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Abstract

The term Language Models (LMs) as a time-
specific collection of models of interest is con-
stantly reinvented, with its referents updated
much like the Ship of Theseus replaces its parts
but remains the same ship in essence. In this pa-
per, we investigate this Ship of Language Mod-
els problem, wherein scientific evolution takes
the form of continuous, implicit retrofits of key
existing terms. We seek to initiate a novel per-
spective of scientific progress, in addition to
the more well-studied emergence of new terms.
To this end, we construct the data infrastructure
based on recent NLP publications. Then, we
perform a series of text-based analyses toward
a detailed, quantitative understanding of the use
of Language Models as a term of art. Our work
highlights how systems and theories influence
each other in scientific discourse, and we call
for attention to the transformation of this Ship
to which we all are contributing.1

1 Introduction

Scientific publications expand exponentially, with
the size of literature doubling every ∼17 years (For-
tunato et al., 2018; Bornmann et al., 2021). The
field of CL/NLP is no exception; in fact, the dou-
bling only took 5 years: As of 2023, the number
of papers documented in the ACL Anthology is
twice as much as the total by 2018 (Bollmann et al.,
2023; Zhao et al., 2023). With the explosion of new
publications, it is imperative but also increasingly
challenging to sort out the major contexts, progress,
and future directions of the field.

Researchers have sought to identify emergent
key terms and factors that led to disruptive shifts
of paradigms (Uban et al., 2021; Pramanick et al.,
2023; Kuhn et al., 2014). In this period of flux,
however, an ever-evolving field like ours calls for
deeper analysis beyond identifying these elements,

1The data and code of this work is available at https:
//github.com/CurlyZhu/Ship_of_LMs.

in order to understand various quantitative ques-
tions regarding these rapid and disruptive shifts.
For instance, to what extent is the field transformed
by any certain model, like ChatGPT (OpenAI,
2022)? How does the popularity of the latest GPT
models compare with, say, that of BERT (Devlin
et al., 2019) in 2020? From there, we might even be
curious about bigger questions like, “How unprece-
dented really is ChatGPT?”, where our empirical
guesses can diverge drastically without sufficient
quantitative evidence. While readers of this paper
likely come in with a tacit understanding of the ebb
and flow of the field, it is hard to nail down such
factors that keep changing in publications.

More fundamentally, the narrative describing sci-
entific progress as the emergence of new elements
does not cover the more implicit paradigm shifts,
which features the evolution instead of invention of
terms. The (forms of) key terms may continue to
be broadly used, but are gradually overwritten with
new meanings in new contexts. Language Models
(LMs), as a term of art, refers to no single, static
thing. It is used referentially to index a collection
of models deemed relevant and representative at
the time or in the context of a paper. As this is ever-
changing, we are faced with a Ship of Theseus sce-
nario (Plutarch), wherein the same terminology is
essentially re-invented and its referents are perhaps
entirely replaced. As such, a subtle gap between
the durable collective term of “LMs” and the time-
specific referent models of the moment is widening
as the field progresses, threatening its stability and
accessibility to new researchers. These issues call
for new analyses of the subtle transformations that
result from these paradigm shifts.

In this paper, we seek a quantitative description
of a field’s continuous evolution. More specifi-
cally, we inquire into the Ship of LMs paradox, i.e.,
the aforementioned reconstruction of the term Lan-
guage Models. We decipher this evergreen term’s
rapidly changing referents, contexts, and usages
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across time. We develop a semi-automatic, gen-
eralizable framework to extract and organize two
closely related sets of keywords: (1) mentions of
the collective LM concept, and (2) specific model
names, and construct a dataset of 7,650 papers from
the 10 most recent major NLP conferences.

We focus on several questions concerning how
we as a field talk about LMs: How often do we talk
about LMs, and how confidently? (§4.1) Which
models, and what is special about these compo-
nents? (§4.2) Moreover, how do the referents of
LM vary across papers? (§4.3) Finally, we con-
clude the findings and future perspectives in §5.

Our work highlights the astonishing extent of
change subtly encoded in the seemingly unchanged
overarching terms. We hope the Ship of LMs can
serve as a new perspective to understand the field’s
progress, and that our methodology can serve as
an entry point for finer-grained measurements of
subtle changes in rapidly growing scientific fields.

2 Related Work

Diachronic Analysis of the Progress in NLP
Various studies review the history of NLP confer-
ences and the ACL Anthology (Hall et al., 2008;
Anderson et al., 2012; Bollmann et al., 2023), as
well as the community that contributed to the field’s
trajectory (Abdalla et al., 2023; Movva et al., 2024).
Other works identified the field’s transition points
and themes: Hou et al. (2019) proposes an au-
tomatic framework to extract key entities (tasks,
dataset, etc.); Uban et al. (2021) explores a simi-
lar goal via topic modeling; and Pramanick et al.
(2023) further identified such entities that causally
shaped the field’s important stages. More recently,
there has also been a specific focus on the changes
brought by LLMs (Min et al., 2023; Fan et al.,
2024; Zhao et al., 2023) and the impact on the re-
lated communities (Saphra et al., 2024; Liang et al.,
2024). Aside from text-based analysis, interviews
and surveys (Gururaja et al., 2023; Michael et al.,
2023, etc.) have also provided valuable qualitative
insights for the disruptive shifts.

