improvements brought
by our method are solely due to the LLM hav-
ing seen solutions during the training phase, we
designed an experiment aimed at eliminating this
factor by having the model invent an imaginary
constitutive law that does not exist on Earth. We
combined the von Mises plasticity constitutive law,
granular material, and weakly compressible fluid in
proportions of 50%, 30%, and 20%, respectively,
creating a new constitutive law that represents an
exceedingly complex hypothetical material. As
shown in Table 6, our method was still able to
discover the constitutive law with minimal quan-
titative loss compared to other existing baselines.
These results also indicate that GSO does not sim-
ply rely on memorization to achieve results but
instead indeed effectively performs optimization.

I Inference Time Comparisons

We note that GSO requires an additional process
to utilize the optimization feedback by applying
model editing techniques to update LLM’s parame-
ters. Compared to the vanilla model, this process

5230

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts 1000Avg Indirect Effect of Attn over 1000 prompts

0 5 10 15 20 25 30
Layer number in Internlm 7B

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 5 10 15 20 25 30
Layer number in Internlm 7B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 5 10 15 20 25 30
Layer number in Internlm 7B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 8: Causal tracing visualization results for Internlm 7B. The causal impact on output probability is
mapped for (a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c)
the effect of attention activations alone. We also give according to mean causal traces of over a sample of 1000
factual statements, shown as a line plot with 95% confidence intervals, which is below the first three figures.
The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early
and late sites are significant.

could potentially introduce extra inference time.
However, we also observe that GSO effectively
reduces the input prompt length through this ap-
proach, thereby decreasing the LLM’s inference
time. Hence, to explore the interplay between these
two effects, we record and compare the average
inference time per sample of different methods us-
ing a single Nvidia A100 GPU (80GB), including
vanilla, CoT, OPRO, Eureka, Funsearch, SGA, and
GSO on each mentioned scientific optimization
task to explore the influence of additional inference
time and provide more insight of our GSO.

We report the average inference time per sample
as a metric, as shown in Table 10. We observe
from the table that although the incorporation of
model editing within the GSO framework intro-
duces just marginal additional inference time costs.
On average, the increase in inference time cost
per sample due to the introduction of GSO, com-
pared to the vanilla LLM, is 7.75s. Notably, when
utilizing Mistral 7B as the backbone model, this
additional inference time is only 5.8s, yet it offers
a maximum precision improvement of 32.6× in the
HOMO-LUMO gap prediction task compared to all
other methods. Furthermore, GSO exhibits higher
inference efficiency compared to existing methods.
We may focus on exploring ways to further reduce
the time cost of the GSO, including lightweight-
ing LLMs to get a faster calculation (Zhu et al.,

2023; Hsieh et al., 2023) or adopting more efficient
(Wang et al., 2023c; Zhao et al., 2024; Frantar and
Alistarh, 2023) and rational large model inference
strategies such as speculative decoding (Leviathan
et al., 2023; Liu et al., 2024a) as for future works.

J Scientific Artifacts

The data we collect in specialized domains is pub-
licly available and viewable online. The data own-
ers have indicated that the data can be used for
scientific research or have not indicated that the
data cannot be used for scientific research, and our
collection process is also in compliance with regu-
lations. Moreover, there is no unique identification
of individuals or offensive content in these data.

K More Discussions On GSO

K.1 What is the key advantage of using LLMs
to optimize over some traditional
optimization algorithms, especially on
classical optimization problems?

The key advantage is that one can use natural lan-
guage to describe the optimization problem. In-
stead of formally defining the optimization problem
and deriving the update step with a programmed
solver. This makes optimization more accessible
to general users who may not have extensive do-
main knowledge of the specific types of optimiza-
tion tasks in question, and it may also enhance

5231

Avg Indirect Effect of over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts Avg Indirect Effect of MLP over 1000 prompts

0 5 10 15 20 25 30 35
Layer number in Mistral 7B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a single hidden vector

0 5 10 15 20 25 30 35
Layer number in Mistral 7B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 MLP lookups
First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 5 10 15 20 25 30 35
Layer number in Mistral 7B

Av
er

ag
e

ind
ire

ct
 e

ffe
ct

 o
n

p(
o)

Average indirect effect of a run of 10 Attn modules

Figure 9: Causal tracing visualization results for mistral 7B. The causal impact on output probability is mapped
for (a) the effect of each hidden state on the prediction, (b) the effect of MLP activations alone, and (c) the
effect of attention activations alone. We also give according to mean causal traces of over a sample of 1000
factual statements, shown as a line plot with 95% confidence intervals, which is below the first three figures.
The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early
and late sites are significant.

