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Abstract

Universal Information Extraction (UIE) has
garnered significant attention due to its abil-
ity to address model explosion problems ef-
fectively. Extractive UIE can achieve strong
performance using a relatively small model,
making it widely adopted. Extractive UIEs
generally rely on task instructions for differ-
ent tasks, including single-target instructions
and multiple-target instructions. Single-target
instruction UIE enables the extraction of only
one type of relation at a time, limiting its abil-
ity to model correlations between relations and
thus restricting its capability to extract com-
plex relations. While multiple-target instruc-
tion UIE allows for the extraction of multiple
relations simultaneously, the inclusion of irrel-
evant relations introduces decision complexity
and impacts extraction accuracy. Therefore,
for multi-relation extraction, we propose LD-
Net, which incorporates multi-aspect relation
modeling and a label drop mechanism. By as-
signing different relations to different levels for
understanding and decision-making, we reduce
decision confusion. Additionally, the label drop
mechanism effectively mitigates the impact of
irrelevant relations. Experiments show that LD-
Net outperforms or achieves competitive perfor-
mance with state-of-the-art systems on 9 tasks,
33 datasets, in both single-modal and multi-
modal, few-shot and zero-shot settings.1

1 Introduction

Information Extraction (IE) (Andersen et al., 1992;
Grishman, 2019) tasks, both single-modal and
multi-modal, encompass a wide variety of domains
and relations between entities, leading to a highly
diversified landscape. However, this diversification
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No. 72074171, No. 72374161), the Technology Innovation
Program of Hubei Province (Grant No. 2024BAB043), the
Natural Science Foundation of Hubei Province of China (No.
2023AFB816).

1https://github.com/Lu-Yang666/LDNet

poses a significant challenge known as model ex-
plosion, which refers to the proliferation of models
required to handle the diverse structures and rela-
tions present in different IE tasks. Traditionally,
task-specific models (Zhang et al., 2018a; Wang
and Lu, 2020; Zhong and Chen, 2021; Zhang et al.,
2022; Peng et al., 2023a; Tian et al., 2023; Li et al.,
2024a) have been developed to address the unique
requirements of individual tasks. However, this
approach is not scalable and becomes increasingly
impractical as the number of tasks and their com-
plexity grow.

To tackle the issue of model explosion, Universal
Information Extraction (UIE) (Lu et al., 2022; Li
et al., 2024b) has emerged as a promising paradigm.
UIE aims to develop models that can extract in-
formation across different domains and relations,
in both single-modal (Fei et al., 2022) and multi-
modal (Zheng et al., 2023) setting, without relying
on task-specific models for each individual task.
By leveraging shared knowledge, UIE models can
generalize well to various IE tasks, reducing the
need for a multitude of specialized models.

Generative UIE (Wang et al., 2022a; Sainz et al.,
2024) approaches have been explored, but their
reliance on large generative models as the founda-
tion limits their efficiency. These models suffer
from computational complexity and resource re-
quirements, hindering their practical applicability.
In contrast, extractive UIE (Ping et al., 2023) ap-
proaches have gained popularity due to their abil-
ity to achieve strong performance using relatively
small models.

Single-target instruction UIE (Wadden et al.,
2019) allows for the extraction of one type of re-
lation at a time. While it excels in accuracy for
simple relations, its limited efficiency and inabil-
ity to model correlations between relations restrict
its applicability to more complex IE tasks. To ad-
dress these limitations, multiple-target instruction
UIE (Zhu et al., 2023) has been proposed, enabling
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the extraction of multiple relations simultaneously.
This approach aims to model correlations between
relations and improve extraction efficiency. How-
ever, the incorporation of irrelevant relations intro-
duces decision complexity and can have ramifica-
tions on extraction accuracy.

Hence, to address the challenges in multi-
relation extraction, we propose LDNet, a novel
approach that leverages multi-aspect relation mod-
eling and a label drop mechanism. In LDNet, we
assign different relations to different levels for un-
derstanding and decision-making. This approach
allows the model to capture the unique character-
istics and nuances of each relation separately. By
organizing relations into distinct levels, LDNet re-
duces decision confusion, enabling more accurate
and reliable extraction results. Additionally, LD-
Net incorporates a label drop mechanism to address
the impact of irrelevant relations. During the ex-
traction process, LDNet selectively drops irrelevant
labels, focusing on the most relevant relations for
extraction. This mechanism helps mitigate the in-
terference caused by irrelevant relations, ensuring
that the model can concentrate its attention and re-
sources on extracting the necessary and meaningful
information. By filtering out noise and irrelevant
signals, LDNet enhances the overall extraction per-
formance and reduces the potential for false posi-
tives.

To assess the effectiveness of LDNet, we con-
duct extensive experiments on a diverse range of IE
tasks and benchmark datasets, both single-modal
and multi-modal. The evaluation covers few-shot
and zero-shot settings to examine the generaliza-
tion capability of LDNet. The results demonstrate
that LDNet outperforms or achieves competitive
performance compared to previous state-of-the-art
systems across 9 tasks and 33 datasets.

Our Contribution 1) We propose LDNet, a
novel approach that leverages multi-aspect rela-
tion modeling and a label drop mechanism. 2) We
employ model transfer learning, a valuable strategy
for further enhancing model performance across
various datasets. 3) We conduct experiments on 33
datasets across 9 tasks, in both single-modal and
multi-modal, few-shot and zero-shot settings, and
the results demonstrate the superiority of LDNet.

2 Related Work

Generative UIE TANL (Paolini et al., 2021) sees
IE tasks as a sequence-to-sequence problem and

utilizes T5 as the generative model. UIE (Lu et al.,
2022) also uses T5 as the backbone. In addition,
UIE designs Structured Extraction Language (SEL)
that can represent diversified IE tasks, thereby en-
abling it to perform on a wider range of IE tasks. In-
structUIE (Wang et al., 2023) further incorporates
the idea of instruction-tuning and utilizes FlanT5-
11B (Chung et al., 2022) for IE tasks. Deep-
Struct (Wang et al., 2022a) and GenIE (Josifoski
et al., 2022) both formulate the generated sequence
as subject-relation-object triplets, with DeepStruct
having a larger model size (10B). LasUIE (Fei et al.,
2022) proposes a novel structure-aware generative
language model to unleash the power of syntactic
knowledge. FSUIE (Peng et al., 2023b) introduces
fuzzy span loss and fuzzy span attention to reduce
over-reliance on span boundaries. GOLLIE (Sainz
et al., 2024) improves zero-shot results on unseen
IE tasks by virtue of being fine-tuned to comply
with annotation guidelines. TMR (Zheng et al.,
2023) addresses text-image misalignment by intro-
ducing a back-translation method using diffusion-
based generative models. KnowCoder (Li et al.,
2024b) introduces a code-style schema represen-
tation method. While the above generative UIE
approaches offer a powerful solution for diversified
IE tasks, they do not possess any notable advan-
tages when it comes to efficiency.

Extractive UIE DyGIE++ (Wadden et al., 2019)
utilizes a dynamic span graph to model long-
range relations, and with graph propagation, the
model can disambiguate challenging entity men-
tions. UniEX (Ping et al., 2023) converts IE tasks
into a token-pair problem, develops a traffine at-
tention mechanism to integrate heterogeneous fac-
tors, and obtains the extraction target via a scor-
ing matrix. These single-target extractive UIE ap-
proaches can achieve strong performance using a
relatively small model; however, they lack the abil-
ity to model correlations between relations, thus
limiting their capability to extract complex rela-
tions.

OneIE (Lin et al., 2020) also uses a span graph,
but unlike DyGIE++, it incorporates global fea-
tures and adopts a CRF-based tagger to remove
the constraint on the length of extracted mentions.
UMGF (Zhang et al., 2021) adopts a unified intra-
modal and inter-modal graph fusion method to rep-
resent visual and textual features within the same
embedding space. HVPNeT (Chen et al., 2022)
designs pyramidal features for images, employing
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Figure 1: The overview framework of LDNet. LDNet constructs a unified input format, which combines instruction,
schema labels, and text. The representation obtained from the PLM is fused with image representation obtained
with the image backbone. The multi-modal representation is fed into the multi-aspect relation modeling component
to produce probability matrices for TA, A2A, and AS relations, respectively. These matrices are then subjected to
label drop to mask out non-existent relations. Finally, the probability matrices are fed into the decoding process to
generate target structures.

visual representations as insertable visual prefixes
to guide error-insensitive predictive decisions of
textual representations. MetaRetriever (Yu et al.,
2023) retrieves task-specific knowledge from pre-
trained language models to enhance performance.
Mirror (Zhu et al., 2023) transforms multiple tasks
into a multi-span cyclic graph and predicts relations
by verifying whether a cycle exists between slots
in a tuple. While these multiple-target extractive
UIE approaches take interactions between relations
into account, they also include irrelevant relations,
which leads to decision complexity and inaccuracy.