Paradigm Shifts and Scientific Trends have
also been core topics in the broader Science of Sci-
ence field (Fortunato et al., 2018) beyond CL/NLP.
The existing literature mostly centers on the emer-
gence of new, trending ideas as well as their dynam-
ics across the author networks. For instance, Kuhn
et al. (2014) identified text snippets that are largely
cited by future works, coined scientific memes, on

citation graphs; Cheng et al. (2023) explored the
diffusion process of new ideas under various social
factors; and Chu and Evans (2021) measured the
relation between the speed of producing new ideas
and the size of a field. Citation/Author networks
have also been introduced by recent works (Mo-
hammad, 2020; Wahle et al., 2023) as a method for
the more specific background of the NLP field.

Our work complements these ongoing threads.
As discussed, we raise a novel scenario about the
transitions within a lasting concept (Ship of LMs),
which to our knowledge has not been explored. We
examine the use of such terms as LMs, providing
quantitative interpretations of how (and how much)
our beliefs and common grounds have evolved. In
some sense, our work can also be seen as a meta-
analysis of the various works studying certain ele-
ments (e.g. “the era of LLM”, “stages of Statistical
Machine Translation”, “ChatGPT’s impact”, etc.)
We integrate these valuable findings to highlight a
new question about the procedures: how exactly
did we forge these of key elements into practice
and eventually into our norms of language?

3 Methods

3.1 Dataset Construction
Following common practice in prior work (Moham-
mad, 2020; Pramanick et al., 2023), we utilize the
official ACL Anthology as our data source. We
collect papers accepted to the main Proceedings
of three major NLP conferences (ACL, EMNLP,
NAACL) held annually2. We first interact with the
API to fetch metadata (e.g., Anthology ID, title,
and abstract). Based on the index of a conference,
we obtain the paper PDFs from the formatted An-
thology URLs, and scan the text with the pypdf3

tools. For post-processing, we remove excessive
formatting (e.g. conference names in the footers)
and identify section titles with regular expressions.

The resulting dataset contains in total 7,650 pa-
pers from 10 conferences sequentially from ACL
2020 to EMNLP 2023. Our analyses focus on this
most recent 4-year window where the advances
regarding LMs have been especially pronounced,
while our methodologies can similarly extend to a
broader range.

Default Setup We extract the body text by cutting
off before the References section. This is marked

2NAACL is merged with ACL once every three years, and
thus there is no NAACL conference data in 2020 or 2023.

3https://pypdf.readthedocs.io/
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as our default setup, and experiments are based on
the default unless otherwise noted.

3.2 Retrieving the Mentions of LMs

To investigate the Ship of LMs problem, we start
by extracting and analyzing relevant keywords and
entities, a common backbone method for analy-
sis (Hou et al., 2019; Pramanick et al., 2023). For
a sample paper to be related to LMs, the writing
could utilize two types of mentions: (1) the collec-
tive concept of “language models”, implying the
context as a generalizable discussion, and (2) the
names of specific models4, indicating what models
are exactly considered in a limited scope.

Our goal is to maintain two keyword sets that cor-
respond to the two types. Thus, we can resolve the
referents of the generic language model mentions
to the specific models used, by locating, linking,
and comparing the keywords from both sets.

3.2.1 Notations
As described, we seek to build two related collec-
tions of key entities, one marking the mentions
of LMs as a general term, and the other marking
specific model names. The two are respectively
denoted by L (from LM) and M (from Models).

In practice, L converges to a small, well-
recognized set of terms. We define

L = {language model, LLM, PLM}

since “language model” is the substring of most
of its subcategories, e.g., “large language models”,
“Korean language models”, or “language model-
ing”, and thus searching for “language model”5

covers all such variations. We also include the most
common acronyms, “LLM” (Large Language Mod-
els) and “PLM” (Pre-trained Language Models).
The construction of M is elaborated in §3.2.2.

We use m to represent a specific element from
M (e.g., m = BERT). For a span of text, s, we
have M(s) representing the subset of elements
from M that indeed appear in s.6 While M(·)
is a function of the input text by definition, we omit
the input when s is the entire body (default setup)
for simplicity, and write the subset as M. The
omission applies similarly to the notations below.

4We consider the broadest definition and scope of LMs;
see Appendix A.1 for a more detailed note.

5Here we include other upper-case forms, e.g., “Language
Models”. This is implemented similar to Aliases in §3.2.2.

6We can similarly define l and L(·) based on L. In practice,
however, we don’t further distinguish between different LM
terms, given the limited size and high convergence of L.

To initiate our study on any individual paper and
any model(s) of interest, we introduce a family of
counting functions. Given a model name m, we
define Nm(·) as the count of how many times m
appears in the input text. The counting functions
also apply to sets of model names: For a set of
models M = {m1,m2, ...,mk}, we have

NM =
k∑

i=1

Nmi

Thus, M can now be formally defined as

M = {m |Nm > 0, ∀m ∈ M}

Additionally, given its importance, we mark the
count of all model names in a paper as

N := NM = NM

Similarly for the other keyword set of general LM
mentions, we denote the total count of all elements
in L as NL. We mark L as superscript for an ex-
plicit distinction with the Nm family. The total
counts NL, N , and the Nm family serve as essen-
tial cornerstones of our approach since they are
direct indicators of how LMs are discussed and
resolved. These patterns from independent works
become the changing constituents of the Ship.

