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Abstract
Autoencoders have been used for finding inter-
pretable and disentangled features underlying
neural network representations in both image
and text domains. While the efficacy and pit-
falls of such methods are well-studied in vision,
there is a lack of corresponding results, both
qualitative and quantitative, for the text domain.
We aim to address this gap by training sparse
autoencoders (SAEs) on a synthetic testbed of
formal languages. Specifically, we train SAEs
on the hidden representations of models trained
on formal languages (Dyck-2, Expr, and En-
glish PCFG) under a wide variety of hyperpa-
rameter settings, finding interpretable latents
often emerge in the features learned by our
SAEs. However, similar to vision, we find per-
formance turns out to be highly sensitive to
inductive biases of the training pipeline. More-
over, we show latents correlating to certain fea-
tures of the input do not always induce a causal
impact on model’s computation. We thus ar-
gue that causality has to become a central tar-
get in SAE training: learning of causal fea-
tures should be incentivized from the ground-
up. Motivated by this, we propose and perform
preliminary investigations for an approach that
promotes learning of causally relevant features
in our formal language setting.

1 Introduction

In recent years, mechanistic interpretability has
gained currency as an approach towards under-
standing the functioning of language models
(LMs) (Nanda et al., 2023; Olsson et al., 2022;
Wang et al., 2022; Li et al., 2024a). A mechanis-
tic interpretability paradigm that has seen remark-
able progress especially is sparse autoencoders
(SAEs), which aims to disentangle model repre-
sentations into independent, interpretable compo-
nents (Lieberum et al., 2024; Bricken et al., 2023;
Cunningham et al., 2023; Engels et al., 2024; Gao
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Figure 1: The autoencoder paradigm for inter-
pretability. Autoencoders have formed the basis of
approaches to disentanglement in the vision domain
(Higgins et al., 2017). Utilizing synthetic testbeds,
prior work has shown several limitations in this general
pipeline (Locatello et al., 2019; Träuble et al., 2021).
While SAEs have similarly been used to disentangle
hidden representations of language models for inter-
pretability, we aim to perform a similar study as ones in
vision to understand the (in)abilities of SAEs.

et al., 2024; Marks et al., 2024; Rajamanoharan
et al., 2024) (see App. A for related work). Similar
interpretability approaches based on autoencoders
have been extensively studied in the vision domain
(see Fig. 1), from both empirical and theoretical
viewpoints (Locatello et al., 2019; Träuble et al.,
2021; Lachapelle et al., 2023; Locatello et al., 2020;
Klindt et al., 2020). Specifically, using synthetic
testbeds where a ground-truth set of latents underly-
ing the data-generating process can be listed (Hig-
gins et al., 2017), these studies have established
results on the (non-)identifiability of disentangled
representations via autoencoders and argued for
the importance of inductive biases, which motivate
different regularization terms. For instance, Lo-
catello et al. (2019) prove that for any given dataset
(modeled as a multivariate distribution), there are
infinitely many generative models, all entangled
with each other, and remark that inductive biases
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are necessary to “select” from among these dis-
tributions. Träuble et al. (2021) show that in a
correlated dataset (which real-world datasets tend
to be), a perfectly disentangled model would lead
to suboptimal log-likelihood, and therefore would
not be learned without significant inductive biases.
We argue a similar study is needed for understand-
ing the (in)abilities of SAEs for interpreting LM
representations.

This work. We propose the use of synthetic lan-
guage testbeds to stress-test the SAE approach to
interpretability of LMs. In particular, we train a
spectrum of SAEs on a set of formal languages—
specifically, probabilistic context free grammars
(Dyck-2, Expr, and English)—and demonstrate in-
terpretable latents that activate for relevant con-
cepts of the data-generating process (e.g., parts-of-
speech) are easily identifiable. However, similar
to vision, we find results are highly sensitive to
the training pipeline, with identified latents rarely
having a causal impact on the model output. This
indicates new approaches that directly target learn-
ing of causally relevant latents are needed. To take
a step in this direction, we thus propose a training
pipeline that exploits token-level correlations as
“weak supervision” (Locatello et al., 2020). Overall,
our contributions can be summarized as follows.

• We define formal languages of different com-
plexities, train Transformers on these languages,
and then analyze SAEs trained on their repre-
sentations under several different hyperparam-
eter settings. We identify several features oc-
curring in these SAEs that correspond to vari-
ables central to the data generating process; e.g.,
depth and part of speech (Sec. 2).

• We demonstrate, in line with results from vi-
sion, that identifiability of disentangled features
is not robust (Sec. 3). Results are highly sensi-
tive to changes in normalization methods, hy-
perparameters, and other such settings. For ex-
ample, models trained under L1 regularization
consistently fail to find interpretable features;
additionally, normalization has widely varying
effects on the reconstruction abilities.

• We demonstrate that mere identification of dis-
entangled features does not imply said fea-
tures are causally relevant to the model’s com-
putation (Sec. 3.2). This indicates causality
should be actively modeled as a constraint in
the training pipeline of SAEs. We take a step
towards this objective by proposing a modified

SAE training protocol that deems correlations
between tokens as naturally available interven-
tions, similar to use of correlated images in
autoencoder based approach for vision inter-
pretability (Locatello et al., 2020; Klindt et al.,
2020; Brehmer et al., 2022). Results show that
the proposed protocol often yields latents with
interpretable and causal impact on model out-
puts in our formal language setting (Sec. 4).
These results can be deemed a proof-of-concept
demonstration that insights from prior work on
autonencoder-based interpretability may con-
tinue to be useful for LM settings as well.

2 Experimental Setup

Our experiments consist of training SAEs (of vari-
ous paradigms) on the intermediate representation
of transformer models trained on formal languages.
We explain the data generating process, model ar-
chitectures, and training paradigms next.

2.1 Data and Models

The formal languages we work with are probabilis-
tic context-free grammars (PCFGs), which are gen-
erated by starting with a fixed ‘start’ symbol, and
probabilistically replacing nonterminals according
to production rules. We work with three PCFGs, in-
tended to represent levels of complexity (in parsing
and generation). In order of increasing complexity,
the languages we consider are Dyck-2 (the lan-
guage of all matched bracket sequences with two
types of brackets), Expr (a language of prefix arith-
metic expressions), and English (a simple fragment
of English syntax with only subject-verb-object
constructions). See App. B for precise details.

We train Transformers (Karpathy, 2022) via
the standard autoregressive language modeling
pipeline on each of the above languages. The mod-
els have 128-dimensional embeddings, with 4 at-
tention heads and MLPs, and 2 blocks. In all cases,
the models achieve more than 99% validity, i.e.,
under stochastic decoding, the strings generated
belong to the language more than 99% of the time.

2.2 SAE Architecture

Broadly, we use the conventional SAE architecture,
which consists of two linear layers (an encoder and
a decoder transform) with an activation function in
between. More explicitly, if the sizes of the input
and hidden state are d and h respectively, then our
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SAEs implement functions of the type

SAE(x) = Wdec(σ(Wenc(x) + benc)) + bdec,

where Wenc ∈ Rh×d, Wdec ∈ Rd×h, and benc ∈
Rh, bdec ∈ Rd. We pick h from {d, 2d, 4d, 8d}
and σ = ReLU as the activation function. We
refer to the encoder transform (up to and including
the nonlinearity) as E, the decoder as D, and the
hidden representation (the output of the encoder)
as a latent. When these latents have interpretable
explanations, identified correlationally (Sec. ??),
we also refer to them as features.