It is worth noting that the existing UIE mod-
els have basically only conducted experiments on
single-modal or multi-modal IE tasks, and have
not handled single-modal and multi-modal IE tasks
simultaneously like LDNet.

3 Methodology

LDNet’s overall framework is built upon a pre-
trained language model and an image backbone,
consisting of a multi-aspect relation modeling com-
ponent and a label drop mechanism, as shown in
Figure 1.

We formulate IE tasks as a multi-aspect span-
based relation extraction problem. Specifically, we
consider three kinds of relations among IE tasks:
TA relation (trigger-to-argument relation), A2A re-
lation (argument-to-argument relation), and AS re-
lation (argument-span relation). The TA relation

signifies the association of the trigger word with
the identified span. The A2A relation describes
the connection between two related spans, repre-
senting the semantic or contextual relation between
the identified spans. The AS relation describes the
connection within a span, enabling LDNet to ana-
lyze the internal structure and coherence within the
span itself. As shown in Figure 1, the AS relation is
formed between “the” and “cat”, the trigger word
“chased” connects to “the” in the span “the cat” and
“mouse” in the span “the mouse” through the TA
relation, and “cat” is linked to “the” in the span
“the mouse” through the A2A relation.

3.1 Multi-aspect Relation Modeling

LDNet regularizes text input format into three
components: instruction, schema labels, and text.
Given an input sequence x = [x1, x2, . . . , x|x|],
LDNet computes the text representation H =
[h1, h2, . . . , h|x|] ∈ R|x|×dh as follows:

H = PLM([x1, x2, . . . , x|x|]) (1)

= [h1, h2, . . . , h|x|] (2)

where PLM(·) is a pretrained language model.
To inject image information, given an image I ,

LDNet initially resizes it to 224 × 224, then di-
vides it into np patches according to the patch size
specified by the image backbone, and subsequently
derives image feature representation V ∈ Rnp×dv
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using the image backbone:

V = V isionTransformer(I) (3)

LDNet then employs cross-attention, where the im-
age feature representation functions as the query
and the text representation serves as both the key
and value. The output of the attention mechanism
is then subjected to the hyperbolic tangent activa-
tion function, followed by a summation operation.
Finally, LDNet changes the sequence length of the
resulting image feature representation, yielding the
final image representation V ∈ R|x|×dh :

Q = FFNNI
q(MLP (V)), Q ∈ Rnp×dh (4)

K = FFNNI
k(H), V = FFNNI

v(H) (5)

V ′ =
np∑

i=1

Tanh

(
Softmax

(
QKT

√
dh

)
V

)
(6)

V = Tanh(FFNNI(V ′)) (7)

where MLP (·) represents a three-layer multilayer
perceptron, FFNNI

q/k/v ∈ Rdh×dh represents feed-
forward network for generating query/key/value,
and FFNNI ∈ R1×|x| represents the feed-forward
network changing the sequence length of the result-
ing image feature representation.

LDNet modulates the fusion of image represen-
tation and text representation via a hyperparameter
α ∈ [0, 1], and the fused image-text representation
M is expressed as:

M = H+ α ·V (8)

α is set to 0 when only doing single-modal IE tasks.
After obtaining the multi-modal representation

M = [m1,m2, . . . ,m|x|], LDNet utilizes Rotary
Position Embedding (RoPE) (Su et al., 2022) to
achieve relative position encoding via combining
the attention computation with absolute position en-
coding. The queries and keys for different relations
are calculated as follows:

qri = FFNNr
q(mi), k

r
j = FFNNr

k(mj) (9)

where r ∈ {TA,A2A,AS}, FFNNr
q/k ∈ Rdh×di

are feed-forward layers for different relations, and
qri and krj are the i-th query and the j-th key for
different relations.

Afterwards, qri and krj are each left-multiplied
by the transformation matrices Ri and Rj used in
RoPE respectively. The dot product of Ri and Rj

satisfies RT
i Rj = Rj−i, thus incorporating relative

position information. The probability srij of the
relation r existing between the span from i to j is
the scaled dot product of the transformed qri and
krj :

srij =
(Riq

r
i )

T (Rjk
r
j )√

di
=

qrTi Rj−ik
r
j√

di
(10)

By parallelly computing the scaled dot product
over all token pairs of different relations separately,
we can obtain three probability matrices:

Sr =




sr11 sr12 . . . sr1|x|
sr21 sr22 . . . sr2|x|

...
...

. . .
...

sr|x|1 sr|x|2 . . . sr|x||x|




(11)

where srij is the probability of the specific relation
r ∈ {TA,A2A,AS} existing between the token
pair ⟨xi, xj⟩.

During training, LDNet utilizes multi-label cate-
gorical cross-entropy loss as the loss function for
multi-aspect relation modeling:

lrMR,neg = log


1 +

∑

Ωneg

es
r
ij


 (12)

lrMR,pos = log


1 +

∑

Ωpos

e−srij


 (13)

LMR =
∑

r∈{TA,A2A,AS}

(
lrMR,neg + lrMR,pos

)

(14)

where Ωneg and Ωpos are the sets of negative and
positive samples, respectively. Graph labels Gr ∈
R|x|×|x| are used to distinguish between negative
and positive samples. Negative samples consist
of position pairs where Gr

ij = 0, while positive
samples are pairs where Gr

ij = 1. Gr
ij represents

the label of the token pair ⟨xi, xj⟩ for relation r.

3.2 Label Drop
To prioritize the relational token pairs, we employ
label drop to filter out token pairs that are unlikely
to have relations.

Specifically, we first design a label vector lr =
[lr1, l

r
2, . . . , l

r
|x|] ∈ R1×|x| for each relation as the

standard. We set the values of the elements in lr
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whose indices fall within the gold spans and their
corresponding schema labels to 1, and the rest to 0.

LDNet transforms the representation M into the
predicted matrix L̂r ∈ R1×|x|×1 via linear activa-
tion and Sigmoid function:

L̂r = Sigmoid (FFNNr (M)) (15)

where FFNNr ∈ Rdh×1 is the feed-forward net-
work for different relations.

Later, LDNet squeezes the matrix L̂r into l̂r ∈
R1×|x| and multiplies l̂r with every row vector in
the corresponding probability matrix Sr computed
in Section 3.1, respectively, to obtain the final prob-
ability matrix P r, which is later used for decoding:

pri· = l̂r ⊗ sri· (16)

where pri· represents the i-th row vector of P r, sri·
represents the i-th row vector of Sr, and ⊗ repre-
sents dot product. The detailed logic of label drop
mechanism can be seen in Appendix A.4.

LDNet calculates the binary cross-entropy loss
between l̂r and lr to make the predicted vector l̂r

approach the label vector lr of the same relation
during training:

lrLD = − 1

n

|x|∑

i

(
lri log(l̂

r
i ) + (1− lri ) log(1− l̂ri )

)

(17)

LLD =
∑

r∈{TA,A2A,AS}
lrLD (18)

After label drop, LDNet utilizes the three final
probability matrices for relation decoding. During
the process of relation decoding, LDNet extracts
relation between token pair whose final probability
is larger than the threshold of 0.5 and identifies
potential relation structures. If LDNet detects a
closed relation loop as shown in Figure 1, it adds
the extracted span to the predicted answer.