3.2.2 Constructing M from the text
To construct a comprehensive dictionary of specific
model names, we established a human-AI workflow
to extract and register model names at scale. We
designed a detailed in-context prompt for a state-of-
the-art LLM to detect model names from the title
and abstract of papers. All detected names from the
full dataset are collected and ranked by frequencies
as candidates [m̂1, m̂2, ...]. Since the same type of
model as referent can have various textual forms,
we aim to maintain and distinguish two attributes
(as lists) for a model m:

• Aliases: Different text patterns that all refer
to m; e.g., both “chatgpt” and “ChatGPT” are
identified separately but point to the same
thing, and we need to count them together.

• Variations: Refers to m, but is the exten-
sion of an existing alias (i.e. having an alias
as substring). This usually suggests a spe-
cific variation of m, e.g., “T5-3B” when m =
“T5” (Raffel et al., 2020). Searching for “T5”
in the text would have already included the
mentions of “T5-3B”.
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Figure 1: The full pipeline for constructing the model dictionaries (§3.2.2). The LLM agent follows a formatted
prompt (§A.4) to automatically identify potential model names. The extracted strings are merged and ranked by
frequency to form the list of candidate names. Then, the authors manually validate whether it is a new entry, an
alias, or other based on a fixed protocol: (1) whether the candidate is indeed a valid model name, (2) whether it
refers to the same model as an existing entry, and (3) whether it’s already covered by an alias of that entry.

To compose the final list, we manually validate and
register the name candidates following a simple
heuristic (Figure 1). When we encounter a new
model m not in M, we add m to M and initialize
its alias list as [m]. Additional aliases of an entry
mj are appended to its list. Variations of existing
entries are recorded but not added as an alias, and
candidates that are not the name of a model (e.g.,
BLEU) are discarded.

For each entry of m, we also manually retrieved
the original paper or documentation to determine if
there is an explicit dependency on another model.
In all, M has a total of 103 model entries and 155
aliases. With the two keyword lists, L and M, we
are ready to examine how LMs are resolved and
extract diachronic patterns.

Our dataset and code is available at https://
github.com/CurlyZhu/Ship_of_LMs. We also
provide more details of the implementation in the
Appendix: the full list of models involved (A.2),
the setup of the model name detector (A.3), and the
LLM prompts (A.4).

4 Experiments and Findings

LMs have been steadily gaining more attention
from the field. Zhao et al. (2023) reports that papers
containing the key phrase “Language Model” have
increased from less than 400 pre-2019 to around
10,000 in 2023. We observe a similar trend with
a finer-grained search in the NLP domain (Fig-
ure 2(a)). At ACL 2020, 35% of the papers contain
at least one LM mention from L (we refer to this
portion as LM-related papers). Since then, this
proportion has had a smooth, continuous growth
of approximately 5% (additive) per conference, hit-
ting 84% just three years later at EMNLP 2023.

Year (prefix) 20- 21- 22- 23-

Venue (suffix) A E N A E A N E A E

Total 778 750 477 709 846 700 442 827 1074 1047

LM-related 273 337 239 333 454 407 282 571 794 877

Table 1: Total numbers of conference papers in this
work after pre-processing. We denote the conferences
henceforth with their first letters (ACL, EMNLP, and
NAACL), and denote the years as prefixes for brevity.
For instance, ‘21-E’ represents EMNLP 2021.

4.1 Wind in the Sails: Surging Mentions,
Speeding Conclusions

We begin by querying a fundamental aspect of LMs’
increasing popularity: Has our use of the term LM
also evolved per se, apart from the background in-
crease noted above? As one hypothesis, LMs’ pop-
ularity might be attributed mainly to the increase of
share. The types of work we do and the context of
LMs may have not changed significantly – it’s just
more authors working on the topic, more resources
put into it, or other external factors.

We consider the average NL of all papers at a
certain conference, written as N̄L. With the divi-
sion of LM-related and non-related papers, N̄L can
be calculated as the (weighted) average of the two
groups. If the above assumption holds true, N̄L

can be estimated as follows: On the one hand, non-
LM-related papers always have NL = 0 by defi-
nition. On the other hand, within the LM-related
group, the average of NL would also be stable
across conferences since the use of the term LMs
remains generally unchanged as hypothesized. As
both groups – constituting the full set of papers at
a conference when combined – see no qualitative
change in their within-group NL, the determining
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Figure 2: Increase of interest in LMs as a topic (a) and
as a term in use (b). (a): The proportion of papers
containing keywords in L by years. (b): The estimated
value of N̄L based on the proportions (dashed line)
compared with the actual N̄L (solid line).

factor for the overall average N̄L is the ratio of
the two groups’ size (as the weights in weighted
average), i.e., the percentage of LM-related papers.
Thus, we can draw an estimate from the scale of the
first data point (N̄L = 4.29 for 35% LM-related
at ACL 2020). For instance, 54% of papers at
EMNLP 2021 are LM-related, which is 1.54× that
of ACL 2020 (35%). We can thus scale N̄L with
the same ratio, 1.54× 4.29 ≈ 6.56, as the estimate
for EMNLP 2021.

