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Abstract

Data scarcity is a major challenge in Few-shot
Continual Relation Extraction (FCRE), where
models must learn new relations from limited
data while retaining past knowledge. Current
methods, restricted by minimal data streams,
struggle with catastrophic forgetting and over-
fitting. To overcome this, we introduce a novel
data augmentation strategy that transforms sin-
gle input sentences into complex texts by inte-
grating both old and new data. Our approach
sharpens model focus, enabling precise identi-
fication of word relationships based on speci-
fied relation types. By embedding adversarial
training effects and leveraging new training per-
spectives through special objective functions,
our method enhances model performance sig-
nificantly. Additionally, we explore Sharpness-
Aware Minimization (SAM) in Few-shot Con-
tinual Learning. Our extensive experiments
uncover fascinating behaviors of SAM across
tasks and offer valuable insights for future re-
search in this dynamic field.

1 Introduction

Relation extraction (RE) is a problem in Informa-
tion Extraction that seeks to extract semantic re-
lationships between pairs of entities in a sentence.
For example, given the sentence “Kamala Har-
ris and Donald Trump were political opponents in
the US presidential election”, the relation to be
extracted between “Kamala Harris” and “Donald
Trump” is “political opponents”. In more in-depth
research on real-world scenarios for RE, Few-shot
Continual Relation Extraction (FCRE) (Qin and
Joty, 2022c; Chen et al., 2023; Nguyen et al., 2025)
is a challenging setting that has recently attracted
a lot of attention. In this setting, the models need
to continuously capture semantic information of
new emerging relations from a small and limited

*Equally contributed.
†Corresponding author: linhnv@soict.hust.edu.vn

amount data, while avoiding forgetting knowledge
of previously learned ones. Therefore, the two
main concerns in this scenario involve dealing with
catastrophic forgetting (Thrun and Mitchell, 1995;
Le et al., 2024a; Hai et al., 2024; Van et al., 2022;
Phan et al., 2022; Le et al., 2025) and overfitting of
FCRE models.

Recent work (Wang et al., 2023b; Qin and Joty,
2022c; Chen et al., 2023) tackles these problems by
leveraging memory-based approaches inspired by
conventional Continual learning methods (Nguyen
et al., 2023; Le et al., 2024b; Dao et al., 2024; Le
et al., 2024c). These methods intentionally save
a small amount of data samples from old tasks
and propose various strategies to enhance the mod-
els’ abilities to distinguish relation representations.
However, a significant issue is that previous mod-
els are often fine-tuned with only one sample from
each old class and a few samples from new classes,
which leads to forgetting and overfitting in the chal-
lenging FCRE scenario.

To address these challenges, this work explores
a new approach to generate more diverse and mean-
ingful learning samples for FCRE. By leveraging
strong guidance, our method relies solely on the
available datasets, avoiding the need for external re-
sources. Specifically, we introduce a data augmen-
tation method that combines both old and new data
to create new training samples, transforming sin-
gle input sentences into complex texts and weaving
together knowledge from all tasks so far. Starting
with an original sentence containing a pair of enti-
ties, we append an arbitrary sentence, either before
or after it. This augmentation does not change the
relation between the two entities in each original
sentence. Thus, our approach not only expands the
training data but also guides models to focus on
identifying word relationships based on the spec-
ified relation type, rather than on grammatical or
other semantic associations. More specifically, our
method encourages the attention mechanism to pri-
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oritize words in the original sentence related to
the entity pair, while minimizing attention to the
added noisy sentences. Especially, we propose
special objective functions to inherently deliver ad-
versarial training effects and novel perspectives dur-
ing training, significantly boosting model perfor-
mance—particularly in preventing forgetting and
reducing overfitting.