3.3 Model Transfer Learning
To further boost LDNet’s performance, we pro-
pose a model transfer learning approach. We se-
lect the best-performance models fine-tuned on
each dataset as the teacher models, and the gen-
erated probability distributions, namely P r of all
data entries, from these teacher models are used
as soft labels when fine-tuning the corresponding
pre-trained student models. Mean Squared Error
(MSE) loss is employed to guide LDNet in reduc-
ing the discrepancy between the distributions of the

Algorithm 1 Model Transfer Learning
Input: Teacher model distributions DT and
pre-trained student model parameters θ
Output: Fine-tuned student model parameters Θ

1: for i in range (0, epochs) do
2: (iterate over fine-tuning epochs)
3: for j in range (0, steps) do
4: Obtain student model distributions DS .
5: Set loss L← LMR + LLD.
6: for ds ∈ DS do
7: if ds finds the corresponding dt ∈ DT

then
8: L← L+MSE(ds, dt).
9: end if

10: end for
11: Θ = θ − γ m̂t√

v̂t+ϵ
(use the AdamW opti-

mizer to update parameters)
12: end for
13: end for
14: return Θ

student model and the teacher model:

LMT =
∑

r∈{TA,A2A,AS}

1

|x|2
|x|∑

i=1

|x|∑

j=1

(
prij − p̂rij

)2

(19)
where prij represents the ij-th element of the P r

generated by the teacher model, and p̂rij represents
the ij-th element of the P̂ r generated by the stu-
dent model. The detailed algorithm is in Algo-
rithm 1. Thus, the complete objective for LDNet
model training can be represented as follows:

L = LMR + LLD + LMT (20)

4 Experiments

4.1 Experiment Setup
We use DeBERTa-v3-large (He et al., 2021) as the
PLM, ViT (Dosovitskiy et al., 2021) as the image
backbone, and AdamW (Loshchilov and Hutter,
2019) as the optimizer. We conduct experiments on
ACE04 (Mitchell et al., 2005), ACE05 (Walker
et al., 2006), CoNLL03 (Tjong Kim Sang and
De Meulder, 2003), CoNLL04 (Roth and Yih,
2004), NYT (Riedel et al., 2010), SciERC (Luan
et al., 2018), CASIE (Satyapanich et al., 2020), 14-
res and 14-lap (Pontiki et al., 2014), 15-res (Pontiki
et al., 2015), 16-res (Pontiki et al., 2016), Twit-
ter2015 (Lu et al., 2018), Twitter2017 (Zhang et al.,
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Task Datasets TANL UIE DeepStruct InstructUIE USM Mirror FSUIE UniEX MetaRetriever GoLLIE LDNet

NER
ACE04 - 86.89 - - 87.62 87.66 86.16 87.12 86.10 - 88.69
ACE05 84.90 85.78 86.90 86.66 87.14 86.72 86.91 87.02 84.01 88.10 87.79

CoNLL03 91.70 92.99 93.00 92.94 93.16 92.97 - 92.65 92.38 92.80 93.44

RE

ACE05 63.70 66.06 66.80 - 67.88 69.02 74.16 66.06 64.37 63.60 69.14
CoNLL04 71.40 75.00 78.30 78.48 78.84 75.22 - 73.40 73.66 - 80.79

NYT - 93.54 93.30 90.47 94.07 94.25 - - - - 94.96
SciERC - 36.53 - 45.15 37.36 40.50 - 38.00 35.77 - 46.85

EE

ACE05-Tgg 68.40 73.36 69.80 77.13 72.41 74.44 - 74.08 72.38 72.20 83.56
ACE05-Arg 47.60 54.79 56.20 72.94 55.83 57.87 - 53.92 52.62 66.00 61.14
CASIE-Tgg - 69.33 - 67.80 71.73 73.09 - 71.46 69.76 59.30 73.36
CASIE-Arg - 61.30 - 63.53 63.26 61.27 - 62.91 60.37 50.00 63.88

ABSA

14-res - 74.52 - - 77.26 76.05 74.17 74.77 73.41 - 79.17
14-lap - 63.88 - - 65.51 64.08 65.56 65.23 62.83 - 69.00
15-res - 67.15 - - 69.86 67.41 70.63 68.58 65.85 - 71.18
16-res - 75.07 - - 78.25 77.46 75.80 76.02 73.55 - 78.85

MIE
Twitter-2015 - - - - - 73.08* - - - - 76.17
Twitter-2017 - - - - - 83.91* - - - - 87.57

MNRE - - - - - 70.58* - - - - 75.79

Table 1: Results on 16 IE benchmarks. -Tgg and -Arg refer to trigger F1 score and argument F1 score, respectively.
Mirror does not test on multi-modal IE datasets. The results marked with * are the performance we obtain using
Mirror’s model and training checkpoint.

Task Datasets
Mirror Mirror Mirror Mirror LDNetMT− LDNetMT− LDNetMT− LDNetMT− LDNet LDNet
w/ PT

w/ Inst.
w/ PT

w/o Inst.
w/o PT
w/ Inst.

w/o PT
w/o Inst.

w/ PT
w/ Inst.

w/ PT
w/o Inst.

w/o PT
w/ Inst.

w/o PT
w/o Inst.

w/ PT
w/ Inst.

w/ PT
w/o Inst.

NER
ACE04 87.16 86.39 87.66 87.26 85.68 85.63 88.21 86.76 86.94 88.69
ACE05 85.34 85.70 86.72 86.45 84.70 85.87 87.11 85.38 87.70 87.79

CoNLL03 92.73 91.93 92.11 92.97 92.23 92.67 93.30 92.70 93.44 92.81

RE

ACE05 67.86 67.86 64.88 69.02 66.35 67.73 69.10 68.58 69.02 69.14
CoNLL04 75.22 72.96 71.19 73.58 76.90 78.26 75.81 75.03 80.79 80.37

NYT 93.85 94.25 93.95 93.31 94.00 94.34 94.13 93.73 92.46 94.96
SciERC 36.89 37.12 36.66 40.50 43.79 45.58 43.48 46.06 42.79 46.85

EE

ACE05-Tgg 74.44 73.05 72.66 73.38 73.99 75.81 72.92 73.98 72.34 83.56
ACE05-Arg 55.88 54.73 56.51 57.87 56.27 57.88 50.70 58.01 54.80 61.14
CASIE-Tgg 71.81 71.60 73.09 71.40 70.87 71.23 71.97 73.18 71.86 73.36
CASIE-Arg 61.27 61.04 60.44 58.87 61.34 61.92 62.33 63.20 61.51 63.88

ABSA

14-res 75.06 74.24 76.05 75.89 73.93 74.76 76.16 77.93 76.40 79.17
14-lap 64.08 62.48 59.56 60.42 66.60 66.03 65.32 63.80 69.00 65.42
15-res 66.40 63.61 60.26 67.41 66.63 66.87 66.30 65.79 69.51 71.18
16-res 74.24 75.40 73.13 77.46 74.41 76.10 77.97 77.19 76.34 78.85

Avg. 72.15 71.49 70.99 72.39 72.51 73.38 72.99 73.42 73.66 75.81

Table 2: Results of LDNet compared with Mirror. PT stands for pre-training, and Inst. represents the task instruction.
LDNetMT− denotes LDNet without model transfer learning.

P R F1

Discontinuous NER: CADEC
BART-NER 70.08 71.21 70.64
W2NER 74.09 72.35 73.21
Mirrorw/ PT & Inst. 74.83 65.45 69.83
Mirrorw/o PT & Inst. 68.80 68.38 68.59
LDNetw/ PT & Inst. 84.82 71.16 77.39
LDNetw/o PT & Inst. 71.89 68.18 69.98

N-ary Tuples: HyperRED
CubeRE 66.39 67.12 66.75
Mirrorw/ PT & Inst. 71.29 62.46 66.58
Mirrorw/o PT & Inst. 75.41 61.14 67.53
LDNetw/ PT & Inst. 69.39 66.56 67.95
LDNetw/o PT & Inst. 68.40 64.31 66.29

Table 3: Results on multi-span and n-ary information
extraction tasks.

2018b), and MNRE (Zheng et al., 2021) datasets.
We used the F1 score as the metric unless otherwise
specified.

We compare LDNet with TANL (Paolini et al.,
2021), DeepStruct (Wang et al., 2022a), UIE (Lu
et al., 2022), InstructUIE (Wang et al., 2023),
USM (Lou et al., 2023), Mirror (Zhu et al., 2023),
FSUIE (Peng et al., 2023b), UniEX (Ping et al.,
2023), MetaRetriever (Yu et al., 2023), and GoL-
LIE (Sainz et al., 2024) in single-modal IE tasks,
and with Mirror in Multi-modal Information Ex-
traction (MIE) tasks.

In different pre-training and fine-tuning strate-
gies, we specifically compare LDNet with Mirror.
The pre-training of LDNet is before fine-tuning on
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Model Parameter Scale Movie Restaurant AI Literature Music Politics Science Avg.