Training is performed by optimizing on the MSE
between x and SAE(x), where the input x to the
SAEs is the output of the first block of the Trans-
former model. Sparsity is enforced via two main
methods. The first (and most common in existing
work) is an L1-regularization term added to the
loss, which encourages latent representations to
have low L1-norm. The hyperparameter for this
method is the weight of the regularization term.
We also use, following Gao et al. (2024), top-k
regularization—at the SAE hidden layer, after the
activation, we select the highest k latents, and zero
out the rest. Effectively, we force the L0-norm of
the latents to be at most k, i.e., the hyperparameter
is k itself. We examine the effects of hyperparame-
ters on the performance of SAEs in Sec. 3.1. We
analyze variants of the architecture above by alter-
ing the normalization method and pre-bias. There
are three parts of the operation of the SAE that
can be normalized—the input, the reconstruction,
and the decoder directions. This yields four archi-
tecture variants: no normalization (I), input and
decoder with pre-bias (II), input alone (III), and
input and reconstruction (IV). By pre-bias, we re-
fer to the addition of a learnable vector bpre ∈ Rd

to the input before applying the encoder, which is
then subtracted after applying the decoder.

2.3 Causality of Features
Given a trained SAE: x 7→ D(E(x)), we examine
the causality of the latents by defining a recon-
structed run of the transformer. Let the model’s
two layers be L0 and L1; then a normal run is
logits = WLML1(L0(t)), where t ∈ Rs×d repre-
sents the embeddings of a sequence of s tokens,
and WLM ∈ Rd×|V | is the projection of the fi-
nal representations into the logit space. The pre-
diction of the next token is given, therefore, by
softmax(logits). We then define a reconstructed
run as logits = WLML1(D(E(L0(t)))); i.e., we

interrupt the run after the first layer, pass the out-
put through the SAE, and resume the run using the
reconstruction of the SAE. For ease of notation, we
partition the reconstructed run into two functions,
which chained together give the complete run:

f := E ◦ L0; g := WLM ◦ L1 ◦D.

Thus, the latent of a token x is given by f(x) and
the logit distribution of a token with latent l is given
by g(l). To study the causality of the representa-
tions, then, we intervene on the latent representa-
tion, between E and D (in other words, between f
and g). We intervene on the specific elements of the
latent that correlate with interpretable features of
the input tokens; for instance, in the English gram-
mars, we search for latents correlating with each
part of speech in the grammar. Our interventions
consist of ‘clamping’ latents to some fixed value.
In other words, for each token, we run the forward
pass and extract the latent representation; we set
certain elements to a clamp value, leaving the rest
unchanged—this value is then passed through the
decoder D and the rest of the forward pass.

We examine the effects of the interventions at the
sentence level (Sec. 3.2). This is done in the context
of free generation, where the model is prompted by
a <BOS> token, and the above intervention is run
on each token’s representation. We intervene using
values spaced at 10 equal intervals in [−vmax, vmax],
where vmax is the maximum absolute value attained
by the intervened feature. We use both positive and
negative values to account for the possibility that
the feature may be antipodal to our explanation.

In Sec. 4, we incentivize the SAEs to identify
features with causal function by adding a regular-
ization term (Fig. 6). We carry out the same studies
noted above for those SAEs and qualitatively con-
nect them to the nature of regularization (Sec. 4.3).

3 Results

Qualitatively, we observe that top-k-regularized
SAEs tend to have more interpretable features than
L1-regularized ones. The former results in inter-
pretable features across all languages—we find fea-
tures representing fundamental aspects of the corre-
sponding grammars, as discussed next briefly. See
App. C for a description of our feature identifica-
tion pipeline, and further results, including other
features we are able to identify and how strongly
features correlate with their claimed explanations.
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Figure 2: A feature matching corresponding opening
and closing brackets. Each line represents a pair of
brackets, and joins the opening bracket’s activation (left)
to the closing bracket’s (right). We note that the depth
and opening activation are sufficient to determine the
closing activation, and that the opening and closing
activations are sufficient to determine the depth.
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Figure 3: A feature that activates when exactly one
more expression is required. Here, the x-axis is token
depth, and the y-axis is token index. The lines connect
the operators to their operands.

In the case of Dyck-2, we expect the depth (the
number of brackets yet to be closed) to be repre-
sented. We find a feature that thresholds the depth
of tokens, i.e., it activates on tokens with depth
above a certain threshold depth D. Usually, D is
greater than the mean; for instance, when mean
depth is 8.3, we find D = 11. We also find features
that match corresponding pairs of opening and clos-
ing brackets, usually at lower depths (Fig. 2). These
features take values from only a few small ranges,
and their values at an opening bracket determine
those they take at the matching closing bracket.
These features, even though they are binary, in-
dicate that the token representations do maintain
some form of counter (which aligns with claims
from prior work, like Bhattamishra et al. (2020)).

In Expr, the analogue of depth is a counter that
indicates how many more expressions are needed to
complete the sequence (App. B). We find a feature
that activates exactly when this counter’s value is
1, i.e., when exactly one expression is required
(Fig. 3). This provides strong evidence of a counter
process being implemented; in fact, we note that
generation without this process would be rather
convoluted (Algorithm 1).

An inference we can make from the Expr fea-
tures is that there is an implicit “type” feature in
the representations, distinguishing operators of dif-
ferent valences. A natural place to look for this is
the parts of speech in our English grammar, and we
find that k-regularized SAEs do contain features
corresponding to each part of speech. For example,
we illustrate the ‘adjective’ feature in Fig. 4.

Further, we note a scaling relation in the per-
formance of the top-k-regularized SAEs with hid-
den dimension size. The reconstruction loss they
achieve (after a fixed number of iterations) de-
creases according to a power law with the size
of the autoencoder’s hidden layer (see App. F);
similar results were seen by Sharkey et al. (2024),
relating the reconstruction loss to the L1 penalty
coefficient, indicating our setup captures part of the
phenomenology observed with complex settings.

3.1 Are SAEs Robust to Hyperparameters?
As noted before, we find top-k-regularized SAEs
consistently yield more interpretable features lan-
guages than L1-regularized SAEs. We also mea-
sure the reconstruction accuracy, or the percentage
of valid generations of the model after the latents
are substituted with the SAE reconstructions. Tab. 1
shows the average results for each combination of
regularization, pre-bias, and normalization strategy
(averaged across regularization values and hidden
sizes). We see that top-k-regularized SAEs usually
(but not always) outperform L1-regularized ones if
all other settings are kept the same. We also note
from this table the high sensitivity to hyperparam-
eter settings that SAEs exhibit: no clear trend is
visible across languages, regularization methods,
or normalization settings—in line with Locatello
et al. (2019)’s findings.