Fig. 2(b) compares the actual N̄L and the value
estimated in this way. This turns out to be a surpris-
ingly good fit for the first half of the data. Within
the first 5 conferences, the deviations between es-
timated and actual value are consistently less than
10% and often close to 0. For this period, LMs
gained more attention as a topic in this period,
but language describing this term remained sim-
ilar. Metaphorically, the composition of the Ship
remains the same, but it has more wind in its sails.

However, we see a strong deviation from the
estimated growth starting 2022. N̄L has since
been on an exponential growth, eventually being
80% higher than estimated at ACL 2023 and 168%
higher at EMNLP 2023 (where N̄L nearly dou-
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Figure 3: Pairwise comparisons of the distributions of
NL (upper) and N (lower). Each grid corresponds to
a pair of conferences indexed by its row and column,
and depicts results from two analyses: a K-S test of
whether the data of the pair are from different distribu-
tions (heatmap), and mean difference (digits and hue).

bled in just half a year). In other words, the Ship
is not just sailing better (more papers), but it is
also undergoing reconstruction (referents of LM
are changing). The distinct patterns pre- and post-
2022 despite a similar background increase high-
light the necessity to study the Ship of LMs as a
dynamic concept, as emergence of a term is not
sufficient for mining the deeper nuances as such.

What about the actual models we use? The
super-linear increase of NL demands investiga-
tion into its likely causes. Authors might seek to
cover more models in more detail, and their writing
adapts to the strengthened claims, leading to the
growth observed. Alternatively, authors might be
more eager to employ trending terms even without
significantly stronger evidence or fit to their work.

To this end, we compare how the distributions
of NL and N change over time in Figure 3. Each
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Figure 4: Compositions of model names in the main conference papers at EMNLP 2020 (left) and 2023 (right),
arranged counterclockwise by their size. Branches indicate dependency, e.g., GPT-3.5 is based on and fine-tuned
from GPT-3. Each group of models with the same root is represented by a unique color shared between graphs.

row represents a conference and the columns list
all conferences which occur after it. Grid cells
are pairs of conferences in comparison. We apply
a Kolmogorov-Smirnov test (Massey Jr, 1951) to
each pair to determine if there is a significant differ-
ence in their distributions. We also annotate their
signed mean difference, where a positive number
indicates an increased mean value from the row-
conference to the succeeding column-conference.
The grids are colored based on test significance
level and sign of mean difference (note that all col-
ors other than the lightest correspond to p < 0.05).

First, we see evidence supporting our prior obser-
vations on the patterns of NL. Earlier conferences
form a cluster where no significant difference is
noted; yet, starting 2022, every conference has a
significantly higher NL than most or even all of
its predecessors. However, the distributions of N
tell a distinct story. For most pairs, there is little or
no evidence for a difference in distribution. There
also isn’t a similar line that divides the earlier and
most recent conferences. For instance, the distri-
bution of N for EMNLP in 2023 does not have
a significant difference with that in 2020, despite
all its specialties. In fact, we even see an opposite
case: conferences in 2022 and 2023 – the exact
time of the super-linear boosts of N̄L – contain
significantly fewer model mentions than before. In
other words, we arrive at the conclusions “faster”:
the information conveyed via specific models has
not increased, but more is drawn about LMs collec-
tively. Various factors might account for this trend:

20-A

20-E

21-N

21-A

21-E

20-E 21-N 21-A 21-E 22-A

22-A

22-N

22-N 22-E

22-E

23-A

23-A 23-E

Figure 5: Jaccard similarity of model compositions be-
tween all pairs of conferences.

It might be that we are increasingly proficient in
maintaining the Ship, or that more weight is put
on the holistic concept of the Ship compared with
closer examinations on the level of specific mod-
els, etc. More effort would be needed to discern
the exact cause, and a deeper understanding of the
local context of LMs (e.g., similar to the work of
Jurgens et al., 2018) would be especially relevant
for future work.

4.2 Oak, Pine, or Cedar Planks: Which
models are we talking about?

With the exploding usage of the LM terms comes
wider variation in the use cases and context around
them. To go deeper, we must consider what writ-
ers refer to when they include LM in a paper (i.e.,
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Figure 6: The existence of an absolute majority in a paper, measured on all papers at a conference (left) and the top
quarter(25%) with highest NL (right). The largest components are shown in the same color as Figure 4 and the
rest are collected as “others”. Around 80% of papers possess an absolute majority component, and the ratio is not
lowered in the most LM-centered group.

quantify what the Ship is like and how it’s being
updated at a certain point, and not just whether it
sails.) Based on all individual Nm and the hierar-
chy of components, we obtain the exact number of
the appearances of each model by matching their
aliases in the text. Thus, we put together the collec-
tive compositions for each conference and visual-
ize them as Sunburst charts, where the component
sizes correspond to their share. We show a repre-
sentative comparison of EMNLP 2020 and 2023 in
Figure 4, and display full results in Appendix B.