USM 372M 37.73 14.73 28.18 56.00 44.93 36.10 44.09 37.39
InstructUIE 11B 63.00 20.99 49.00 47.21 53.61 48.15 49.30 47.32
Mirror 304M 39.20 16.32 45.23 46.32 58.61 67.30 54.84 46.83
LDNet 304M 41.92 22.91 49.02 55.11 61.10 69.03 59.83 51.27

Llama-3 8B 7.48* 6.15* 7.40* 5.81* 3.41* 8.55* 4.43* 6.18*

Table 4: Zero-shot results on 7 NER datasets. The results for Llama-3 are obtained from our experiments and are
for reference only.

Task Model 1-shot 5-shot 10-shot Avg.

NER
CoNLL03

UIE 57.53 75.32 79.12 70.66
USM 71.11 83.25 84.58 79.65
Mirror 76.49 82.45 84.69 81.21
LDNet 78.33 84.53 85.39 82.75

RE
CoNLL04

UIE 34.88 51.64 58.98 48.50
USM 36.17 53.20 60.99 50.12
Mirror 26.29 47.42 55.77 43.16
LDNet 37.93 53.74 61.46 51.04

Event Trigger
ACE05

UIE 42.37 53.07 54.35 49.93
USM 40.86 55.61 58.79 51.75
Mirror 47.77 57.90 59.16 54.94
LDNet 54.77 62.75 64.24 60.59

Event Arg
ACE05

UIE 14.56 31.20 35.19 26.98
USM 19.01 36.69 42.48 32.73
Mirror 23.18 37.74 39.20 33.38
LDNet 25.42 39.12 43.04 35.86

ABSA
16-res

UIE 23.04 42.67 53.28 39.66
USM 30.81 52.06 58.29 47.05
Mirror 36.21 51.65 58.59 48.82
LDNet 40.43 55.29 60.20 51.97

Table 5: Few-shot results on 4 IE tasks. These datasets
are not included in pre-training, and LDNet does not ap-
ply model transfer learning in this setting, thus avoiding
the risk of information leakage.

downstream datasets, the pre-training datasets and
hyperparameters are in Appendix C.1. ‘With and
without pre-training (PT)’ refers to whether LDNet
underwent pre-training on a pre-training dataset be-
fore fine-tuning on the downstream dataset. ‘With
and without task instructions (Inst.)’ indicates
whether the instruction part of LDNet’s input is
an empty string. In the configuration ‘w/ PT w/o
Inst.’, the instruction part is an empty string, while
in ‘w/ PT w/ Inst.’, the instruction part is not empty
and resembles a string like ‘Please determine the
two entities mentioned in the text and specify the
nature of their relationship.’ The best results we
obtained in the main results of Table 1 are from the
four configurations: ‘w/ PT w/ Inst.’, ‘w/ PT w/o
Inst.’, ‘w/o PT w/ Inst.’, and ‘w/o PT w/o Inst.’

BART-NER (Lewis et al., 2020), W2NER (Li
et al., 2022), and Mirror are chosen as the baseline
models for the multi-span discontinuous NER task.
In the hyper RE task, we select CubeRE (Chia
et al., 2022) and Mirror as the baseline models.

As for the MRC tasks, We compare LDNet to
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), DeBERTa-v3 (He et al., 2021), and Mirror.

4.2 Main Results

LDNet main results over 16 IE and MIE datasets
are shown in Table 1 and Table 2. We can observe
that:

1) By adopting multi-aspect relation modeling
and applying label drop on separate probability ma-
trix, LDNet offers an effective methodology for
IE and MIE. LDNet achieves state-of-the-art per-
formance across almost all datasets and tasks. Al-
though LDNet slightly underperforms FSUIE on
ACE05-RE and underperforms GoLLIE on ACE05-
NER, it surpasses them in other tasks and covers a
broader range of tasks, including MRC, classifica-
tion, discontinuous NER, and hyper-RE. MRC and
multi-modal results are in Appendix C.5.

2) Despite having a relatively small model scale,
LDNet consistently delivers superior results across
almost all IE tasks. LDNet outperforms DeepStruct
(10B) in all tasks. The comparison of pre-trained
language model parameter scales is included in Ap-
pendix C.4 and more comparisons with models of
different scales can be found in the Appendix C.5.
We also conduct ablation studies on LDNet, fo-
cusing on pre-training and fine-tuning strategies,
as shown in Table 2. LDNet surpasses Mirror in
almost all settings and across all datasets.

3) Model transfer learning provides a valu-
able strategy for enhancing performance across all
datasets, enabling LDNet to leverage information
sharing between teacher models and student mod-
els.

Besides the triplet-based IE and MIE tasks, LD-
Net also demonstrates its effectiveness in discontin-
uous NER and n-ary hyper RE tasks. We provide
results with pre-training (w/ PT, w/ Inst) and with-
out pre-training (w/o PT, w/ Inst). As presented in
Table 3, LDNet achieves improvements over pre-
vious methods, increasing by 4.18% and 0.42%
on the CADEC (Karimi et al., 2015) and Hyper-
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w/ PT & Inst. w/ PT & w/o Inst.
w/ Label Drop ✗ ✓ ✗ ✓

NER
ACE05 87.12 87.20 86.45 86.97
CoNLL03 93.75 94.60 94.93 95.11

RE
NYT 93.09 94.43 93.94 94.41
SciERC 43.75 43.94 38.71 46.27

EE
ACE05-Tgg 63.55 78.74 70.40 80.23
ACE05-Arg 49.37 55.78 46.67 62.76

ABSA

14-res 82.18 83.58 83.70 84.79
14-lap 77.23 78.11 71.12 71.72
15-res 63.91 67.38 65.23 70.36
16-res 76.25 78.15 77.24 78.17
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Figure 2: Results of the ablation study on the label drop mechanism. Table on the left shows LDNet’s performance
with and without the Label Drop mechanism, box plot in the middle and line chart on the right illustrate LDNet’s
performance under different drop rates.

RED (Chia et al., 2022) datasets, respectively.

4.3 Few-shot Results & Zero-shot Results

Followed by Zhu et al. (2023), we analyze LD-
Net’s quick adaptation ability on NER, RE, EE, and
ABSA tasks under 1-shot, 5-shot, and 10-shot set-
tings. We compared LDNet with strong baselines
such as UIE, USM, and Mirror. Table 5 shows the
superior performance of LDNet under low-resource
settings. On average, LDNet improves results by
3.41%, 2.26%, and 1.68% under 1-shot, 5-shot,
and 10-shot settings, respectively. Additionally,
LDNet achieves average improvements of 1.27%,
0.92%, 3.52%, and 3.02% over the NER, RE, EE,
and ABSA tasks, respectively.

We also examine LDNet’s extendability in the
zero-shot setting using NER datasets from 7 dis-
tinct fields (Liu et al., 2013, 2021). LDNet is com-
pared with USM, InstructUIE, Mirror and Llama-3-
8B (Dubey et al., 2024). The zero-shot results are
presented in Table 4. LDNet consistently outper-
forms Mirror and Llama-3-8B across all evaluated
datasets. Although LDNet scores 0.89 lower than
USM on the Literature dataset and is slightly lower
than InstructUIE on the Movie dataset, the parame-
ter scale of LDNet’s pre-trained language model is
smaller than that of USM’s, and much smaller than
that of InstructUIE’s. Additionally, LDNet still
achieves the highest average performance overall.

4.4 Analysis on Label Drop

To investigate the effectiveness of our label drop
mechanism, we conduct ablation studies under two
settings: with and without label drop. We fine-tune

for 100 epochs on the IE datasets in both of the set-
tings to fully exploit the potential of the label drop
mechanism. And in order to better demonstrate the
effectiveness of the label drop mechanism, we do
not perform model transfer learning in the ablation
study. The results are shown in Figure 2. Com-
pared to the results of LDNet with only the multi-
aspect relation modeling component, the model
with the label drop mechanism shows improved
performance on most datasets. It achieves an im-
provement of 1.93% on average for the ABSA task
and a substantial increase of 11.88% on the ACE05
dataset for the EE task.

To further analyze the capability of the label
drop mechanism, we conduct experiments on 4 text
datasets involving different tasks. We randomly
drop different portions of the probability matrix
and test the performance. We test drop rates of
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
and 100%. We also fine-tune 100 epochs for the
analysis. The results are shown in Figure 2. More
detailed results can be found in the Appendix C.5.