3.2 Does Correlation Imply Causation?
An interesting aspect of the features we identify is
that despite strongly correlating with the discussed
explanation (see Tab. 3), they do not have the ex-
pected causal effects. In this section, we outline
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Figure 4: A feature that activates only on adjectives, at any position. Here, depth is represented by the y-axis
and position by the x-axis; the lines connect nonterminals to their productions (see App. B for the production rules).
The cell color represents the activation magnitude.

Language L1 top-k

I II III IV I II III IV
Dyck-2 0.01 0.0 0.01 0.0 49.27 3.48 50.02 0.06
Expr 33.31 6.50 0.06 0.49 99.88 69.14 99.76 0.0
English 0.29 1.13 0.01 0.01 92.46 50.12 80.79 0.37

Table 1: Sensitivity to Hyperparameters. Reconstruction Accuracy (%) averaged over regularization values and
hidden size. We present the accuracies for SAEs with no normalization (I); with inputs and decoder normalized, and
pre-bias (II); with inputs normalized (III); and with inputs and reconstructions normalized (IV). The reconstruction
capabilities of the models shows high variance across hyperparameter settings.

Input Sequence #Required Clamp
−vmax

Clamp
0

Clamp
vmax

un2 tern1 dig8 bin0 tern2 bin2 bin2 dig6 dig7 dig5 4 4 4 4
bin1 un1 tern1 bin2 dig0 dig7 dig0 bin1 dig3 dig7 1 1 1 1
un0 tern1 dig9 dig7 un0 tern1 un2 bin2 dig6 dig6 2 2 2 2

tern1 dig1 dig7 tern1 tern1 dig7 tern1 tern1 un0 un1 8 8 8 8

Table 2: Behavior of the Expr model under interventions. The ‘clamp’ columns indicate the number of
expressions generated by the model after being prompted by the input sequence and an intervention defined by the
clamp value. We see that there is no effect of the intervention on the behavior of the model.

our findings in causal experiments (Sec. 2.3) on the
features described above.

In the case of Expr, we have seen in Sec. ??
that there is a counter feature that activates when
exactly one expression is left to complete the se-
quence. We pass an incomplete sequence to the
model, and intervene on this feature by clamping it
to one of {−vmax, 0, vmax}, where vmax is the max-
imum absolute value of the latent (see Sec. 2.3).
We then examine the generations that result in each
case. We expect that high clamp values will cause
the model to generate only one more expression
(even if more may be required) and low values will
cause it to generate more than one, or perhaps end
the sequence immediately (even if exactly one is
needed); or vice versa, since we cannot be certain
of the direction to apply intervention in. Tab. 2
presents the results of this experiment. For each
input sample, we mention the number of expres-
sions required to complete it, and the number of
expressions actually generated by the model under
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Figure 5: Behavior of the English model under inter-
ventions. We intervene on the model by replacing its
hidden representations with the SAE’s reconstructions,
where an SAE latent (specifically, one corresponding
to adjectives) is clamped to a fixed value. These val-
ues are selected at uniform intervals from [−vmax, vmax],
where vmax is the maximum value taken by that latent
(in line with Templeton et al. (2024)). For each value (x-
axis), we plot the fraction of each part of speech (nouns,
pronouns, adjectives, verbs, adverbs, and conjunctions)
in the output (left) and the fraction of outputs that are
grammatical (right). We see interventions yield essen-
tially no visible effects.
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each intervention. We do not see the expected—or
indeed any—causal effect of intervening on this
feature—it appears that this feature is only corre-
lational in nature.

Similarly, we examine our English grammar.
Here, we examine the effects of intervening on
the part-of-speech features described in Sec. ??.
Note that for a feature correlating with, say, adjec-
tives, we can expect that if it has a causal effect,
it must control the next-token distribution for that
part-of-speech (as this is the only task the model is
trained on). We thus apply our causality protocol
(Sec. 2.3) to the feature correlating with adjectives.
The results of this experiment are shown in Fig. 5.
In this case, as in Expr, we do not see a causal
effect of intervening on this feature. See App. D
for similar results on other parts-of-speech.

4 Incentivizing Causality
Our results above indicate that though SAEs are
competent at identifying features correlated with
semantically meaningful concepts, these features
may not have the expected (or any) causal effects.
This mirrors similar observations made in vision,
where it has been noted that mere data reconstruc-
tion pipelines (e.g., based on autoencoders) can
fail to disentangle the latent factors of a generative
model (Locatello et al., 2019). However, later work
on the topic demonstrated that correlations in the
data-generating process (e.g., correlation in nearby
frames of a video) can be leveraged to obtain dis-
entangled representations (Locatello et al., 2020;
Klindt et al., 2020). As this method relies on super-
vision via other data samples, rather than a ground
truth, it is described as weak supervision. A war-
ranted question then is whether weak supervision
can be elicited in language modeling scenarios too.

Motivated by the above, we take inspiration from
Klindt et al. (2020)’s use of temporal correlations
in video data as weak supervision. We argue the
temporal and sequential nature of language can be
exploited in a similar manner as well: more pre-
cisely, we can consider tokens belonging to the
same sequence to share latent factors, and there-
fore pair up tokens within sequences in a similar
way as image pairs in vision. We next operational-
ize this idea in our setup (Sec. 4.1) and then an-
alyze the features obtained by SAEs trained with
this method (Sec. 4.2). We discuss in Sec. 4.3 the
connection between the inductive biases of the pro-
posed pipeline and the nature of identified features.
We note that the proposed protocol and results

should be deemed a proof-of-concept: our goal is
to make a stronger connection to prior literature on
autoencoder-based approaches to interpretability,
hence eliciting (in)abilities of such protocols.

4.1 Defining Causal Loss
We propose an additional causal regularization
term in the loss to incentivize causality. Thus, we
now have a loss function given by

L = Lrecon + αLsparse + βLcaus.

In order to define Lcaus, note that what we want
is for interventions on the latents to lead to inter-
pretable changes in the model output. However, we
do not want the changes to be arbitrary, i.e., we can-
not simply try to maximize the change caused by an
ablation—then the incentive for disentanglement
is harmed. We therefore introduce weak supervi-
sion, motivated by the ‘match pairing’ approach
of Locatello et al. (2020); Klindt et al. (2020).

Specifically, we try to make the run (forward
pass) of the model on a given token t1 similar to
its run on a different, albeit related, token t2. More
precisely, given a single token t1, we try to inter-
vene on its latent representation l1 to cause its logit
distribution to resemble that of t2. We operational-
ize this by a simple interpolation technique—we
intervene on l1 during the reconstructed run (as
defined in Sec. 2.3) of the model on t1, replacing
it with λ · l1 + (1− λ) · l2 for some λ ∈ [0, 1). To
define what to compare the output of the model on
this corrupted run to be, we follow our intuition
of using the run on t2 as a form of supervision
and compare the model output to the interpola-
tion of the outputs of t1 and t2 (Fig. 6). This is
similar to prior work that aims to improve the ro-
bustness of representations and obtain smoother
decision boundaries by training on interpolations
of inputs (Verma et al., 2019). Another way to mo-
tivate this operationalization is that we would like
to force the model to change its output based on
specific, surgical changes in the latents that happen
as tokens evolve over time.