Furthermore, in the effort to explore solutions
for the overfitting problem in Few-shot Contin-
ual learning models, we conducted extensive ex-
periments on the application of Sharpness-Aware
Minimization (SAM) (Foret et al., 2020). Specifi-
cally, we assessed the effectiveness of SAM in im-
proving the latest state-of-the-art methods for both
Few-Shot Continual Relation Extraction (FCRE)
and Few-Shot Continual Event Detection (FCED)
(Zhang et al., 2024; Cao et al., 2020; Yu et al.,
2021a; Liu et al., 2022). The results yielded sur-
prising and intriguing insights, showing that SAM
is not always a suitable solution for few-shot con-
tinual scenarios, which we believe will be valuable
for future research.

In summary, the key contributions of this work
are as follows:

• We introduce a novel data augmentation
approach to enrich the limited datasets in
the Few-Shot Continual Relation Extraction
(FCRE) scenario. This strategy not only en-
ables the model to benefit from adversarial
training but also provides diverse perspectives
during training, thereby significantly enhanc-
ing its ability to mitigate overfitting, prevent
forgetting, and ultimately improve overall per-
formance.

• Through extensive experiments on applying
Sharpness-Aware Minimization (SAM) across
various tasks and datasets within the Few-Shot
Continual Learning domain, we offer valuable
insights for the community.

2 Background

2.1 Problem formulation
In the setting of Few-Shot Continual Relation Ex-
traction (FCRE) (see more details in A), we con-
sider a model that incrementally acquires knowl-
edge through a sequence of tasks. For each task T t,
the model is trained on dataset Dt = (xti, y

t
i)

N×K
i=1 ,

which includes N new relations of relation set Rt,
each consisting of K data samples. Particularly,

each instance (xti, y
t
i) consists of a sentence xi

containing a pair of entities (eh, et) and its cor-
responding relation label yi ∈ Rt. This paradigm
is commonly called "N-way-K-shot" learning.

Upon completion of task T t, the dataset Dt be-
comes unavailable for subsequent learning phases.
Then the model performance is evaluated on the
testing dataset of all tasks so far, to identify rela-
tions in the expanded set R̃t =

⋃t
i=1R

i.
In alignment with prior research (Han et al.,

2020a; Qin and Joty, 2022a; Wang et al.,
2023b), we employ a memory buffer M =
{M1,M2, . . . ,M t}, which retains m representa-
tive samples for each relation from all previous
tasks. During the training of T t, the model can ac-
cess the memory M̂ t−1 =

⋃t−1
i=1 M

i. For concise-
ness, we denote Dt = Dt ∪ M̂ t−1 as the complete
training data used in t. In the few-shot setting, we
store only a single sample per relation (m = 1).

2.2 The Base Methods

In this work, we build upon "Making Pre-trained
Language Models Better Continual Few-Shot Rela-
tion Extractors (CPL)" (Ma et al., 2024), a recent
state-of-the-art approach of FCRE problems, as the
base of our method. Please refer to Appendix B.1
for more details. Additionally, we extend our exper-
iments to the Few-shot Continual Event Detection
(FCED) task to rigorously evaluate the effective-
ness of our proposed method. Details regarding
FCED are provided in Appendix B.2.

3 Proposed Method

In this section, we introduce our novel data augmen-
tation technique and two special objective functions
in Section 3.1. We then discuss interesting findings
related to applying Sharpness Aware Minimization
(SAM) - a method for enhancing model generaliz-
ability, in the challenging scenario of FCRE, where
models are prone to overfitting (Section 3.2).

3.1 Mitigating Data Scarcity and
Consolidating Feature Extraction

FCRE is inherently challenged by data scarcity
due to the limited number of labeled samples for
each relation. This restriction impedes model per-
formance, particularly in extracting nuanced rela-
tionships between entities. The problem is com-
pounded in Continual learning settings, where the
model must continually adapt to emerging relations
while retaining previous knowledge. To address
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this problem, we propose a dual strategy, includ-
ing (I) a Mutual-pairing augmentation technique to
enrich the provided training dataset, and (II) accom-
panying advanced objective functions to optimize
this data usage. This approach aims to mitigate
the negative effects of data scarcity and enhance
representation in latent space, thereby improving
overall FCRE performance.