We can see that LDNet exhibits stable and strong
performance on the NER, RE, and ABSA tasks,
under different drop rates, demonstrating the ro-
bustness of the label drop mechanism. For the EE
task, the performance is more volatile, with the best
performance occurring under the full drop setting,
which is as expected. The fluctuations in perfor-
mance on the ACE05 dataset in Figure 2 are due
to the large variety of label texts in the schema
labels. The label texts following [LM] include 33
types, such as ‘transport’, ‘elect’, ‘start position’,
‘nominate’, ‘end position’, ‘attack’, ‘meet’, ‘marry’,
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Task Datasets Label Drop Accuracy

NER CoNLL03 93.04

RE
ACE05 94.69

CoNLL04 87.98

ABSA

14-lap 92.61
15-res 89.82
16-res 90.41

Avg. 91.76

Table 6: Results of the accuracy of label drop mecha-
nism.

Task Datasets
Mirror LDNetMR LDNetLD LDNetMT−
w/o PT
w/ Inst.

w/o PT
w/ Inst.

w/o PT
w/ Inst.

w/o PT
w/ Inst.

NER CoNLL03 92.11 92.84 93.24 93.30

RE
ACE05 64.88 65.76 68.09 69.10

CoNLL04 71.19 75.11 71.97 75.81

ABSA

14-lap 59.56 62.94 60.75 65.32
15-res 60.26 61.25 60.69 66.30
16-res 73.13 76.81 75.76 77.97

Avg. 70.19 72.12 71.75 74.30

Table 7: Results of the ablation study on the multi-
aspect relation modeling mechanism. LDNetMR rep-
resents LDNet using only Multi-aspect Relation Mod-
eling, LDNetLD represents LDNet using only Label
Drop, and LDNetMT− indicates LDNet using both
Multi-aspect Relation Modeling and Label Drop.

‘phone write’, and so on. The label texts following
[LR] have even more varieties, totaling 104 types.
When only part of the probability matrix is dropped,
some irrelevant token pairs’ TA, A2A, or AS rela-
tion probabilities may not be dropped and could
still exceed the threshold. As a result, non-existent
TA, A2A, and AS relations may be included in the
decoding process, and if they form a cycle, non-
existent relations are predicted. Additionally, since
we are randomly dropping portions of the prob-
ability matrix, even with a low drop rate, there is
still a chance to accurately filter out token pairs
that are unlikely to have relations. The content of
the schema labels can be found in Appendix A.1,
and the specific process of relation cycling can
be referenced in Appendix A.2 or Appendix A.3.
The stable high performance of other datasets is
attributed to the significantly fewer types of label
texts; for example, the CoNLL03 dataset has only
four types: ‘miscellaneous’, ‘person’, ‘location’,
and ‘organization’. Even with a very low drop rate
like 10%, the difficulty of filtering out non-existent
relations is much lower in such a small range.

We also evaluate the accuracy of the label drop
mechanism separately. The label drop probabilities

l̂r can be used to assess the accuracy of the label
drop model. The accuracy can be computed as
follows: we repeat l̂r ∈ R1×|x| to match the shape
of the label matrices to create probability matrices
Ar ∈ R|x|×|x|, r ∈ {TA,A2A,AS}. Values in
Ar below 0.5 are considered 0, while values above
0.5 are considered 1. We then compare this to the
label matrices, and the number of correct values
divided by the total number of values gives the
accuracy. We test the accuracy, and the results are
shown in the Table 6. It can be seen that the label
drop accuracy is generally high, with an average
accuracy exceeding 90%.

4.5 Ablation Results of Multi-aspect Relation
Modeling

We further conduct experiments on the Multi-
aspect Relation Modeling mechanism. In these
experiments, we utilize only the Multi-aspect Re-
lation Modeling mechanism of the LDNet model,
without incorporating Label Drop or Model Trans-
fer Learning. We report the performance of LDNet
under the ‘w/o PT w/ Inst.’ setting, with the se-
lected comparison baseline being the performance
of Mirror under the same setting. The results are
shown in the Table 7. As can be seen, LDNetMR

still outperforms Mirror under the same setting,
demonstrating the effectiveness of the Multi-aspect
Relation Modeling mechanism. The presence of
Multi-aspect Relation Modeling reduces decision
confusion while also creating a more suitable envi-
ronment for the label drop mechanism. So it can
be shown in the table that LDNetMT− achieves
the best performance among the three: LDNetMR,
LDNetLD, and LDNetMT− .

5 Conclusion and Discussion

In this paper, we propose LDNet, a novel network
that combines multi-aspect relation modeling and
a label drop mechanism. LDNet assigns differ-
ent relations to different levels for understanding
and decision-making, thereby reducing decision
confusion. By introducing the label drop mecha-
nism, LDNet alleviates the influence of irrevelant
relations. Experimental results show that LDNet
achieves highly competitive performance across 9
tasks, in both single-modal and multi-modal, few-
shot and zero-shot settings, which verifies its effe-
tiveness and universality.
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Limitations

1) The total quantity and variety of MIE datasets
are not enough, so LDNet cannot be pre-trained on
a relatively large-scale dataset for MIE as it can be
for IE, and since LDNet is a universal IE and UIE
solution, its performance on certain multi-modal
datasets may not be as good as models specifically
designed for multi-modal tasks. 2) Due to the max-
imum input length constraint, LDNet may expe-
rience a performance decline in document-level
information extraction.

Ethical Considerations

If the model is able to extract information of high
quality, it may be able to extract personal privacy
information such as names, addresses, and phone
numbers from large text datasets. This information
could potentially be used for illegal monitoring,
harassment, and other malicious purposes. Estab-
lishing appropriate privacy protection mechanisms
and usage restrictions can be applied to ensure that
the extracted information is only used for legitimate
purposes and not abused.
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A Methodology

A.1 Schema Labels

When it comes to the specific implementation, the
schema labels are divided into two parts: a set of
special tokens [LM], [LR], [LC], [TL], [TP],
and [B] and their corresponding label text.
[LM], [LR], and [LC] are the special tokens

that represent labels of entity mention, relation,
and text classification respectively. Only one of
the three special tokens [TL], [TP], and [B] will
appear in a single data instance. [TP] is used for
the MRC task, [B] is used for the classification
task, and [TL] is used for all other tasks.

The special tokens [LM], [LR], [LC] will be
followed by their corresponding label text, which
are the tokenized strings for the entity mention,
relation, and text classification labels. All the labels
that appear in the dataset will be included in the
schema labels, such as [LC], “_correct”, [LC],
“_wrong” for the classification task with “correct”
and “wrong” as the two labels.

We use the special tokens in the schema labels
as the trigger words and utilize them to guide the
relation extraction process. A relation will only be
extracted when the trigger word is activated. The
label drop operation sets the elements in the label
vector corresponding to the special tokens that in
gold spans to 1, while the other schema label ele-
ments remain 0. For example, in the classification
task, if a data instance is classified as “correct”, the
element corresponding to the [LC] token before
“_correct” token will be set to 1, while the element
corresponding to the “_correct” token will remain
0.

A.2 Handling of Unknown Schemas
If the schema is unknown, LDNet removes the
schema from the original NER input format, trans-
forming it from the format of instruction + schema
+ text:

[I] Please identify possible entities
from the given text and determine
their types [LM] person [LM] location
[LM] organization [TL] Jerry Smith
is a friend of Tom

to:

[I] Please identify possible entities
from the given text and determine
their types [TP] Jerry Smith
is a friend of Tom

Here, [I] Please identify possible
entities from the given text and determine
their types is the instruction part, with [I] be-
ing a special token indicating the start of the in-
struction; [LM] person [LM] location [LM]
organization represents the schema, with [LM]
being a special token representing an entity type,
such as [LM] person, indicating the person type;
[TL] Jerry Smith is a friend of Tom is the
text part, with [TL] being a special token indicating
that the text following it requires not only span ex-
traction but also the extraction of types within the
schema. For instance, to extract the entity Jerry
Smith, it’s necessary to extract both its span and
its corresponding type, person, which is associated
with the span of the [LM] token in [LM] person in
the schema. In the input without a schema, [TP]
indicates that only entity spans need to be extracted
from the text, without requiring the extraction of
additional information such as types in schemas.

Thus, LDNet handles unknown schemas by pro-
cessing the input as follows:

[I] Please identify possible entities
from the given text and determine their
types
[TP] Jerry Smith is a friend of Tom

From the text "Jerry Smith is a friend of Tom",
LDNet directly extracts the spans of entities such
as Jerry Smith and Tom as the output.