More formally, let a λ↔ b denote the interpola-
tion λa+ (1− λ)b of vectors a and b by a scalar λ.
Then we define the causal loss term for a token t1,
given a ‘baseline’ token t2, as

Lcaus(t1, t2) := d
(
g
(
l1

λ↔ l2

)
, g(l1)

λ↔ g(l2)
)
,

where d denotes MSE.
To pick t2 in the pipeline above, we aim for

as minimal an intervention as possible; this is to
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Figure 6: Operationalizing the causal regularization term. A clean run of the model consists of applying L0,
followed by L1 and WLM. We define a reconstructed run, which introduces an SAE between these two layers.
The SAE consists of an encoder E and a decoder D. We denote the input embeddings as t, SAE latents as l, and
reconstructed model activations as x. Furthermore, we group the first part of the reconstructed run as f := E ◦ L0,
and the second part as g := WLM ◦ L1 ◦D. Given two tokens t1 and t2, we interpolate between the latents l1 and l2
(indicated by a dotted line) and pass this as input to g; our causal loss Lcaus is then given by the difference between
the interpolation of the outputs, and the output of the interpolation.
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Figure 7: Behavior of the English model under in-
terventions. We intervene on the model, replacing its
hidden representations with the SAE’s reconstructions,
clamping a single latent (in this case, the one corre-
sponding to adjectives) to fixed value. These fixed val-
ues are selected at uniform intervals from [−vmax, vmax],
where vmax is the maximum value taken by that latent
(in line with Templeton et al. (2024)). For each value
of the clamp (x-axis), we plot the fraction of each part
of speech (nouns, pronouns, adjectives, verbs, adverbs,
and conjunctions) in the generated text (left) and the
fraction of generations that are grammatical (right). We
see that the SAEs trained with causal regularization have
a predictable causal function.

avoid the latent being completely overwritten, and
to ensure that even small, surgical changes in the
vicinity of the latent have causal effects. Thus we
simply find the token with the latent nearest (by
L2 distance) to l1. This is done at the sequence
level; thus, for each sequence, we pair each token
with the one nearest to it in the latent space, and
find Lcaus for each of these pairs. For λ, we simply
sample from the uniform distribution over [0, 1]
every iteration—this incentivizes causal effects for
a wide range of interventions.

4.2 Nature of Causal Features

As in the SAEs trained without this loss (Sec. ??),
we identify a number of features correlating with
parts of speech—specifically, adjectives, verbs and
adverbs. Now, we predict that if these features have
a monotonic causal function, they shift the output
logit distribution towards the one predicted by the
corresponding part of speech. For example, a fea-
ture correlating with adjectives should promote the
probability of nouns being predicted next, as nouns
are the only PoS allowed to come after adjectives
(see App. B for the exact grammar). In the case
of verbs, anything may appear as the next token
except another verb; thus we expect the probability
of verbs to be downweighted by this feature.

Fig. 7 presents the effect of these interventions
on the PoS distribution across sentences, along with
the grammaticality of generations. The effect is as
we hypothesized. We also note that as soon as the
distribution significantly shifts away from the un-
corrupted distribution, the fraction of grammatical
generations drops drastically. This supports, as
pointed out in Träuble et al. (2021); Ahmed et al.
(2020), the difficulty of learning disentangled rep-
resentations from correlated data (in this case, with
respect to PoS distribution and grammaticality). In
fact, recent work (Bhalla et al., 2024; Wu et al.,
2025) observes that intervention-based methods (in
comparison with probing-based methods) suffer
from the drawback of damaging models’ output
quality in terms of coherence, creating a control-
capabilities tradeoff. This indicates that the prob-
lem is possibly more general than simple semantic
disentanglement, and this is a valuable avenue for
future research. We note, furthermore, that this is

4843



x +

attn

MLP+

l D WLM

L1

Figure 8: The computational graph of the second
layer L1 of the transformer model. Starting from the
SAE latent l, the decoder D produces a reconstruction
of the model activation x; the blue box then represents
L1, whose output is projected by WLM into the logit
space. The boldface arrows represent paths through the
graph that involve fewer nonlinearities; our causal loss
term incentivizes D to write to the subspace of x that is
read by the modules in these paths.

another validation of our setup (like the scaling law
described in Sec. ??), as it demonstrates behaviors
also observed in more complex, natural language
settings. More examples of the causal function of
these features can be found in App. D.3.

4.3 Inductive Biases in our Pipeline

As we remarked before, Locatello et al. (2019)
demonstrated that finding latents underlying the
data generating process is generally an ill-defined
problem with multiple viable solutions. The au-
thors thus argue that to the extent an approach
achieves disentangled features, it is an inductive
bias of the training pipeline. For example, their
results show that a good deal of the variance in
performance across paradigms (37%) can be ac-
counted for by the effect of the objective function
alone. In this section, therefore, we investigate the
inductive biases of our approach. In particular, why
do only certain parts of speech (adjectives, verbs
and adverbs) have latents correlating with them
when our causal loss term is introduced?

To answer this, we reexamine the causal loss
(Sec. 4.1). As λ↔ represents a convex combina-
tion for all λ ∈ [0, 1], it effectively incentivizes the
function g to be distributive over convex combina-
tions (i.e., over addition and scalar multiplication).
In other words, it is an incentive for g to be a lin-
ear function. This is of course not possible in
full generality (else we would not need nonlinear
models), but can work for features that have an
approximately linear mapping to the output space.

In particular, consider the computational graph
that g represents (Fig. 8). Following the framework

of Elhage et al. (2021),1 we consider the SAE de-
coder D as writing to a subspace of x ∈ Rd, which
each of attn(x) and MLP(x) then read from. Now,
note that the attention module involves two soft-
max operations, and is therefore a highly nonlinear
operation. The MLP, by contrast, is a simple linear-
GeLU-linear operation, and thus involves only one
nonlinearity (which is in fact linear in the range
R+). Thus, we claim that the more D writes to the
MLP’s input subspace, the ‘more linear’ it is; and
the more it writes to the attention’s input subspace,
the ‘more nonlinear’ it is. In other words, the ‘lin-
earity incentive’ of the causal loss manifests itself
as a preference for D to have more causal effect on
the MLP than on the attention module. For more
evidence of this, refer to App. E.

To connect this to the parts of speech we have
seen above, we note that it is exactly these parts
of speech whose next-token distribution is static—
adjectives, verbs, and adverbs. In other words,
regardless of where they appear in the sequence,
the next-token distribution is fixed by the part of
speech—i.e., these tokens do not require attention
for their next-token distribution. For instance, we
remark that adjectives can only be followed by
nouns—thus the next-token distribution of any ad-
jective token assigns all the probability mass to the
nouns in the vocabulary. Verbs and adverbs, too,
behave the same way at any position.

By contrast, the tokens that can follow a noun or
pronoun depend on whether or not it is a subject
(only conjunctions or verbs) or an object (only con-
junctions, adverbs, or <EOS>). Similarly, the tokens
that can follow a conjunction depend on whether it
connects two noun phrases (only nouns, adjectives,
or pronouns) or verb phrases (only verbs).