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(HOMO-LUMO)

Molecule Property
(LUMO)

Constitutive
Law (Linear)

Molecule
Property (HOMO)

Constitutive
Law (Non-linear)

Travel Salesman
Problem

Linear System Regression Linear System Regression

Travel Salesman
Problem

Constitutive
Law (Linear)

Constitutive
Law (Non-linear)

Molecule
Property (HOMO)

Molecule Property
(HOMO-LUMO)

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(LUMO)

Linear System Regression

Travel Salesman
Problem

Constitutive
Law (Linear)

Constitutive
Law (Non-linear)

Molecule
Property (HOMO)

Molecule Property
(HOMO-LUMO)

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(LUMO)

Figure 10: GSO achieves state-of-the-art performance on a broad range of scientific optimization tasks compared
with existing methods, using LLama 3 7B, GPT-J 6B, and Llama2 13B as backbone models, respectively. We
linearly map the evaluation metrics to [0, 100] for presentation.

the productivity of optimization experts who work
on these tasks daily. Moreover, employing LLMs
for optimization is both domain-agnostic and task-
agnostic, offering excellent universality and gener-
alization. It enables rapid understanding and opti-
mization of relatively unknown problems and can
assist in finding more refined solutions. With the
rapid advancement of LLMs, their abilities are im-
proving swiftly, indicating the great potential of
LLM-based optimization methods to address more
complex and even unknown optimization tasks.

K.2 What specific impact does the adoption of
the exploitation/exploration phase
actually have, given that sometimes
satisfactory results can be achieved
without introducing it?

To investigate how the dynamic exploitation/ex-
ploration strategy works, we designed an ablation
experiment in Section 5.4 and Appendix G. Sta-
tistically, the strategy has a relatively positive ef-
fect, especially for tasks like predicting the HOMO-
LUMO gap of molecules. We find that: Without
exploitation, GSO sometimes finds it difficult to
effectively provide consistent high-quality parame-
ter hypotheses. Without exploration, GSO some-
times becomes trapped in local optima, unable to
further optimize the task to gain additional insights.
Consequently, using a balanced exploitation/explo-

5232

Table 7: Prompt templates for each task. In the prompts, "str(Examples)" represents initial solutions for each task.
"str(Nodes)" and "str(Properties)" represent some basic properties of the materials/molecules.

Optimization Tasks Prompt Templates

Linear System Regression You will help me minimize a function with two input variables w, b. I
have some (w, b) pairs and the function values at those points. The pairs
are arranged in descending order based on their function values, where
lower values are better.
Below are some examples: str(Examples)
Give me a new (w, b) pair that is different from all pairs above, and has a
function value lower than any of the examples.

Travel Salesman Problem You are given a list of points with coordinates below: str(Nodes)
Below are some previous traces and their lengths. The traces are arranged
in descending order based on their lengths, where lower values are better:
str(Traces)
Give me a new trace that is different from all traces above, and has a length
lower than any of the above. The trace should traverse all points exactly
once. The trace should start with <trace> and end with </trace>.

Constitutive Law Predic-
tion (Linear and Non-
Linear)

You are given a list of materials with corresponding properties below:
str(Properties)
Below are some previous stress-strain responses for each material, sorted
in descending order based on compliance, where lower compliance values
indicate better structural integrity: str(Examples)
Provide a new constitutive law that differs from all the laws above, en-
suring that it produces a compliance value lower than any of the existing
responses. The constitutive law should describe the relationship between
stress and strain accurately for the material and should start with <law>
and end with </law>.

Molecule Property Pre-
diction (HOMO value,
LUMO value, and HOMO-
LUMO gap)

You are given a list of molecules with their chemical properties below:
str(Properties).
Your goal is to predict the HOMO (can be adjusted to LUMO or HOMO-
LUMO gap depending on different tasks) values for the listed molecules.
Below are some examples: str(Examples)
The HOMO value for each molecule should be distinct from any pre-
viously reported values, and the predictions should ensure an accurate
representation of their electronic properties. Each predicted value should
be formatted to start with <value> and end with </value>

ration strategy enables one to escape local optima
and obtain consistent loss decay. As shown in Fig-
ure 3, GSO with this strategy is the only one that
continues to progress toward better results, whereas
others exhibit plateaued stagnation curves.

K.3 Is GSO still effective when dealing with
high-dimensional data or extremely
intricate optimization tasks?