A.3 Handling of Discontinuous NER and
Nested NER

Discontinuous NER LDNet handles discontinuous
NER in a manner similar to how it handles regular
NER. Suppose the input is:
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Parameter Value Parameter Value

warmup proportion 0.1 batch size 4
pre-training epochs 3 PLM learning rate 2e-5
fine-tuning epochs 20 PLM weight decay 0.1

fine-tuning epoch patience 3 others learning rate 1e-4
few-shot epochs 200 max gradient norm 1.0

few-shot epoch patience 10 dh 1024
dv

♢ 1024 batch size♢ 32
PLM learning rate♢ 3e-5 others learning rate♢ 1e-4
fine-tuning epochs♢ 20 PLM weight decay♢ 0.1
warmup proportion♢ 0.01 α♢ 0.5

Table 8: The parameters marked with ♢ are for the multi-modal experiments.

NER Pre-training Dataset Instruction Instance RE Pre-training Dataset Instruction Instance

AnatEM 42 5,861 ADE_corpus 9 3,417
bc2gm 42 12,500 FewRel 9 20,000

bc4chemd 42 20,000 GIDS 9 8,526
bc5cdr 42 4,560 kbp37 9 15,807

Broad_Tweet_Corpus 42 5,334 New-York-Times-RE 9 20,000
FabNER 42 9,435 NYT11HRL 9 20,000

FindVehicle 42 20,000 semeval 9 8,000
GENIA 42 15,023 WebNLG 9 5,019

HarveyNER 42 3,967 Wiki-ZSL 9 23,107
MultiNERD 42 20,000 MNRE♢ 9 12,248

NCBIdiease 42 5,432 MRC Pre-training Dataset Instruction Instance

ontoNotes5 42 20,000 BiPaR 11,524 11,668
TweetNER7 42 7,103 ms_marco_v2.1 20,000 20,000

WikiANN_en 42 20,000 newsqa 19,659 20,000
WNUT-16 42 2,394 squad_v2 19,998 20,000

Twitter2015♢ 42 4,000 SubjQA 4,060 13,990

Twitter2017♢ 42 3,376 EE Pre-training Dataset Instruction Instance

PHEE 40 2,898

Table 9: The datasets marked with ♢ are for the multi-modal experiments.

[I] Please identify possible entities
from the given text
and determine their types
[LM] person [LM] title
[LM] organization [TL] The CEO of Tesla
, Elon Musk, made an announcement today

LDNet will extract the following relations:

• TA Relation: Between [LM] before person
and CEO of Tesla, and [LM] before person
and Elon Musk.

• A2A Relation: Between CEO of Tesla and
Elon Musk.

• AS Relation: Between CEO of Tesla and CEO
of Tesla, and Elon Musk and Elon Musk.

The closed loop formed by the TA relation be-
tween [LM] before person and CEO of Tesla, the

AS relation between CEO of Tesla and CEO of
Tesla, the A2A relation between CEO of Tesla
and Elon Musk, the AS relation between Elon
Musk and Elon Musk, and the TA relation between
[LM] before person and Elon Musk allows LD-
Net to extract CEO of Tesla, Elon Musk as a
discontinuous entity of the person type.

Nested NER The input format for nested NER
is:

[I] Please identify possible entities
from the given text and
determine their types
[LM] organization [LM] title
[LM] person [LM] location
[TL] Apple CEO Tim Cook
gave a speech at Stanford University
in California
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Classification Pre-training Dataset Instruction Instance Classification Pre-training Dataset Instruction Instance

ag_news 5 5,000 ANLI 29 15,000
ARC 3,361 3,370 CoLA 43 5,000

CosmosQA 4,483 5,000 cos_e 5,000 5,000
dbpedia 6 5,000 DREAM 3,842 5,000

hellaswag 20 5,000 IMDB 26 5,000
MedQA 5,000 5,000 MNLI 29 5,000
MRPC 40 3,668 MultiRC 4,999 5,000

OpenBookQA 4,835 4,957 QASC 4,832 5,000
QNLI 31 5,000 QQP 40 5,000
RACE 4,482 5,000 RACE-C 4,782 5,000
ReClor 3,368 4,638 RTE 29 2,490
SciQ 4,989 5,000 SNLI 29 5,000
SST-2 26 5,000 Winogrande 20 5,000
WNLI 31 635

Table 10: The Classification Pre-training Datasets.

Model TANL UIE DeepStruct InstructUIE USM Mirror LDNet

Computational Complexity O(n3) O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)
PLM T5-base T5-large GLM FlanT5 RoBERTa-large DeBERTa-v3-large DeBERTa-v3-large

PLM Params 220M 770M 10B 11B 372M 304M 304M

Table 11: Computational complexity and model parameters of various models.

In this example, Apple is an organization entity
representing the Apple company, and Apple CEO
is a title entity representing the CEO position of
Apple.

After obtaining the TA, A2A, and AS relation
probability matrices, LDNet will extract the follow-
ing relations:

• TA Relation: Between [LM] before organi-
zation and Apple, between [LM] before title
and Apple, and [LM] before title and CEO.

• AS Relation: Between Apple and Apple; be-
tween Apple and CEO.

The closed loop formed by the TA relation be-
tween [LM] before organization and Apple, and
the AS relation between Apple and Apple allows
LDNet to extract Apple as an organization entity.
Similarly, the TA relations between [LM] before
title and Apple, the AS relation between Apple
and CEO, and the TA relation between [LM] before
title and CEO form a closed loop, allowing LDNet
to extract Apple CEO as a title entity.

The A2A relation is not mandatory, as the infor-
mation to be extracted may not involve two argu-
ments, such as in NER tasks.

A.4 Underlying Logic of Label Drop
Mechanism

The underlying logic of label drop mechanism is
that if the i-th token does not exist in the gold an-
swer, after training, the value of l̂ri at position i in
l̂r will close to 0, it suppresses the value of sr.i in
the i-th column of the Sr matrix. During subse-
quent decoding, if the value of sr.i is suppressed
below a threshold, LDNet will not consider ex-
tracting the relation between position i and other
positions, therefore filtering out token pairs that is
impossible to have relations. As shown in Figure 1,
for the convenience of observation, we only depict
the prediction of the A2A relation. And to better
illustrate the concept of label drop, we hypothe-
size an extreme scenario where l̂r is the same as lr.
For instance, the probability of a relation existing
between “playwright” and “born” is set to 0.

A.5 LDNet’s Contributions Relative to Prior
Multi-modal Approaches

Multi-modal representation is a conventional ap-
proach. LDNet utilizes multi-modal representation
to enable its application to multi-modal data. LD-
Net is a universal information extraction method,
its capability is general and not differentiated by
whether the data is multi-modal or unimodal. Com-
pared to prior multi-modal approaches, the contri-
bution of LDNet lies not in combining multi-modal
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Task Datasets TANL UIE USM FSUIE-base UniEX-large MetaRetriever LDNetdeberta−v3−base LDNetdeberta−v3−large

NER
ACE04 - 86.89 87.62 85.24 87.12 86.10 88.50 88.69
ACE05 84.90 85.78 87.14 86.22 87.02 84.01 88.18 87.79

CoNLL03 91.70 92.99 93.16 - 92.65 92.38 93.43 93.44

RE

ACE05 63.70 66.06 67.88 72.29 66.06 64.37 69.33 69.14
CoNLL04 71.40 75.00 78.84 - 73.40 73.66 79.26 80.79

NYT - 93.54 94.07 - - - 94.15 94.96
SciERC - 36.53 37.36 - 38.00 35.77 37.49 46.85

EE

ACE05-Tgg 68.40 73.36 72.41 - 74.08 72.38 73.42 83.56
ACE05-Arg 47.60 54.79 55.83 - 53.92 52.62 57.04 61.14
CASIE-Tgg - 69.33 71.73 - 71.46 69.76 72.77 73.36
CASIE-Arg - 61.30 63.26 - 62.91 60.37 63.35 63.88

ABSA

14-res - 74.52 77.26 74.17 74.77 73.41 79.08 79.17
14-lap - 63.88 65.51 65.56 65.23 62.83 68.84 69.00
15-res - 67.15 69.86 70.63 68.58 65.85 74.47 71.18
16-res - 75.07 78.25 75.80 76.02 73.55 78.40 78.85

Table 12: Comparison to the performance of models with smaller pre-trained language models.