Putting our subspace intuitions together with the
fact that these parts of speech do not require at-
tention, we find a plausible answer—the objective
creates a signal to promote learning of features that
have causal effects on the ‘more linear’ modules
(the MLP), while features that affect the attention
module are dispreferred. This also explains why
our causal loss does not find features in the Dyck-2
and Expr models; these languages rely on stacks or
counters for generation (which are implemented by
attention, as shown by Bhattamishra et al. (2020)),

1This work characterizes the effect of a residual module
in a transformer as “reading from” (some subspace of) the
residual stream, performing some computations, and then
writing to (a possibly distinct subspace of) the residual stream.
In our model, as shown in Fig. 8, the attention and MLP both
function as residual modules.
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rather than vocabulary complexity, and so the at-
tention module carries more of the computational
weight. We find further evidence for this in the
fact that SAEs trained on these languages without
causal loss do not identify any interpretable fea-
tures other than those computed by attention.

Overall, in line with prior work on autoencoders-
based interpretability (Locatello et al., 2019), our
results highlight the importance of recognizing the
inductive biases of any SAE paradigm for inter-
pretability. We expect that any method aiming to in-
tegrate causality into feature identification will sim-
ilarly have inductive biases, and no single method
will overcome all limitations of the paradigm.

5 Conclusion

Inspired by studies in vision (Locatello et al., 2019,
2020), we propose a minimalistic setup to assess
challenges in the use of SAEs for model inter-
pretability. We validate our setup by identifying
semantically meaningful features and demonstrat-
ing the sensitivity of said features’ extraction to
inductive biases. We further demonstrate a lack
of causality, i.e., interventions on these features
do not yield intended effects. We expect these re-
sults to bear out at scale as well, e.g., we find it
likely that features identified by SAEs will not al-
ways be causally relevant to model computation.
While previous works, like Marks et al. (2024),
have successfully built upon SAE features to iden-
tify circuits, we believe our results demonstrate the
importance of embedding causality into the feature
identification process as a first-class citizen. As a
step towards this integration, we propose a modi-
fied objective for training SAEs that exploits the
structure of our data, and find that it succeeds in
identifying features with predictable causal func-
tion. We deem these results as a proof-of-concept
corroborating our broader arguments, and hypothe-
size that designing a singular protocol that works
well for all tasks and modalities may be difficult.

6 Limitations

An important caveat for our results is that they
come from a simplified, synthetic domain (viz., for-
mal languages); although see App. A.5 for brief
overview of how synthetic pipelines have been help-
ful to advancing our understanding of deep learn-
ing. We do believe that the essence of our results
is likely to carry over to natural data—in fact, a re-
cent contemporary work by Chaudhary and Geiger

(2024a) already corroborates several of our claims.
Nonetheless, it must be kept in mind that signifi-
cant complications can arise from this domain shift.
For example, as shown by Lachapelle et al. (2023),
full-distribution data in natural language strongly
disadvantages the identification of interpretable fea-
tures, which can be remedied by a restriction to
task-specific data. Our formal languages do not
show this complication, presumably because the
full-distribution variance is of a comparable order
to the task-specific variance of natural language.
Furthermore, our proposed causality regularization,
while it succeeds in incentivizing the identification
of causal directions, strongly prefers a certain kind
of feature; i.e., those that form the input to the MLP
module. We provide a qualitative explanation for
this phenomenon, hoping to inform the application
of methods like ours to more real-world settings.
We consider overcoming this limitation—perhaps
via methods other than regularization—an impor-
tant future avenue of research.

Contributions
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the broader project narrative around disentangled
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Appendix

A Related Work

Prior work that has influenced the SAE approach to interpretability can be organized into four main
directions: disentanglement (App. A.1), inductive biases (App. A.2), evaluation and metrics (App. A.3),
and the nature of SAE features (App. A.4). We also discuss prior work on the use of synthetic data for
interpretability (App. A.5).

A.1 Disentanglement and Interpretability
Locatello et al. (2019), working in the image domain, carry out a wide-ranging empirical and theoretical
study of VAEs on synthetic image data, and prove a non-identifiability result on the learned latent
representations. In other words, infinitely many possibilities for disentangled latent representations exist
if only a data reconstruction objective is used, and so the disentanglement of the actual representations
learned is extremely sensitive to the inductive biases of the autoencoder being used. Thus, no guarantees
about the interpretability or task-specific usefulness of the learned representations can be assumed.
Locatello et al. (2019) also note that identifiability results are in general not obtainable for the case
of a nonlinear data-generating process (Hyvärinen and Pajunen, 1999; Hyvarinen and Morioka, 2017;
Hyvarinen et al., 2019). Furthermore, Träuble et al. (2021) observe that real-world data can only be
generated from highly correlated latents, possibly with a complex causal relationship. They prove also that
disentangled representations do not represent an optimum in this case, and so entangled representations
are learned. However, they also note that supervision can be leveraged to achieve true disentanglement –
auxiliary data linking priors to observations can be used for weak supervision during training to resolve
latent correlations. Later works outlined settings in which identifiability results can in fact be proven.
For example, Lachapelle et al. (2023) propose a bi-level optimization problem, where the representations
are optimized for reconstruction as well as performance on downstream tasks via sparse classifiers, and
Squires et al. (2023) demonstrate how to achieve disentanglement with interventional data (data from
observations with individual latents ablated).

Empirically, however, SAEs have been used to obtain many insights on the functioning of neural models.
For instance, Demircan et al. (2024) use SAE features to draw connections between in-context learning
(ICL) is implemented and temporal-difference (TD) learning, a reinforcement learning algorithm; and
Lan et al. (2024) show that various LLMs have similar representational spaces, through matching the
dictionaries learnt by SAE decompositions of these spaces.

A.2 Scaling Laws and Inductive Biases in SAEs
Locatello et al. (2019) highlight the importance of drawing attention to the inductive biases of autoencoders
while using them to achieve disentanglement. They show that the objective function and random seed
together are responsible for roughly 80% of the performance of VAE encoders, demonstrating the lack of
robustness in the method. Many works have also obtained empirical results on the relationship between
the dictionary size (i.e., the latent size of the autoencoder) and the features learned. For example, Sharkey
et al. (2024) (working with numerical data) note that recovering the ground-truth features requires a
dictionary size of 1–8× the size of the input, and that if sparsity is enforced by L1-regularization, then
larger dictionary sizes need larger penalties. Other studies have found that “dead” features (i.e., features
that don’t activate on any sample) begin to occur from a dictionary size of about 4x (Cunningham et al.,
2023), that a single feature in small SAEs “splits” into several features (whose union represents the former
feature) in larger SAEs (Makelov et al., 2024; Bricken et al., 2023), and that several features are simply
the same token in various contexts, like a physics “the” and a mathematics “the” (Bricken et al., 2023).