In 2020, the BERT model alone makes up 41%
of N , and 55% with its dependents (We refer to
a model and all its dependents as a component
to distinguish a group/family of models from the
root model itself.) Other significant components
include RNN (20%), CNN (6%), and GPT (5%).
As for 2023, the GPT component (30%) takes the
lead with the advent of the notable GPT-3 models
(which formed 71% of all GPT mentions). BERT
models are still the 2nd largest component despite
a reduction to 25%. The results seems to suggest a
less unipolar composition; in fact, the share of the
BERT component in 2020 is comparable to the top
two in 2023 combined. We also notice the rise of
more recent components, including T5 (12%) and
LLaMA (7%), while RNN (20% → 2%) and CNN
(6% → 1%) saw the most significant decreases.

How much remains as the replacement of earlier
components goes on? We calculate the Jaccard
similarity between compositions of conferences to
quantify how much is shared across any two confer-
ences, shown in Figure 5. We observe that Jaccard
similarity between conferences monotonically de-
creases for subsequent conferences, which matches

the Ship of LMs case where its parts change over
time. For two consecutive conferences, the Jaccard
similarity is usually only 71% to 86%; the index
quickly drops to 45% to 56% with an interval of just
two years, and to 24% to 31% in three years. We
also note that the dissimilarity is rapidly increasing,
with EMNLP 2023 sharing a 52% Jaccard similar-
ity with ACL 2023 just half a year ago, 42% with
EMNLP in 2022, and ≤38% with all other prede-
cessors. With the representing models thoroughly
reshuffled in as short as <5 years, the “shelf life”
of our conclusions and knowledge of LM has seen
a new low, thus bringing unprecedented challenges
for long-term tasks and literature studies.

One dominant model or many contributors?
We have seen the presence of major component
models so far, and readers likely have their own
tacit understandings of the “giants” in the field
at the moment. Here, we emphasize the vast im-
plications of the dominant referents of LMs. For
example, if the supposedly abstract and inclusive
concept of LM is implicitly equated with a certain
model, we might be assigning the random, quirky
traits of the model to the concept of LMs as a whole.
This could unwittingly hinder the diversity, gener-
alizability, and future usefulness of work despite a
general veneer of neutrality among papers.

To portray how the giants shape our reported
findings, we drill down to investigate their presence
in individual papers. We examine the existence
of an absolute majority model component in each
paper that appears more than all other components
combined, i.e., occupying more than N/2. One
scenario, then, would be that a single or small set
of giants actually underpin the notion of LMs in
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papers. On the other hand, if LM is truly a general
term of art, then we might also see some but not
most papers dominated by a model.

Figure 6 displays the proportion of publications
with absolute majority components for the full data
(left) and the top 25% with the highest NL (right).
The most notable components are marked with the
same color as in Fig. 4. Other models are collected
as the grey bar (“others”), and the proportion with
no absolute majority is denoted with a striped pat-
tern. Around 80% of the papers contain an absolute
majority model. Specifically, we get a glance at the
astounding traction of BERT before more recent
paradigm shifts: it dominated up to 61.1% of all
papers and 67.9% of the most LM-centered ones.

Interestingly, more focus on the collective LM
terms did not entail a more balanced composition.
In fact, they are often more biased: The percentage
of papers with an absolute majority is higher in the
most LM-centered quartile than overall for all 7
conferences before EMNLP 2022. There has also
been a fresh wind, however. In the most recent 3
conferences, we see fewer dominant components
when a paper focuses heavily on the generalized
LM terms. More importantly, the chance of an ab-
solute majority in both groups has been on a contin-
uing decline and both reached an unprecedentedly
lower level: 70.2% for all papers and 66.3% for
the top quarter. We call to keep monitoring the
heterogeneity (or lack thereof) in LM papers given
the (still) high presence of major components and
a visibly surging presence of the GPT component
at the most recent EMNLP 2023.

4.3 Lembos or Trireme: Factoring in context
The extent to which a paper focuses on LMs im-
plies different use scenarios. For instance, a work
may utilize and mention them for data processing
but doesn’t concern the science of LMs per se. This
usually implies lower NL in contrast to, say, an-
other work that studies an emergent property of
LLMs. As we explore how LMs are embodied in
papers, we need to consider how the composition
of papers factors into the usage of “LMs”.

We rank the LM-related papers at a conference
by NL and compare between the ones with the
most and least focus on the LM terms. Specifically,
we extract the top and bottom quarters, denoted
as Q4+ and Q1− respectively. Figure 7 compares
compositions of N from Q4+ and Q1− of EMNLP
2023 and shows the differences in the 10 largest
components. In Q4+, the GPT component cov-

> 0

Difference of  Proportion(%) 
Q4+ - Q1-

< 0

Figure 7: Differences in the model composition of
the most LM-focused quarter (Q4+) and the least one
(Q1−). Blue/Red denotes a higher/lower share in Q4+.

Q4+

Q1-

- +

3.2  /  18.3

20-E 23-E
Proportion(%) in 𝑵𝑵

dec. inc.