Task Datasets GoLLIE Baseline GoLLIE GoLLIE-13B GoLLIE-34B LDNet Baseline LDNetdeberta−v3−base LDNetdeberta−v3−large

NER
ACE05 89.10 88.10 89.40 89.60 85.70 88.18 87.79

CoNLL03 92.90 92.80 93.00 93.10 92.73 93.43 93.44

RE ACE05 63.80 63.60 67.50 70.10 67.86 69.33 69.14

EE

ACE05-Tgg 71.7 72.2 70.9 71.9 73.05 73.42 83.56
ACE05-Arg 65.9 66.0 67.8 68.6 54.73 57.04 61.14
CASIE-Tgg 33.9 59.3 62.2 65.5 71.60 72.77 73.36
CASIE-Arg 47.9 50.0 52.6 55.2 61.04 63.35 63.88

Table 13: Comparison to GoLLIE models.

information, but rather in its Label Drop mecha-
nism, which effectively filters out irrelevant token
pairs.

Individual Contributions of Image Features
Since images only provide clue information; the
information extraction ultimately comes from the
text. Therefore, it is not possible to explore the
individual contributions of image features on the
model’s performance.

B Related Work

Dropout Strategy Dropout (Srivastava et al.,
2014) is a powerful technique usually used to reg-
ularize the training of deep neural networks. R-
Drop (Liang et al., 2021) forces the output distribu-
tions of different submodels, sampled by dropout,
to be consistent with each other by minimizing
their bidirectional KL-divergence. LDNet transfers
the idea of dropout into IE tasks and applies label
drop to remove unrelational token pairs, forcing
the model to concentrate on relational ones.

Model Transfer Learning Averaging the predic-
tions of all trained models is a simple yet effective
way to enhance the performance of almost any ma-
chine learning algorithm. However, it can be cum-

bersome and computationally expensive. There-
fore, (Hinton et al., 2015) proposed Knowledge
Distillation (KD) to compress the knowledge of an
ensemble into a single model. (Tan et al., 2022)
utilizes KD in document-level relation extraction.
The system trains a teacher model on the distantly-
supervised data and uses the distributions gener-
ated by the teacher model as soft labels to pre-train
the student model. The authors found that distill-
ing with the MSE loss performs better than using
KL-divergence. LDNet incorporates this idea and
follows the same setting, using MSE loss to min-
imize the difference between the distributions of
the teacher model and the student model.

Multi-modal Information Extraction Unlike
traditional information extraction, which relies ex-
clusively on single-modal data, Multi-modal Infor-
mation Extraction (MIE) leverages auxiliary visual
cues from images to supplement the missing con-
text. MEGA (Zheng et al., 2021) is the first to
propose the MNRE dataset and introduces a dual
image alignment method to capture aligned infor-
mation between visual object and textual object.
UMT (Yu et al., 2020), which pioneers the use of
Transformer in the MIE task, utilizes a multi-modal
interaction module to integrate token representa-
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Model SQuAD 2.0 CoLA QQP MNLI SST-2 QNLI RTE MRPC
(EM/F1) (Mcc) (Acc) (Acc) (Acc) (Acc) (Acc) (Acc)

BERT-large 79.0 / 81.8 60.6 91.3 - 93.2 92.3 70.4 84.1
RoBERTa-large 86.5 / 89.4 68.0 92.2 90.2 96.4 93.9 86.6 88.8
DeBERTa v3-large 89.0 / 91.5 75.3 93.0 91.9 96.9 96.0 92.7 92.2
Mirror 40.4 / 67.4 63.9 84.8 85.9 93.6 91.6 85.9 89.2
LDNet 42.5 / 72.0 74.2 86.2 87.2 94.8 92.8 89.2 91.0

Table 14: Results on MRC and classification tasks.

Modality Methods
Twitter-2015 Twitter-2017 MNRE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Text+Image

AdapCoAtt (Zhang et al., 2018a) 69.87 74.59 72.15 85.13 83.20 84.10 - - -

VisualBERT (Li et al., 2019) 68.84 71.39 70.09 84.06 85.39 84.72 57.15 59.48 58.30

OCSGA (Wu et al., 2020) 74.71 71.21 72.92 - - - - - -

UMT (Yu et al., 2020) 71.67 75.23 73.41 85.28 85.34 85.31 62.93 63.88 63.46

UMGF (Zhang et al., 2021) 74.49 75.21 74.85 86.54 84.50 85.51 64.38 66.23 65.29

MEGA (Zheng et al., 2021) 70.35 74.58 72.35 84.03 84.75 84.39 64.51 68.44 66.41

HVPNeT (Chen et al., 2022) 73.87 76.82 75.32 85.84 87.93 86.87 83.64 80.78 81.85

MoRe (Wang et al., 2022b) - - - - - - 65.25 67.32 66.27

TMR (Zheng et al., 2023) 75.26 76.49 75.87 88.12 88.38 88.25 90.48 87.66 89.05

LDNet 76.79 75.56 76.17 87.51 87.64 87.57 75.45 76.15 75.79

Table 15: Comparison of LDNet’s performance on MIE tasks with some MIE baselines.

tions with visual representations. MoRe (Wang
et al., 2022b) enhances textual information retrieval
by leveraging images and titles from search en-
gines, thereby improving the accuracy of multi-
modal RE and NER tasks. Building on MoRe,
MRE-RS (Hu et al., 2023) retrieves textual and
visual evidence at different levels and further pro-
poses a novel method to synthesize information for
improved reasoning across the same and different
modalities. CoTPD (Chen and Feng, 2023) demon-
strates the elicitation of reasoning abilities from
LLMs using CoT prompts across various dimen-
sions and introduces a conditional prompt distil-
lation method to transfer commonsense reasoning
to a student model, enhancing its performance on
text-only inputs. There are also some recently new
methods, such as UMIE (Sun et al., 2024) and Om-
niParser (Wan et al., 2024).

C Experiments details

C.1 Hyperparameters and Pre-training
Datasets

Specifically, we use vit-large-patch32-224-in21k
as our image backbone. The experiments can be
run using only 1 NVIDIA RTX 3090 with 24 GB
memory. The hyperparameters and pre-training

datasets are in Table 8, Table 9 and Table 10.

C.2 Experimental Configurations
The LDNet configurations ‘w/ PT w/o Inst.’ and
‘w/ PT w/ Inst.’ are not considered variants of
the model; the only difference lies in whether the
instruction part of the model input is an empty
string. In ‘w/ PT w/o Inst.’ configuration, the
instruction part is an empty string, while in ‘w/ PT
w/ Inst.’, the instruction part is not empty and is a
string similar to ‘Please determine the two entities
mentioned in the text and specify the nature of their
relationship.’

We here give reasons why performance is of-
ten better in ‘without PT and Inst.’ configurations.
The situation that configurations without PT and
Inst. perform better is related to the dataset and the
backbone model, DeBERTa-v3-large. For certain
datasets like CoNLL04, 14-lap, and 15-res, bet-
ter performance is observed under the ‘with PT’
configuration. On the other hand, some datasets,
such as ACE04 and ACE05, are inherently large,
and fine-tuning on their training sets alone yields
good results, and the absence of pre-training does
not introduce interference from other data, lead-
ing to better performance without PT. As shown
in Table 2, the performance difference between
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Dataset Strategy 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CoNLL03
w / PT & Inst. 94.74 94.35 94.29 94.49 95.04 94.68 94.08 94.56 94.29 94.60

w / PT & w/o Inst. 94.69 94.11 95.06 93.49 94.57 94.62 94.92 94.65 94.88 95.11

NYT
w / PT & Inst. 93.72 93.51 93.36 93.16 93.59 93.07 93.38 93.48 92.86 94.43

w / PT & w/o Inst. 93.35 93.86 93.17 93.39 93.96 93.70 93.54 93.25 93.54 94.41

ACE05-Tgg
w / PT & Inst. 71.79 72.59 68.33 74.45 67.23 70.07 69.14 75.58 68.66 78.74

w / PT & w/o Inst. 67.10 66.67 69.57 68.61 76.43 79.55 70.92 71.25 78.61 80.23

ACE05-Arg
w / PT & Inst. 49.80 48.73 60.42 50.24 58.95 47.06 49.64 51.22 42.49 55.78

w / PT & w/o Inst. 50.95 46.15 42.93 52.22 50.00 60.47 48.70 54.94 55.77 62.76

14-res
w / PT & Inst. 84.62 83.86 84.29 85.58 84.82 83.93 85.37 84.75 85.10 83.58

w / PT & w/o Inst. 84.54 82.97 84.21 84.88 84.60 84.82 84.49 84.13 82.66 84.79

Table 16: Results of the label drop mechanism with different drop rates.