A.3 Metrics
Many aspects of SAEs have been identified as important for evaluation, and many metrics exist for
each of these. Mainly, they can be classified along two axes: interpretability vs. disentanglement, and
supervised vs. unsupervised. Supervised metrics require some ground-truth dictionary of features to
evaluate against, which is generally assumed to be human-interpretable. Therefore, interpretability and
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disentanglement are tied together in these metrics. For example, BetaVAE uses the accuracy of a classifier
trained to predict ground-truth features from learned ones (Locatello et al., 2019; Sepliarskaia et al., 2019);
consistency and restrictiveness measure the sensitivity of ground-truth features to learned ones (Shu
et al., 2019); and maximum mean cosine similarity (MMCS) maps the two sets of features using the
cosine similarity (Sharkey et al., 2024). However, when no ground-truth is available, a feature set may be
disentangled but not interpretable, or vice versa. Thus, unsupervised metrics evaluate interpretability and
disentanglement separately. Examples of metrics for interpretability are controllability, which evaluates
how ‘easy’ it is to control the model output by intervening on a feature set (Makelov et al., 2024), and next
logit attribution, where the causal role of the feature in the model’s final logit output is examined (Bricken
et al., 2023). Notably, Makelov et al. (2024) find that SAEs trained on task-specific data (IOI in their case
study) learn meaningful directions, while those trained on full data perform on par with those that have
random directions kept frozen through training.

A.4 Correlational and Causal Features

A number of studies demonstrate the causal effects of SAE features. For example, Bricken et al. (2023)
show that the features representing Arabic-language text (in a one-layer transformer) can be clamped to a
high value, increasing the probability of generating Arabic text. Templeton et al. (2024) scale up this work
to analyze Claude’s representations, identifying a feature representing the Golden Gate Bridge in San
Francisco, with a causal effect on how prominent this monument is in the model’s output. Notably, Marks
et al. (2024) use SAE directions to identify circuits in models (across layers) responsible for specific tasks,
like subject-verb agreement across relative clauses. However, as shown in our results, the bulk of features
have no causal effects on the model computation (using standard SAE protocols). We claim similar results
can be easily demonstrated in natural settings as well—for instance, Chaudhary and Geiger (2024b) report
results qualitatively similar to ours in a restricted natural language setting as well.

Braun et al. (2024) also propose a modified training objective, called end-to-end(e2e) SAEs, to ensure
that SAEs learn about the model rather than the dataset. They show that e2e SAEs obtain an improvement
over standard SAEs in terms of reconstruction and interpretability.

A.5 Synthetic Data in Interpretability

Synthetic data from controlled, well-understood domains has long been used to investigate the functioning
and capabilities of language models. This data takes various forms—Li et al. (2022) train a model to
predict valid moves from a textualized representation of the board game Othello, and show that the model
learns an internal representation of the board state that can be intervened on to change its predictions,
and Li et al. (2024b) use arithmetic tasks, like modular addition, to characterize the capabilities of
chain-of-thought prompting over standard decoding.

Formal languages have also supplied synthetic data, particularly to understand the expressivity of
various sequence architectures. We have discussed in the main paper (Sec. ??) the results of Bhattamishra
et al. (2020), who use the languages of Dyck-1, Shuffle-Dyck and boolean expressions to establish the role
of attention in generalization across sequence lengths, and contextualize the set of languages recognizable
by transformers within the Chomsky hierarchy (Sipser, 1996).

In the domain of interpretability, Cagnetta et al. (2024) use a class of CFGs, called random hierarchy
models (RHMs), to identify how transformers learn compositional structures and quantify the data
required to learn a hierarchical task. Allen-Zhu and Li (2024) also use probes to identify the mechanism
by which transformers learn to recognize CFGs, identifying syntactic structures in hidden states and
information-passing functions in attention patterns. In this connection, the results of Wen et al. (2024) are
also relevant—they use the Dyck language to show that the attention module may be ‘nearly randomized’
without affecting the performance of the model. This provides important context for interpretability
methods oriented towards isolated submodules of transformers, or ‘myopic’ methods.

Generative paradigms other than context-free grammars have also been used to investigate models—for
instance, Lubana et al. (2024) use context-sensitive languages to investigate and model the phenomenon
of emergent capabilities, or sudden improvement in certain tasks at certain points during training.
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B Formal Grammars

We use, as mentioned in Sec. 2, three formal grammars on which we train transformer-based language
models. The exact specification of these grammars, in terms of a context-free grammar (CFG), is presented
below. Note that the actual data generation process is defined by a probabilistic CFG, which requires
probabilities to be assigned to each of the productions of a nonterminal. We omit these probabilities for
legibility here, but readers can refer to our (https://github.com/Abhinav271828/pcfg-sae-causa
l-arr-oct24) for details.

B.1 Dyck-2
Given n types of brackets (that is, 2n symbols consisting of n opening and the matching n closing
brackets), the Dyck-n consists of all the valid sequences of brackets. Algorithmically, a string belonging
to Dyck-n can be parsed by maintaining a stack of opening brackets, and popping the topmost one when
the corresponding closing bracket is encountered. If a closing bracket that does not match the topmost
opening bracket is encountered, the string is rejected. The production rules that express the generation of
strings from Dyck-2, then, are as follows.

S → S S | B1 | B2

B1 → (S ) | ( )

B2 → [S ] | [ ]

B.2 Expr
The Expr language is the set of prefix arithmetic expressions, in which operands are single digits from 0
to 9, and operators may be unary, binary or ternary. There are three operators of each type. Note that it is
possible to view the vocabulary as being organized according to arity, or number of arguments needed.
Thus digits are symbols of arity 0; unary operators of arity 1; binary operators of arity 2; and ternary
operators of arity 3.

Algorithm 1 Identify points in the sequence where exactly one more expression is expected, without
maintaining an explicit counter.

Require: Tokens t1, . . . , tn
i = 1
while i ≤ n do

if ti is a unary operator then
mark ti
i← i+ 1

else if ti is a binary operator then
i← the position of the last token of the first operand of ti
mark ti

else if i is a ternary operator then
i← the position of the last token of the second operand of ti
mark ti

else
i← i+ 1

end if
end while

Since the syntax is prefix, there is no need to define precedence for unambiguous parsing. For parsing,
it is sufficient to maintain a counter that keeps track of how many more expressions are needed to
complete the sequence – this counter starts at 1 (as the whole sequence, which is pending, represents one
expression), and is incremented by n − 1 when we encounter a token of arity n. Thus, for instance, if
3 more expressions are needed to complete the sequence and a binary operator is encountered, we now
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need 4 more expressions – two to complete the binary operator, and two more to satisfy the original three.
Parsing succeeds if this value reaches 0 at the end of the string, and fails if it becomes negative at any
point during the parse.

The production rules for this language are as follows.

S → O | D
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
O → U S | B S S | T S S S

U → un1 | un2 | un3
B → bin1 | bin2 | bin3
T → tern1 | tern2 | tern3

As we note in Sec. 2, SAEs trained on Expr models find a feature that activates on tokens where exactly
one more expression is needed to complete the sequence, i.e., where the counter above has a value of 1.
We consider it reasonable to assume the implicit computation of such a counter based on the existence of
this feature, since the algorithm required to identify these tokens (Algorithm 1) is much more convoluted
if we forbid explicitly computing this counter.

B.3 English

We define a simple fragment of English, intended to capture major parts of speech and bridge the gap
between parsing languages like Dyck-2 and Expr above, and natural language parsing. We retain the two
most common sentence constructions, but ignore more complicated syntactic features like agreement and
relative clauses, and morphological features, like conjugations and declensions. This grammar can be
parsed using any standard CFG parsing algorithm, like Earley or CKY parsing (Sipser, 1996).