Figure 8: Differences in the model composition of
EMNLP 2020 and 2023, measured respectively on the
most LM-focused quarter (Q4+; darker colors) and the
least one (Q1−; lighter colors), and ranked by the share
of Q4+ in 23-E. Blue/Red denotes an increase/decrease
of share. We annotate beside each bar the exact numbers
in 2020 and 2023, separated by ‘/’.

ers an additional 12.7% of N compared with Q1−,
followed by LLaMA (6.5%) and T5 (5.2%). Mean-
while, the BERT component takes as much as an
extra 24.0% in Q1−, where the roles of the LMs
terms are most peripheral.

We further measure how the same group changes
over time, comparing model compositions at an
early conference (EMNLP 2020) versus a most re-
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cent one (EMNLP 2023). We depict the change of
15 largest components in Figure 8. The findings
are consistent: the most LM-centered group adapts
thoroughly to the latest models, while Q1− sees a
much more modest change, or even increased inter-
est for models pre-2020 like BART (Lewis et al.,
2020) and COMET (Bosselut et al., 2019). Most
notable is the contrast for BERT: For Q4+, the
once-dominant component loses as much as 36.8%
of N , going from 56.0% to 19.2%. However, in
Q1−, the BERT component remains unaffected: it
still firmly takes up more than 40% of N , and even
saw a ∼3% increase, despite all the new model
components and families. This demonstrates that
the trend in less LM-centered groups is not merely
a moderated or delayed version of that in the top
ones, but indeed represents a distinct interpretation
and resolution of LMs.

The findings converge to an interesting division:
the newest components or those with the latest ma-
jor models (GPT-3, ChatGPT, LlaMA, and Flan-T5,
inter alia; all of which are post-2021) instantly en-
ter the most LM-centered discourse, while the least
LM-centered ones persist to favor certain earlier
models for a longer period. Thus, we should be
aware of the chasm between the co-occurring yet
distinct contexts that eventually map to different
constructions of the same Ship. For instance, a
novel property found with 2023 models as default
could be problematic if communicated to a BERT-
centered subfield without regard, and further used
to justify the use of LMs in a new stake despite
wildly different ship drafts and capabilities. In
return, the context difference may further hinder
communications between groups representing the
varied use and interpretations of LMs.

5 Concluding Remarks

In this work, we go over the past and present of
the enduring term of Language Model(s), based
on an original dataset from the latest major confer-
ences. We sort out the subtle, continuous shifts in
the practical meaning of LMs, and witness how the
retrofits eventually accumulate to a brand new Ship
of Language Models and the nuances in the actual
referents. We quantify and visualize the drastic
change in the planks and timber, emphasizing the
shortened period of reconstruction and the pres-
ence of dominant components. Finally, we high-
light the snowballing context difference between
the LM-centered research and the more peripheral

applications and the consequences of that.
Approaching the most recent epochal cross-

roads where revolutionary shifts can happen within
months or weeks, we have in fact seen more in-
teresting signs: the unprecedented dissimilarity
of compositions, or on the other hand, a more di-
verse, multipolar representation in model choices,
to name a few. Perhaps what is crafted from our
hands has even brought up throught the Age of Sail,
where a now steam-engined Argo is ready to set
sail towards the exciting yet mysterious fanta-seas.

Future Directions Our findings depict the most
dramatic reshuffles of models, while the nuances
of LMs can be found similarly at the underlying
architecture level, or different variations of mod-
els. Besides, causal links between our work and
the identified key factors in prior works may help
depict the field’s trajectories, and qualitative stud-
ies such as interviews with paper authors can also
help understand the different patterns and beliefs.
Beyond the LM-specific discussions, we also high-
light the broad existence of the Ship of Theseus
scenario in various other terms, topics, and fields.
For instance, it would be intriguing if similar anal-
yses can be applied to understand how the interpre-
tations of fairness or safety in the AI context were
enriched over time.

Limitations

While our methodologies can be naturally extended,
we would like to note that the current analyses
and implementations have limitations. Although
we reviewed various findings in recent years with
the most dramatic advances of LMs, a holistic
overview of a research topic, let alone an entire
field, is not covered by the scope of a few years. It
would be meaningful if these most rapid changes
could be connected with the decades of conceptual-
ization and exploration preceding the engineering
breakthroughs. Similarly, using main conference
papers at the major international venues as a proxy
of the NLP community has its limitations. We en-
courage future works to take broader consideration
of the essential contributions that are less repre-
sented by the relatively convergent selections of
such venues, e.g., regional conferences on dialect
or indigenous language.

More broadly, text-based methods alone are not
sufficient to cast the intricate dynamics of science.
Scientific communities are not mere carriers of
printed works, and the influence of a language
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model or a paper is far beyond academic language
use. Various other important factors and impacts
should be considered for a comprehensive descrip-
tion of scientific progress and any specific scientific
products: the status quo of subfields, monetary and
environmental costs of implementation, societal
impacts and the public’s perception, etc.

Ethical Considerations

Our data is collected from the ACL Anthology
on the terms of Creative Commons 4.0 BY (At-
tribution) license, which allows unlimited repro-
duction, distribution, and hosting of materials for
non-commercial purposes7. The authors report no
other potential ethical considerations.
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A.1 A note on the scope of “LMs”

In the rigid sense, LMs shall correspond directly
to the task of next-word prediction by enlisting the
probabilities of each possible next-word (adapted
from the prose of Jurafsky and Martin (2023)).
However, practical referents and contexts of “lan-
guage modeling” in the real world have been broad
and complex. In fact, in Jurafsky and Martin’s
work cited above, the definition of LMs (given as
a direct statement) has already been broader than
previous senses in the prose:

Models that assign probabilities to up-
coming words, or sequences of words
in general, are called language models
or LMs.