Dataset Metric 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Twitter-2015
P 76.22 76.52 78.22 77.61 76.36 75.93 75.56 79.45 76.74 76.79
R 76.32 75.60 74.36 73.61 76.19 75.06 75.86 74.03 76.21 75.56
F1 76.27 76.05 76.24 75.56 76.28 75.49 75.71 76.64 76.47 76.17

Twitter-2017
P 87.80 87.33 89.10 88.25 88.7 87.69 86.39 87.33 86.49 87.51
R 87.34 86.75 86.68 86.75 87.27 87.49 87.86 87.79 87.19 87.64
F1 87.57 87.04 87.88 87.50 87.99 87.59 87.12 87.56 86.84 87.57

MNRE
P 74.21 75.16 76.05 75.29 75.80 74.74 74.73 74.54 73.57 75.45
R 73.79 74.97 72.99 72.49 74.72 74.41 74.04 72.37 72.61 76.15
F1 74.00 75.06 74.49 73.86 75.26 74.57 74.39 73.44 73.09 75.79

Table 17: Results of the label drop mechanism with different drop rates on MIE datasets.

‘with and without Inst.’ is generally small. The
distinction between these two configurations lies
in whether the instruction part of LDNet’s input is
an empty string, and any difference should be re-
lated to DeBERTa-v3-large’s instruction-following
capability.

C.3 Method for Few-shot Experiments
Regarding the few-shot experiments, we employed
fine-tuning. Following the settings of Mirror to en-
sure the fairness of the comparison, we fine-tuned
for several epochs on the training set of the few-
shot dataset before assessing few-shot capabilities.

C.4 Model Parameters and Computational
Complexity

All models’ computational complexities and the
scales of the pre-trained language models used are
listed in the Table 11.

Here, we define the following notations to ana-
lyze the computational complexity of the models:

• Expected answer length: k

• Text length: n

• Instruction length: l

• Schema length: s

• Hidden dimension: d

• Biaffine dimension: b

• Number of transformer layers: t

First, the computation for the hidden states
of a transformer architecture model (excluding
the computation for predicting token logits) is
(24nd2+4dn2) · t. The computation for predicting
token logits is 2dvn.

TANL, Deepstruct, UIE, and InstructUIE, which
are generative unified information extraction meth-
ods, mainly focus on the computation involved in
token prediction.

• TANL outputs a sequence that includes the
answer to be extracted in the original input se-
quence, so its computation for sequence gen-
eration is [(24nd2+4dn2) ·t+2dvn] ·(n+k).
Since the decoding algorithm used by TANL
has a complexity of O(n2), its overall compu-
tational complexity is O(n3).

• Deepstruct outputs a sequence that is the an-
swer sequence itself, so its computation is
[(24nd2+4dn2) · t+2dvn] ·k, with a compu-
tational complexity of approximately O(n2).
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w/ Label Drop ✗ ✓

Twitter-2015
P 74.07 76.79
R 60.57 75.56
F1 66.64 76.17

Twitter-2017
P 84.42 87.51
R 81.54 87.64
F1 82.96 87.57

MNRE
P 74.04 75.45
R 68.66 76.15
F1 71.25 75.79

74

75

76

77

78

79

F1

Twitter-2015

P
R
F1

86.5

87.0

87.5

88.0

88.5

89.0

F1

Twitter-2017

P
R
F1

P R F1P R F1P R F1

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0
F1

MNRE

P
R
F1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Drop Rates

72.5

75.0

77.5

80.0

82.5

85.0

87.5

F1

Twitter-2015 P
Twitter-2015 R
Twitter-2015 F1

Twitter-2017 P
Twitter-2017 R
Twitter-2017 F1

MNRE P
MNRE R
MNRE F1

Figure 3: Results of the ablation study on the label drop mechanism on MIE tasks.

• UIE takes an input sequence that includes the
schema and directly generates a Structured Ex-
traction Language (SEL) as output. Its com-
putation is [(24(n+ s)d2 + 4d(n+ s)2) · t+
2dv(n + s)] · k, with a computational com-
plexity of approximately O(n2).

• InstructUIE includes the instruction, schema,
and text in the input sequence. Its computa-
tion is [(24(n+ s+ l)d2 + 4d(n+ s+ l)2) ·
t+ 2dv(n+ s+ l)] · k, with a computational
complexity of approximately O(n2).

USM, Mirror, and LDNet belong to extractive
unified information extraction methods, hence they
do not include the computation for predicting token
logits.

• USM includes schema and text in the input.
In addition to encoder representations, it com-
putes token-token linking scores, label-token
linking scores, and token-label linking scores.
Its computation is (24(n+s)d2+4d(n+s)2)·
t+ 8(n+ s)d2 + 2d(n+ s)2, with a compu-
tational complexity of O(n2).

• Mirror includes instruction, schema, and text
in the input. After computing the represen-
tations with the pre-trained model, it uses a
biaffine transformation to generate score ma-
trices. Its computation is (24(n+ s+ l)d2 +
4d(n+s+l)2)·t+4ndb+4nd+6nb2+6bn2,
with a computational complexity of O(n2).

• LDNet includes instruction, schema, and text
in the input. The Multi-aspect Relation Model-
ing module’s computation is (8nd2+2dn2)·3.

The label drop mechanism’s computation is
3n2. Therefore, the total computation is
(24(n+s+l)d2+4d(n+s+l)2) ·t+(8nd2+
2dn2) · 3 + 3n2, with a computational com-
plexity of O(n2).

C.5 Additional Experiments

Comparison to Models with Smaller PLMs
We separately list the pretrained language model
parameters smaller than the DeBERTa-v3-Large
(304M) used by LDNet and compare them with
LDNet using DeBERTa-v3-Base (86M). The re-
sults are shown in the Table 12.

Comparison to GoLLIE Models In the Ta-
ble 13, we compare the results of GoLLIE and
LDNet. For ease of comparison, we have included
only the results where both models are evaluated.

MRC and Classification Results To demon-
strate the compatibility of LDNet, we conducted
experiments on SQuAD v2 (Rajpurkar et al., 2018)
and the 7 GLUE datasets (Warstadt et al., 2019;
Wang et al., 2019; Williams et al., 2018; Socher
et al., 2013; Dolan and Brockett, 2005). As shown
in Table 14, LDNet outperforms Mirror across all
datasets. Additionally, LDNet surpasses BERT-
large on SST-2 and QNLI, outperforms RoBERTa-
large on CoLA, RTE, and MRPC, and achieves
competitive results with DeBERTa v3-large on
CoLA and MRPC. It is important to note that LD-
Net is a universal solution for IE and does not un-
dergo full fine-tuning like Language Model Models
(LLMs). Therefore, LDNet has limitations when
it comes to tasks such as MRC and classification.
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Consequently, it is reasonable to observe a slight
performance gap in these tasks. However, it is
worth noting that LDNet exhibits a smaller perfor-
mance gap compared to Mirror.

Multi-modal Results We put detailed results of
multi-modal experiments in Table 15. It can be seen
that LDNet performs better than most baselines,
and is slightly lower in some metrics on certain spe-
cific baselines. But these methods are all focused
only on MIE, unlike LDNet which is a universal
solution for both IE and MIE. And some methods
like HVPNeT utilizes additional visual prefixes and
uses a specially-designed pyramid structure, and
TMR have introduced more datasets for training,
so there may be some performance gap. Although
LDNet performs slightly lower than TMR on some
datasets, it surpasses TMR on the Twitter-2015
dataset. Moreover, LDNet is a universal informa-
tion extraction solution that covers a broader range
of tasks, such as Discontinuous NER and Hyper
RE.

Specific Results of Label Drop Mechanism We
put the specific results of the label drop mecha-
nism with different drop rates in Table 16. It can
be seen that after 100 rounds of fine-tuning, the
performance of the two strategies on the CoNLL03,
NYT, and 14-res datasets is not much different for
LDNet, and in some drop rate cases, LDNet can
perform better without the instruction, demonstrat-
ing the effectiveness of the label drop mechanism
in the absence of specified instructions, which can
be extended to other datasets without annotated
instructions.

We also conduct ablation experiments on multi-
modal datasets, and the experiments on multi-
modal datasets are trained for 20 rounds, just like
the main experiments. The results we release are
the w/ PT & Inst. results. From Table 17 and
Figure 3, we can see that the performance with
the label drop mechanism is better than without it,
which demonstrates the effectiveness of the label
drop mechanism in MIE tasks. Under different
drop rates, the F1 scores on the MIE datasets do
not fluctuate greatly, indicating that the label drop
mechanism still has robustness in MIE.
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