The rules for the grammar are as follows.

S → NP VP

NP→ Pro | N | NP Conj NP | Adj N

VP→ V | V NP | VP Conj VP | VP Adv

Each part of speech – nouns (N), verbs (V), pronouns (Pro), conjunctions (Conj), adjectives (Adj) and
adverbs (Adv) – have ten tokens each. We omit the production rules listing these for brevity, but refer
readers to the (https://github.com/Abhinav271828/pcfg-sae-causal-arr-oct24) for details.

C Features

We describe here the methodology of finding features in SAEs, and list several other features we were
able to identify.

C.1 Feature Identification Pipeline

C.2 Experimental Protocols: Feature Identification

We avoid the automated interpretability paradigm outlined in Bills et al. (2023), in order to avoid concerns
of LLMs being unfamiliar with the specific formal grammars we use. Instead, in line with Bricken et al.
(2023), we begin with manual inspection of each feature, and hypothesize potential explanations for its
semantics using positive and negative samples. As mentioned in the same work, this must also be informed
by the reconstruction capabilities of the SAE—we therefore restrict our analysis to SAEs that are able to
achieve high reconstruction accuracy (defined in 3.1. Following Makelov et al. (2024), we compare the
activations of the latents with the predictions of the explanations. We use the correlation between the two
as a score for the quality of the explanation. Marks et al. (2024) use a manual interpretability pipeline
similar to ours, with the added information of the latent’s causal role (through ablations). However,
our aim is primarily to evaluate the quality of purely correlational explanations, which many feature
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Explanation Language Settings Correlation
One more expression required to
complete the sequence.

Expr (2, k = 16) 0.972

Last token. Expr (8, α = 10−3) 0.984
Verbs. English (8, k = 128) 0.964
Adjectives. English (8, k = 128) 0.985
Adverbs. English (8, k = 128) 0.999
Conjunctions. English (8, k = 128) 0.932
Empty stack of type 0. Dyck (8, k = 128) 0.925
Empty stack of type 1. Dyck (8, k = 128) 0.814
Stack depth 11 or more. Dyck (8, k = 128) 0.924
All brackets at depth 0, and
the first opening and all closing
brackets at depth 1.

Dyck (8, k = 128) 0.912

Table 3: Features identified by SAEs. We give a description of each feature, with the language it is found in, and
the correlation (Pearson coefficient) between the activations and the explanation. All the SAEs are trained without
pre_bias or normalization; we therefore identify them by their expansion factor and regularization factor (α in the
case of L1- and k in the case of top-k regularization).

identification pipelines (both manual and automated) rely upon. The causal nature of the explanations is
explored in Sec. 3.2

The manual inspection is based on an a priori notion of the latent generative factors inherent in each
formal language, which we briefly outline. In Dyck-2, we expect some computation to be based on the
depth of the current token (i.e., the number of unclosed brackets preceding it). In Expr, we expect a
counter that keeps track of the number of expressions yet to be generated. In English, we expect features
corresponding to each part of speech in the grammar. These are all variables both necessary and sufficient
for the data-generation process. We note, however, that these are not the only possibilities—each language
may have several equivalent reformulations, but we believe these are the most intuitive and suitable for
the autoregressive decoding paradigm. We discuss in more detail the exact formulation of the grammars
and their relation to these generative factors in App. B.

C.3 Identified Features

Results are shown in Tab. 3. Note that all the SAEs listed here are trained without pre_bias and without
normalization. Thus, the hyperparameters specified in column 3 are the expansion factor (ratio between
hidden size and input size) and, according to the regularization method, either the L1 coefficient or k.
For each feature, we note the hyperparameter settings of the SAE, our hypothesized explanation, and the
correlation (Pearson coefficient) between the feature’s activation and the explanation.

In the Expr model, the SAEs identify features relating to a counter variable (based on the parsing
process described in Sec. B.2) and position. Of the former kind, we find a feature that activates exactly
when there is one more expression left to complete the sequence; as an example of the latter, there are
features that activate only on the last token of a sequence.

In the model trained on a fragment of English, we find features representing several parts of speech –
adjectives, verbs, adverbs, and conjunctions. Each of these activate to varying degrees on tokens belonging
to the respective part of speech.

In the Dyck-2 model, as in the case of Expr, we see features that correspond to an intuitive stack-based
parsing process. In Sec. 3, we present a feature that ‘matches’ corresponding opening and closing trends.
There are also features that threshold the depth of (number of unclosed brackets that appear before) a
token, i.e., they activate when the depth is above a certain value (11 in this case). We also find features
that identify a combination of depth and whether a bracket is opening or closing.
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D Causality of Features

We present here a detailed outline of our experimental protocols in the feature identification and the
causality experiments. We also examine other features for causal effects, particularly the counter feature
for Expr (described in Sec. 3), and part-of-speech features for English. In the latter case, we examine
features identified by ordinary SAEs and SAEs with causal loss in Sec. D.2 and Sec.D.3 respectively. We
refer the reader to our for causal experiments (https://github.com/Abhinav271828/pcfg-sae-cau
sal-arr-oct24) for the implementation of these protocols.

D.1 Experimental Protocols

As explained in Sec. 2.3, in order to examine the causal effects of a latent identified by an SAE, we rely
on interventions that replace this latent by some fixed value, and continue the computation of the larger
model. In other words, consider a computational graph of the language model (see Fig. 6). The node
corresponding to the layer that is being examined, i.e., the first hidden layer, is replaced by three nodes:
i. the actual representations generated by the previous layer, which form the input to the SAE;

ii. the hidden layer of the SAE, which consists of the features identified by the SAE; and

iii. the output, or the reconstruction, of the SAE.
The last node feeds back into the larger model, where the original input should have been used. Thus,
we effectively replace the model activations with SAE reconstructions of those activations. We then
intervene on node (ii) above – we select a single element in the SAE representation, set it to our value,
and recompute the modified reconstruction, which is then used in the rest of the LM’s forward pass.

The exact intervention that we carry out is defined in terms of the maximum value vmax that the feature
attains across a sample of 1280 sequences. We then select the values for the intervention by spacing 10
intervals across the range [−vmax, vmax], i.e., the intervention values are

vi = −vmax +
i

10
· 2vmax,∀i ∈ {0, 1, . . . , 10}.

The principle of using vmax as the baseline for our interventions is in line with Templeton et al. (2024).
Note that the above leads to 11 possible values for the interventions.

D.2 English: Parts of Speech (without causal loss)

The results of interventions on various features are shown in Fig. ??. For each part of speech that we
show, we follow the same process as in the case of adjectives (Fig. 5):
• determine the maximum value vmax taken by a certain latent;

• pick clamp values at uniform intervals in the range [−vmax, vmax]; and

• examine (i) the distribution of parts of speech and (ii) the grammaticality of the generations after
clamping the latent to each value.
We observe that, similar to the adjectives feature in the main paper (see Fig. 5), the features for other

parts of speech do not show causal effects either.