3.1.1 Mutual-Pairing Augmentation.

When training task t, given the training set Dt,
we randomly select data instances and then pair
them to get at most L = C2

|Dt| =
|Dt|(|Dt|+1)

2 pairs
of data samples: {[(xi, yi), (xj , yj)]k}Lk=1, where
i, j ∈ I , for simplicity, we ignore the superscript
of taskID. Combining the original samples within
each pair, we obtain the corresponding augmented
dataset:

Et = {(xk, [y1k; y2k])}Lk=1 = {(xk, [y1k; y2k])}k∈IE
(1)

where xk := concat(xi, xj); y1k and y2k stand for yi
and yj , respectively; IE = {1, ...L} is the index
set of augmented samples. For convenience, we
refer to "the original single-label space" as the
space corresponding to the labels of the original
dataset, where each data sample has a unique label.
In addition, we refer to "the dual-label space" as
the space containing pairs of labels corresponding
to each augmented data sample.

In this way, without any external resources or
support, we can significantly increase the volume
of the training set by L = C2

|Dt|, with diverse "dual-
label samples". Furthermore, during the training
process, the attention mechanism in Language mod-
els’ architecture allows [MASK] embeddings of the
original samples in the respective augmented ones
to interact mutually. Since the input sentences in
the dataset are often unrelated or only weakly re-
lated, pairing them will make these embeddings
to be perturbed to some extent. This is similar to
the perturbation strategy in Adversarial training
(Goodfellow et al., 2015; Zhang et al., 2019; Wong
et al., 2020), where the use of challenging samples
during training makes the model more robust. This
also implies that increasing the number of samples
in our strategy does not merely involve duplicat-
ing existing data, but rather makes the data more
diverse and nuanced, thereby effectively reducing
overfit for models.

3.1.2 Advanced accompanying loss function
To fully leverage the new augmented data, we pro-
pose advanced objective functions, which enable
models to have multiple perspectives on the data
during training

thereby improving generalization and reducing
the risk of overfitting.

Margin Loss for Original Single-label Space
Building upon the augmented dataset, we first em-
ploy this loss function to ensure the behavior of
models w.r.t the original label space. In particular,
while the relation pair in each augmented sample
mutually interacts to create the permuted embed-
dings, this loss function helps models recognize
the relations in individual sentences and separate
their respective permuted representations. Given
an augmented sample (xk, [y

1
k; y

2
k]), let r1k and r2k

be the representations corresponding to the pair of
relations, the loss function can be formulated as
follows:

LCR =

∑
k∈IE Iy1k ̸=y2k

max(0,m− sim(r1k, r
2
k))∑

k∈IE Iy1k ̸=y2k
(2)

where m is a hyperparameter of margin and
sim(·, ·) returns similarity between 2 vectors,
Iy1k ̸=y2k

= 1 if y1k ̸= y2k else 0.
By seamlessly integrating this loss function with

our data augmentation strategy, our method guides
models to identifying word relationships based on
the specified relation type, steering clear of dis-
tractions from grammatical or semantic nuances.
It actively encourages the attention mechanism to
prioritize words connected to the entity pair in the
original sentence, while effectively filtering out
added noise.

Contrastive Loss for Dual-label Space. To fur-
ther take advantage of our pairing data strategy, this
loss function encourages models to exploit a new
perspective on the data, via the constraint between
augmented samples. Intuitively, the representation
vectors of paired samples with the same original set
of labels are expected to be close together, while
the pairs with at least one different component label
are pushed apart.