Our experimental design includes both simple, low-
dimensional ideal, and high-dimensional complex

scientific optimization problems aimed at minimiz-
ing the sim-to-real gap to the greatest extent possi-
ble. This ensures that GSO generates meaningful
and practical optimizations rather than question-
able toys. We believe this is a strength rather than a
weakness for GSO. Moreover, the success of GSO
stems from the effective utilization of optimization
feedback at each step and a dynamic exploration/-
exploitation strategy, which is domain-agnostic and
can be applied to other domains. We also acknowl-
edge that when the underlying physics of the opti-

5233

Table 8: Augmented prompt templates for linear system regression and travel salesman problem. In the prompts,
"str(Examples)" represents initial solutions for each task. "str(Nodes)" represents some basic properties of the
materials.

Optimization Tasks Augmented Prompts

Linear System Regression (i) You will help me minimize a function with two input variables w, b. I
have some (w, b) pairs and the function values at those points. The pairs
are arranged in descending order based on their function values, where
lower values are better.
Please provide a new (w, b) pair distinct from those above, with a lower
function value than any previous pair.
(ii) You are assisting in minimizing a function with two variables w and b.
Provided are some (w, b) pairs along with their function values, sorted in
descending order where lower values are better.
Generate a (w, b) pair not seen in the above list, ensuring it yields a
function value lower than any listed.
(iii) Help me find the minimum of a function dependent on variables w
and b. Below are (w, b) pairs and their corresponding function values,
arranged from highest to lowest (lower is better).
Give a (w, b) pair not seen in the above list, ensuring it yields a function
value lower than any listed.
(iv) I need assistance in minimizing a function with inputs w and b. Here
are some (w, b) pairs and their function values, listed in descending order
of their function values (lower values indicate better results).
Give me a better (w, b) pair that is not included above.
(v) Your task is to help minimize a function of two variables w and b. The
following are (w, b) pairs and their function values, sorted from highest to
lowest (lower values are preferable).
Provide a new and better (w, b) pair from those above.

Travel Salesman Problem (i) Given the coordinates of points: str(Nodes). Here are some previous
routes and their lengths, sorted from longest to shortest (shorter is better).
Give me a new trace that is different from all traces above, and has a length
lower than any of the above. The trace should traverse all points exactly
once. The trace should start with <trace> and end with </trace>.
(ii) Consider the following points with coordinates: str(Nodes). Generate
a new trace that differs from all previous traces and is shorter than any of
them. Ensure that this trace covers each point exactly once, begins with
<trace>, and ends with </trace>.
(iii) You have a set of points at these coordinates below: str(Nodes). Please
provide a unique trace that is distinct from all preceding traces and has
a length shorter than any of the prior traces. This trace should start with
<trace> and conclude with </trace>, while visiting each point one time.
(iv) Here are points with their coordinates: str(Nodes). Please craft a new
trace that is unique from all previous traces and shorter in length than any
listed above. This trace should traverse all points a single time, beginning
with <trace> and ending with </trace>.
(v) You are provided with points with their coordinates: str(Nodes). Pro-
duce a trace that does not resemble any of the existing traces and has a
length less than the shortest one listed. It should begin with <trace>, finish
with </trace>, and cover each point exactly once.

5234

Table 9: Augmented prompt templates for constitutive law prediction and molecule property prediction. In the
prompts, "str(Examples)" represents initial solutions for each task. "str(Properties)" represent some basic properties
of the molecules.

Optimization Tasks Augmented Prompts

Constitutive Law Predic-
tion (Linear and Non-
Linear)

(i) You have been provided with a list of materials and their associated
properties: str(Properties). You will find previous stress-strain responses
for each material, where lower compliance indicates stronger structural
integrity: str(Examples) Create a new constitutive law that is distinct from
all those listed. The law should begin with <law> and end with </law>.
(ii) Provided below are some materials with their properties:
str(Properties). It also includes prior stress-strain responses for each mate-
rial, where lower values reflect better structural integrity: str(Examples).
Develop a new constitutive law that is different from all previous laws.
The law should start with <law> and end with </law>.
(iii) You have a list of materials and their properties outlined below:
str(Properties). Alongside, there are previous stress-strain responses for
each material with lower compliance suggesting stronger structural in-
tegrity: str(Examples). Formulate a new constitutive law. This law should
start with <law> and end with </law>.
(iv) Below is a list of materials and their corresponding properties:
str(Properties) The data is in descending order, where a lower compli-
ance value indicates greater structural integrity: str(Examples). Construct
a new constitutive law that is distinct from all the above, ensuring that it
yields a compliance value below all existing responses. The law should
start with <law> and end with </law>.
(v) A list of materials and their properties is given below: str(Properties).
Below are previous responses, where lower values suggest better structural
integrity: str(Examples). Design a new constitutive law. The law should
begin with <law> and end with </law>.