To accommodate the underspecification and the
even more vague real-world usages, we thus con-
sider the “broadest” definitions that are histori-
cally involved. This would include text embedding
schemes that have essentially been used in the place
of “LMs”, key parts of an LM-like system where
the system itself is not otherwise named, or arti-
facts created in the “LM” way but are not exactly
a “model”. (Note that this work concerns “what
we talk about when we talk about LMs”, not just
“which LM(s) we talk about when we talk about
LMs”.)

This is especially worth noting since the termi-
nology of “LM” is not always the most preva-
lent. As an important instance, “word embed-
dings/vectors” had been a central topic; it is both
true that (1) the terms are not equivalent to “LMs”
strictly speaking, and that (2) it was a very com-
mon (if not the default) practice to build (e.g. add
a linear layer) on top of the embeddings to obtain
probabilities/likelihood of the text in question. This
is essentially close to “LM” as defined, though we
rarely referred to the entire system this way but
would have often used wordings like “word vectors
+ [classification/prediction/. . . ]” back then. To this
end, we do consider these “broader” senses because
they have long been used for the same sense and
in the same context. In fact, our motivations align
with such situations: the communities’ description
and perception of a concept might have undergone
many changes and variations, but we are yet to
know what exactly has changed, to what extent,
and how varied it is.

We exemplify our considerations below with
some keywords in the list:

• Word2vec is the algorithm where the train-
ing goal is exactly to assign a max likeli-
hood/probability of the current text (and not
to forget N-gram LMs is indeed a type of LM
too – there goes the Ship of LMs!);

• The reasons for other word embedding
schemes like GloVE has been addressed by
the discussions so far;

• RNN, LSTM, etc. are the neural networks that
generate continuous text representations, and
they have been prominently applied for the
exact task of probabilistic next-word/sentence
generation.

• There are also individual considerations. For
instance, CNN, CLIP, and wav2vec have been
under discussion regarding the multimodal-
ity issues, and we eventually decided to keep
(potentially) multimodal keywords.

A.2 Full list of models
ChatGPT, GPT-3, GPT-4, BERT, T5, GPT-
3.5, GPT-2, LLaMA, RoBERTa, PaLM, CLIP,
BART, XLM-R, Alpaca, BLOOM, mT5, Instruct-
GPT, mBERT, GPT-J, Flan-T5, OPT, Codex,
COMET, ELECTRA, Longformer, mBART, Sim-
CSE, BLOOMZ, BigBird, BLIP, DeBERTa,
CodeT5, Switch Transformer, Vicuna, T0, PEGA-
SUS, LSTM, ALBERT, DPR, Macaw, LXMERT,
SpanBERT, TinyBERT, ViLBERT, XLM, Lin-
former, kNN-LM, kNN-MT, REALM, RETRO,
GraphCodeBERT, Sentence-BERT, RNN, Hyper-
CLOVA, CodeGen, Dolly, Pythia, LaMDA, FLAN,
BLIP-2, XLNet, GPT, ELMo, BioBERT, Di-
aloGPT, RemBERT, PaLM 2, DistilBERT, SciB-
ERT, ClinicalBERT, M2M100, GloVe, LASER,
word2vec, fastText, LaBSE, CNN, wav2vec,
UNITER, WizardLM, MASS, MT-DNN, Blender-
Bot, OFA, CMLM, HRED, ERNIE, ConveRT,
Diffusion-LM, MiniLM, Falcon, Galactica, PPLM,
RuleTakers, Claude, Tk-Instruct, LayoutLM,
PanGu-α, GROVER, CTRL, EntityNLM, ST-
DNN, SpERT

A.3 Settings of the automated model name
detection module

The LLM-based name detection is performed with
OpenAI’s gpt-4-0125-preview (also known as
gpt-4-turbo-preview)8, accessed in February to

8https://platform.openai.com/docs/models#
gpt-4-turbo-and-gpt-4
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June 2024. The temperature is set to 0, and we
follow the default settings of other parameters, e.g.,
top_p = 1.00.

A.4 Prompts for automated model name
extraction

We use GPT-4-turbo as our base LLM to identify
potential names from paper abstracts and incorpo-
rate in-context examples (Dong et al., 2024). A
request consists of two parts of inputs: a static
System instruction, and individual User Inputs for
each request. An example use case is shown below:

System
You are an assistant with excellent expertise in

searching through academic text. You will be given
the Abstract of an academic paper in the field of
Natural Language Processing. Your task is to re-
trieve whether the authors mention that they men-
tioned some *specific* language model in their
writing. And if so, you need to accurately find the
names of all such models.

Important note 1: "LLM" and "PLM" are not
model names, they refer to the generic terms of
"Large Language Model" and "Pretrained Lan-
guage Model".

Important note 2: Do not include any models
that are proposed by the authors themselves. For
instance, if a paper says "we propose a new model,
GPT-OURNEW, which performs better than GPT-
3", your answer should only include "GPT-3" and
not "GPT-OURNEW".