Particularly, let r̄k = 1
2(r

1
k + r2k) be the repre-

sentative embedding of kth augmented sample. We
define the index set of positive samples w.r.t this
augmented sample as PE

k = {p ∈ IE : {y1k, y2k} =
{y1p, y2p}}, and the corresponding negative set as
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NE
k = IE \ PE

k . Then the loss function can be
formulated as follows:

LDL = −
∑

k∈IE

1

|PE
k |

∑

l∈PE
k

log
u(r̄k, r̄l)∑

l′∈NE
k
u(r̄k, r̄l′)

(3)
where u(r̄k, r̄l) = exp(sim(r̄k, r̄l)/τ

′), and τ ′

is a temperature parameter. In this way, models
have an opportunity to consider the representations
of augmented samples corresponding to "the dual-
label space" (i.e., space containing [y1k, y

2
k], k ∈

IE) in a new point of view, thereby further consoli-
dating the original representations of each relation
in the original latent space as well as reducing vari-
ance caused by conventional training on the limited
training data, and finally improving the generaliza-
tion ability of models.

Finally, the objective function used for training
can be summarized as:

L=L0 + β1LCR + β2LDL (4)

where L0 is the base objective function of the orig-
inal method (i.e., LMCL of CPL), β1 and β2 are
hyperparameters that control the respective contri-
butions of our proposed loss functions. It’s worth
noting that our method not only improves CPL but
can also be flexibly integrated into any existing
FCRE methods to enhance model performance.

3.2 Study about the application of Sharpness
Aware Minimization in FCRE problem

Sharpness Aware Minimization (SAM) (Foret et al.,
2020) is known as an effective solution for improv-
ing generalization and reducing overfitting in deep
learning models. However, there are no studies on
SAM for Few-shot Continual learning scenarios
in the problem of Information Extraction in gen-
eral, as well as FCRE in particular. Therefore, in
this section, we present our key findings, aiming to
provide useful insights for future work.

Failure of SAM in Few-shot Continual Learning
scenarios. To begin with, we conducted exper-
iments applying SAM to the training process of
each task t of the latest FCRE and FCED methods,
as described by the following formula:

min
ϕ

max
∥δ∥≤σ

L(M̂ t−1 ∪Dt;ϕ+ δ) (5)

where ϕ denotes the model parameters, L repre-
sents the objective function, and σ > 0 is the per-
turbation threshold.

The results in Table 2 indicate that, for FCRE,
while SAM improves efficiency in some cases of
CPL when using BERT as the backbone, it sig-
nificantly reduces performance by more than 6%
when LLM2Vec is used as the backbone. Further-
more, with CPL+MI, the current strongest method,
SAM not only fails to enhance performance but
also leads to 2% drop in final accuracy on TA-
CRED. For FCED, the results mostly show that
SAM, negatively impacts model performance.

Applying SAM for only current task training
data? Based on the above surprising experimen-
tal results, we thoroughly conducted extra experi-
ments to verify whether the scarcity of FCRE data
caused SAM not to perform as expected. Specif-
ically, we supposed that a sample per learned re-
lation may sometimes lack enough information to
determine a good update direction for SAM, and
might even return a bad guidance that potentially
diminishes the model’s generalization capability.
Therefore, when training task t, instead of apply-
ing SAM to the entire Dt, we only apply it to the
current task’s data Dt and ignore the data from
the memory buffer M̂ t−1. Particularly, we conduct
experiments following the optimization process as
below:

min
ϕ

L(M̂ t−1;ϕ) + max
∥δ∥≤σ

L(Dt;ϕ+ δ) (6)

Consequently, the experimental results in Figure 1
and 2 demonstrate that excluding SAM from the
memory buffer consistently enhances model per-
formance when using SAM. Therefore, it can be
said that data scarcity in Few-shot Continual learn-
ing scenario is the main weakness of SAM, and
applying SAM only to the current task, due to the
large and representative enough data, could be a
temporary but intriguing solution to preserve the
positive impact of SAM.