Molecule Property Pre-
diction (HOMO value,
LUMO value, and HOMO-
LUMO gap)

(i) Provided below is a list of molecules and their properties:
str(Properties). Predict the HOMO values for these molecules (or ad-
just to LUMO/HOMO-LUMO gap as needed).
Ensure each HOMO value accurately represents electronic properties.
Format predictions with <value> at the start and </value> at the end.
(ii) Below are molecules with their chemical properties: str(Properties).
Your task is to predict HOMO values (or LUMO/HOMO-LUMO gap)
for each. Make sure predictions reflect electronic properties accurately,
formatted as <value>...</value>.
(iii) You have a list of molecules with properties: str(Properties).
Predict the HOMO (or LUMO/HOMO-LUMO gap) values. Use
<value>...</value> to format predictions.
(iv) Here are molecules and properties: str(Properties).
Predict HOMO values (or LUMO/HOMO-LUMO gap) that capture prop-
erties accurately. Prediction should begin with <value> and end with
</value>.
(v) Provided is a list of molecules: str(Properties).
Predict HOMO values (or LUMO/HOMO-LUMO gap), ensuring accurate
electronic property representation. Format each as <value>...</value>.

5235

Table 10: The inference time (per sample on average) on the TSP task for the baseline methods, including Vanilla,
CoT, OPRO, Eureka, Funsearch, SGA, GSO, respectively. We report the results using Llama3 8B, GPT-J 6B,
Llama2 13B, Yi9B, Internlm 7B, and Mistral 7B as backbone models, respectively. (Unit: seconds)

Backbone Models Vanilla CoT OPRO Eureka Funsearch SGA GSO (ours)

Llama3 8B 21.9 21.9 34.0 32.1 40.9 37.3 28.9
GPT-J 6B 20.1 21.3 30.8 27.5 44.5 35.8 29.0
Llama2 13B 40.2 41.4 53.3 47.6 61.0 55.3 51.0
Yi 9B 28.8 28.9 38.8 41.0 53.3 50.5 35.9
Internlm 7B 16.9 17.4 25.4 21.0 36.9 37.0 23.8
Mistral 7B 18.2 18.5 27.2 20.4 33.9 37.3 24.0

Linear System Regression

Travel Salesman
Problem

Constitutive
Law (Linear)

Constitutive
Law (Non-linear)

Molecule
Property (HOMO)

Molecule Property
(HOMO-LUMO)

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(LUMO)

Linear System Regression

Travel Salesman
Problem

Constitutive
Law (Linear)

Constitutive
Law (Non-linear)

Molecule
Property (HOMO)

Molecule Property
(HOMO-LUMO)

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Molecule Property
(LUMO)

Linear System Regression

Travel Salesman
Problem

Constitutive
Law (Linear)

Constitutive
Law (Non-linear)

Molecule
Property (HOMO)

Molecule Property
(LUMO)

Molecule Property
(HOMO-LUMO)

60

40

Funsearch Eureka OPRO SGA GSO (Ours)

40

40

60

60

80

80

80

40

80
60

8060
40

80

60

40

80

60

40

Figure 11: GSO achieves state-of-the-art performance on a broad range of scientific optimization tasks compared
with existing methods, using Yi 9B, Internlm 7B, and Mistral 7B as backbone models, respectively. We linearly
map the evaluation metrics to [0, 100] for presentation.

mization problem is too complex, this represents a
limitation of our approach. A potential extension
could focus on data compression by pre-training an
auto-encoder to project high-dimensional data into
a latent space.

K.4 What is the difference between updating
LLM parameters using model editing and
employing methods like fine-tuning?