D.3 English: Parts of Speech (with causal loss)

As mentioned in Sec. 4, our SAEs trained with causal loss demonstrate features correlating with adjectives,
verbs, and adverbs. We proceed in essentially the same manner as Sec. D.2 above. As our models,
however, identify several features for each part of speech, we show the causal effects of subsets of these
feature sets of various sizes, in order to demonstrate the causal effect of the entire set. For instance, if
the model has 15 features corresponding to adjectives, we demonstrate causal effects of 15, 8, 4, and 2
features, each of which is obtained by random sampling. We intervene on a set of features in the same
way as a single one – by clamping all of the latents to the same value, and resuming the run of the model.
The effects of the interventions are shown in Fig. 9.

Following the logic of Sec. 4.2, we make the following predictions for each part of speech:
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Applied Corruption Divergence from Clean Run Divergence from Corrupted Run
∆x 10−3 1.37
∆attn(x) 9.1 · 10−5 1.38
∆MLP(x+ attn(x)) 1.29 6.5 · 10−3

∆attn MLP(x+ attn(x)) 1.44 0.04
∆xMLP(x+ attn(x)) 4.8 · 10−3 1.53

Table 4: KL divergence between partially corrupted runs, clean runs, and corrupted runs.

• Adjectives. As noted in Sec. 4.1, nouns are the only tokens that can come after adjectives. Therefore
we expect the feature correlating with adjectives, if it has a causal effect, to upweight the probability
of nouns being predicted.

• Verbs. We have also seen in Sec. 4.1 that any part of speech can follow a verb, except another verb.
Thus, we expect the probability of verbs to be reduced by high values of verb-correlated features.

• Adverbs. The grammar (App. B) shows that adverbs can only be followed by conjunctions, more
adverbs, or the <EOS> token. We then expect the former two types of tokens to be upweighted, and
the other parts of speech dispreferred.

We observe that, in contrast to the features examined in Sec. D.2 above, these features show clear and
predictable causal effects.

E Evidence for Linearity Incentive

Here, we present further evidence for our intuition that the causal loss incentivizes the SAE features to
preferentially affect the MLP.

First, we examine the definition of the function L1 (the second layer of the model). Ignoring LayerNorm
and dropout, this function is simply

L1(x) = x+ attn(x) +MLP (x+ attn(x)) .

Thus, when the input x is corrupted to, say x+∆x, each of these terms lends a corresponding corrupted
term the output of L1 (and therefore of g).

Now, we examine the effect of adding each of these difference terms (separately) to L1(x). If, as we
hypothesize, the MLP is the most significantly affected module, then we expect that

L1(x) ≈ L1(x) + ∆x (1)

L1(x) ≈ L1(x) + ∆attn(x) (2)

L1(x+∆x) ≈ L1(x)

+ ∆MLP(x+ attn(x)); (3)

in other words, the effect of the corruption should be replicated by corrupting only the MLP output; and
corrupting either of the other two terms should have no effect.

Correspondingly, we can carry this analysis to the input of the MLP module. Here, we expect that the
difference in the MLP module’s output can be achieved by corrupting only x, and not attn(x) at all. To
make this precise, we define

∆xMLP(x+ attn(x))

= MLP(x+∆x+ attn(x))

∆attn MLP(x+ attn(x))

= MLP(x+ attn(x+∆x)).
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Figure Regularization pre_bias Normalization
Fig. 11 L1 False none
Fig. 12 top-k False none
Fig. 13 L1 True input, decoder
Fig. 14 top-k True input, decoder
Fig. 15 L1 False input
Fig. 16 top-k False input
Fig. 17 L1 False input, reconstruction
Fig. 18 top-k False input, reconstruction

Table 5: Hyperparameter Settings and Corresponding Figures.

Then we expect, in line with the previous case, that

L1(x) ≈ L1(x)

+ ∆attn MLP(x+ attn(x)) (4)

L1(x+∆x) ≈ L1(x)

+ ∆xMLP(x+ attn(x)); (5)

in other words, the corruption of the attention module does not affect the output of the MLP module.
Note that in this setting, the corruption is only applied to the input of the MLP model; the outside attn(x)
term remains as is.

We provide in Tab. 4 the KL divergence between expressions (1), (2), (3), (4) and (5) above, and the
distributions corresponding to L1(x) and L1(x+∆x). The results are as we expect from the qualitative
explanation in Sec. 4. Here, the corruption consists of clamping a feature correlating with adjectives to its
maximum value.

It is interesting to note here that we were unable to identify interpretable features in the case of causal
SAEs trained on Dyck and Expr models. We explain this, in line with the above, by observing that
generation in these languages necessarily requires long-distance memory, in the form of a stack or a
counter, which is a function taken up by attention in a transformer model (Bhattamishra et al., 2020).
Thus the MLP plays much less of a role in these languages (given the lack of diversity in the vocabulary),
and attention is much more important. Since our causal loss avoids identifying features that attention
relies on, this explains the lack of features in these two languages.

F Power Law in Reconstruction Loss

We noted in Sec. 3 that the top-k regularized SAEs reveal a power law in their reconstruction losses. The
trends for various runs are shown in Fig. 10.

G Training Details

For both our Transformer and SAE training, we use an online data generation process, that randomly
generates a sequence from a given PCFG at every iteration. We use two different datasets for the training
and validation in both cases.

Figs. 11 to 18 show the details of the various hyperparameter settings we have considered for SAEs,
along with plots of the losses during training. For convenience, we record these details in Tab. 5 as well.
Note that, in the case of L1-regularized SAEs, the training loss is the sum of the reconstruction loss (the
MSE loss between the SAE reconstructions and the inputs) and the regularization loss (the norm of the
hidden representation, multiplied by the L1 coefficient). The SAEs are trained for 5000 iterations, with
losses logged every 25 iterations.

The Transformer models are trained for 7× 104 iterations.
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Figure 9: Causal effects of adjectives ((a)-(d)), verbs ((e)-(h)), and adverbs ((i)-(l)). The caption of each image
describes the number of latents being intervened on. At each clamp value (x-axis), we plot the distribution of
nouns, pronouns, adjectives, verbs, adverbs, and conjunctions (top) and the percentage of grammatical generations
(bottom).
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Figure 10: Scaling law connecting hidden size to reconstruction loss. The power law we identify for each
top-k regularized set of autoencoders. The four run sets are (a) without pre_bias or normalization; (b) with
pre_bias and normalized inputs and decoder directions; (c) without pre_bias and normalized inputs; and (d)
without pre_bias and normalized inputs and reconstructions.
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(c) Regularization Loss

Figure 11: L1-regularized SAEs, without pre_bias and without normalization.
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(a) Train Loss (only reconstruction loss)

Figure 12: top-k-regularized SAEs, without pre_bias and without normalization.
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(c) Regularization Loss

Figure 13: L1-regularized SAEs, with pre_bias and normalized inputs and decoder directions.
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Figure 14: top-k-regularized SAEs, with pre_bias and normalized inputs and decoder directions.
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(c) Regularization Loss

Figure 15: L1-regularized SAEs, without pre_bias and normalized inputs.
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Figure 16: top-k-regularized SAEs, without pre_bias and normalized inputs.
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(c) Regularization Loss

Figure 17: L1-regularized SAEs, without pre_bias and normalized inputs and reconstructions.
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Figure 18: top-k-regularized SAEs, without pre_bias and normalized inputs and reconstructions.

4862