Return all the specific model names (don’t miss
out any), separated by a comma. If you believe you
didn’t see any model name, simply return "None".
Only respond with the comma-separated model
names. Do not include any other text in your re-
sponse!!!

Some examples:
Input: This paper explores the potential of lever-

aging Large Language Models (LLMs) for data
augmentation in multilingual commonsense reason-
ing datasets where the available training data is ex-
tremely limited. To achieve this, we utilise several
LLMs, namely Dolly-v2, StableVicuna, ChatGPT,
and GPT-4, to augment three datasets: XCOPA,
XWinograd, and XStoryCloze. Subsequently, we
evaluate the effectiveness of fine-tuning smaller
multilingual models, mBERT and XLMR, using
the synthesised data. We compare the performance
of training with data generated in English and target

languages, as well as translated English-generated
data, revealing the overall advantages of incorpo-
rating data generated by LLMs, e.g. a notable 13.4
accuracy score improvement for the best case. Fur-
thermore, we conduct a human evaluation by ask-
ing native speakers to assess the naturalness and
logical coherence of the generated examples across
different languages. The results of the evaluation
indicate that LLMs such as ChatGPT and GPT-
4 excel at producing natural and coherent text in
most languages, however, they struggle to gener-
ate meaningful text in certain languages like Tamil.
We also observe that ChatGPT falls short in gener-
ating plausible alternatives compared to the origi-
nal dataset, whereas examples from GPT-4 exhibit
competitive logical consistency.

Output: Dolly-v2,StableVicuna,ChatGPT,GPT-
4,mBERT,XLMR

Input: Large Language Models (LLMs) have
showcased impressive performance. However, due
to their inability to capture relationships among
samples, these frozen LLMs inevitably keep re-
peating similar mistakes. In this work, we pro-
pose our Tuning-free Rule Accumulation (TRAN)
framework, which guides LLMs in improving their
performance by learning from previous mistakes.
Considering data arrives sequentially, LLMs gradu-
ally accumulate rules from incorrect cases, forming
a rule collection. These rules are then utilized by
the LLMs to avoid making similar mistakes when
processing subsequent inputs. Moreover, the rules
remain independent of the primary prompts, seam-
lessly complementing prompt design strategies. Ex-
perimentally, we show that TRAN improves over
recent baselines by a large margin.

Output: None

Input: Dialogue State Tracking (DST) is of
paramount importance in ensuring accurate track-
ing of user goals and system actions within task-
oriented dialogue systems. The emergence of large
language models (LLMs) such as GPT3 and Chat-
GPT has sparked considerable interest in assess-
ing their efficacy across diverse applications. In
this study, we conduct an initial examination of
ChatGPT’s capabilities in DST. Our evaluation un-
covers the exceptional performance of ChatGPT in
this task, offering valuable insights to researchers
regarding its capabilities and providing useful di-
rections for designing and enhancing dialogue sys-
tems. Despite its impressive performance, Chat-
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GPT has significant limitations including its closed-
source nature, request restrictions, raising data pri-
vacy concerns, and lacking local deployment ca-
pabilities. To address these concerns, we present
LDST, an LLM-driven DST framework based on
smaller, open-source foundation models. By utiliz-
ing a novel domain-slot instruction tuning method,
LDST achieves performance on par with ChatGPT.
Comprehensive evaluations across three distinct ex-
perimental settings, we find that LDST exhibits re-
markable performance improvements in both zero-
shot and few-shot setting compared to previous
SOTA methods. The source code is provided for
reproducibility.

Output: ChatGPT

User Input
Input: We propose LLM-FP4 for quantizing both

weights and activations in large language models
(LLMs) down to 4-bit floating-point values, in a
post-training manner. Existing post-training quanti-
zation (PTQ) solutions are primarily integer-based
and struggle with bit widths below 8 bits. Com-
pared to integer quantization, floating-point (FP)
quantization is more flexible and can better han-
dle long-tail or bell-shaped distributions, and it has
emerged as a default choice in many hardware plat-
forms. One characteristic of FP quantization is that
its performance largely depends on the choice of
exponent bits and clipping range. In this regard, we
construct a strong FP-PTQ baseline by searching
for the optimal quantization parameters. Further-
more, we observe a high inter-channel variance and
low intra-channel variance pattern in activation dis-
tributions, which adds activation quantization dif-
ficulty. We recognize this pattern to be consistent
across a spectrum of transformer models designed
for diverse tasks such as LLMs, BERT, and Vision
Transformer models. To tackle this, we propose
per-channel activation quantization and show that
these additional scaling factors can be reparame-
terized as exponential biases of weights, incurring
a negligible cost. Our method, for the first time,
can quantize both weights and activations in the
LLaMA-13B to only 4-bit and achieves an aver-
age score of 63.1 on the common sense zero-shot
reasoning tasks, which is only 5.8 lower than the
full-precision model, significantly outperforming
the previous state-of-the-art by 12.7 points. Code is
available at: https://github.com/nbasyl/LLM-FP4.

Output:

Agent Response

BERT,Vision Transformer,LLaMA-13B

B Sunburst diagrams

The following pages show the Sunburst diagrams
for all 10 conferences in chronological order.
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