The differences are two-folds:(i) the key difference
lies in their scope and flexibility. Fine-tuning
typically involves adjusting a large portion of the
model’s parameters over a dataset, often requiring
extensive computational resources and time (Hu
et al., 2021; Zhu et al., 2020), and it can result in
overfitting or catastrophic forgetting of prior knowl-
edge (Luo et al., 2023). Model editing is a more
targeted approach, allowing for precise modifica-
tions to specific parts of the model in response
to new information or tasks without altering the
broader knowledge encoded within the model. (ii)
Another difference is its efficiency; it enables rapid
updates to the model without the need for exten-
sive retraining. This makes it particularly suitable
for dynamic optimization tasks where quick adjust-
ments are necessary. Moreover, model editing pre-

serves the generalization abilities of the LLM while
fine-tuning may risk degrading its performance on
unrelated tasks. In this sense, model editing offers
a more controlled and adaptive method for refining
LLM behavior, especially in domain-agnostic and
task-agnostic scenarios, making it an ideal tool for
iterative optimization processes.

5236

Table 11: The results of the ablation study of our GSO on the seven scientific optimization tasks, using GPT-J 6B
as the backbone model. The symbol N/A indicates that the model is unable to provide a feasible solution for the
current task.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit N/A 0.5 ± 0.1 37.1 ± 10.0 185.3 ± 36.0 180.2 ± 19.1 497.1 ± 98.3 25.1 ± 4.1
GSOw/o dynamic 15.1 ± 3.2 0.0 ± 0.1 19.9 ± 6.1 131.7 ± 26.0 120.9 ± 64.4 135.9 ± 27.1 15.4 ± 4.1

GSO (ours) 12.3 ± 4.8 0.0 ± 0.0 15.7 ± 5.0 59.9 ± 10.3 70.1 ± 17.7 95.5 ± 10.0 8.5 ± 2.0

Table 12: The results of the ablation study of our GSO on the seven scientific optimization tasks, using Llama2 13B
as the backbone model.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit 22.3 ± 3.9 0.2 ± 0.0 73.3 ± 16.0 113.3 ± 20.1 540.2 ± 38.3 613.1 ± 49.9 332.1 ± 61.2
GSOw/o dynamic 13.7 ± 2.9 0.1 ± 0.1 6.3 ± 2.0 20.5 ± 4.0 35.3 ± 5.0 87.6 ± 14.1 19.3 ± 6.0

GSO (ours) 5.0 ± 1.6 0.1 ± 0.1 2.9 ± 1.3 7.4 ± 3.1 48.1 ± 12.0 79.1 ± 13.3 8.3 ± 3.2

Table 13: The results of the ablation study of our GSO on the seven scientific optimization tasks, using Yi 9B as the
backbone model.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit 9.0 ± 1.5 0.4 ± 0.1 55.4 ± 10.1 408.1 ± 39.0 821.0 ± 112.0 982.1 ± 101.5 155.0 ± 30.1
GSOw/o dynamic 5.5 ± 1.7 0.0 ± 0.0 19.1 ± 3.0 80.9 ± 5.0 73.0 ± 5.3 194.0 ± 20.1 9.0 ± 2.3

GSO (ours) 3.0 ± 0.8 0.0 ± 0.0 5.9 ± 2.1 89.1 ± 33.9 67.9 ± 23.1 172.9 ± 43.1 5.5 ± 2.1

Table 14: The results of the ablation study of our GSO on the seven scientific optimization tasks, using Internlm 7B
as the backbone model.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit 12.0 ± 3.1 0.3 ± 0.1 65.1 ± 10.5 420 ± 82.1 490.0 ± 55.0 782.5 ± 133.2 150.2 ± 10.5
GSOw/o dynamic 9.0 ± 1.1 0.1 ± 0.0 17.5 ± 4.3 79.0 ± 13.1 78.5 ± 20.0 159.3 ± 23.0 19.3 ± 2.5

GSO (ours) 10.0 ± 2.1 0.0 ± 0.0 10.4 ± 3.1 37.0 ± 12.9 47.2 ± 10.8 73.5 ± 19.6 4.2 ± 2.3

Table 15: The results of the ablation study of our GSO on the seven scientific optimization tasks, using mistral 7B
as the backbone model.

Method Linear System Travel Salesman Constitutive Law Molecule Property

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓
GSOw/o edit 13.0 ± 2.5 0.3 ± 0.1 55.4 ± 13.5 31.7 ± 10.4 151.1 ± 20.0 45.4 ± 10.1 115.3 ± 20.1
GSOw/o dynamic 9.4 ± 2.0 0.0 ± 0.0 14.1 ± 3.0 16.0 ± 3.0 47.3 ± 6.8 10.5 ± 1.9 16.8 ± 4.0

GSO (ours) 5.6 ± 3.0 0.1 ± 0.0 3.2 ± 1.7 13.0 ± 2.1 23.9 ± 5.1 2.8 ± 1.5 1.7 ± 0.4

5237