How our data augmentation strategy can help
ensure the effectiveness of SAM? Motivated by
the results above, we find that if the weakness of
SAM in FCRE is the lack of data, our method can
help when significantly increasing the amount of
training data. Suppose at the time of training task
t, the memory buffer contains nm data samples of
the corresponding nm learned relations, and the
current task has nc data samples of new relations.
By cross-matching all available data, we obtain the
following results:
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FewRel (10-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
ERDA 92.43 64.52 50.31 44.92 39.75 36.36 34.34 31.96 60.47
CRECL 93.93 82.55 74.13 69.33 66.51 64.60 62.97 59.99 33.94
ConPL∗∗ 95.18 79.63 74.54 71.27 68.35 63.86 64.74 62.46 32.72
SCKD 94.77 82.83 76.21 72.19 70.61 67.15 64.86 62.98 31.79
SCKD+MI 94.75 83.88 76.71 72.34 70.78 67.36 65.08 63.95 30.80
CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 30.37
CPL+MI 94.69 85.58 80.12 75.71 73.90 70.72 68.42 66.27 28.42
SCKD+augment 94.67 84.04 77.57 74.23 71.79 68.13 65.36 63.83 30.84
SCKD+MI+augment 95.10 84.88 78.22 74.04 71.81 68.72 66.36 64.35 30.75
CPL+augment 95.02 84.88 80.85 76.39 75.20 72.09 69.86 67.82 27.20
CPL+MI+augment 94.76 85.48 80.24 77.69 75.6 72.94 70.74 68.36 26.40

TACRED (5-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
ERDA 81.88 53.68 40.36 36.17 30.14 22.61 22.29 19.42 62.46
CRECL 87.09 78.09 61.93 55.60 53.42 51.91 47.55 45.53 41.56
ConPL∗∗ 88.77 69.64 57.50 52.15 58.19 55.01 52.88 50.97 37.80
SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11 36.31
SCKD+MI 87.55 79.39 70.7 66.68 61.94 59.81 55.1 53.63 33.92
CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 28.88
CPL+MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48 26.19
SCKD+augment 88.10 81.70 71.79 66.60 61.10 59.97 55.81 54.53 33.57
SCKD+MI+augment 87.74 80.16 72.46 68.67 62.89 61.28 58.03 54.67 33.07
CPL+augment 86.68 81.99 75.27 70.41 66.30 65.71 62.16 60.26 26.42
CPL+MI+augment 86.33 82.31 76.35 70.93 68.28 65.04 62.60 61.97 24.36

Table 1: Accuracy (%) of different BERT-based methods after training for each task on TACRED and FewRel in
5-shot settings. We highlight the rows corresponding to our method. The best result in each group is in bold, and
the corresponding runner-up is underlined. **Results of ConPL are reproduced

FCRE
FewRel TACRED

CPL + SAM CPL + SAM

BERT 64.50 67.80 57.39 60.75
LLM2Vec 69.49 68.54 71.35 65.16
BERT (+MI) 66.27 67.01 59.48 57.26

FCED
ACE MAVEN

HANet + SAM HANet + SAM

2way-5shot 57.85 57.18 53.62 52.86
2way-10shot 61.02 60.20 56.13 56.46

Table 2: Performance comparison of existing FCRE and
FCED SOTA methods and those when using SAM (i.e.,
+SAM).

• For the memory buffer, cross-matching be-
tween old samples yields C2

nm
additional sam-

ples. Besides, cross-matching with the current
task samples adds nm × nc more samples,
representing the old task’s information. Com-
pared to the existing method (CPL), the data

representing the old task in our strategy has

increased by
nm + 1

2
+ nc times.

• Similarly, for the current task, the amount
of data representing this task increases by
nc + 1

2
+ nm times.

The results in Figure 1 and 2 also show that,
when combined with our augmentation strategy,
SAM effectively helps the model improve signifi-
cantly, both when applied to the current task data
and to the entire training dataset, including data
from the poor memory buffer.

4 Experiments

In this section, we present experimental results
demonstrating the effectiveness of our proposed
data augmentation strategy.

4.1 Experimental Setup
In our main experiments, we use current state-
of-the-art FCRE methods as baselines, includ-
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Figure 1: Applications of SAM in FCRE models. "SAM-full" indicates the case we apply SAM on all data Dt from
the current task and memory buffer, "SAM-current" is when we apply SAM only on the data of the current task.

ing: ERDA (Qin and Joty, 2022b), CRECL (Hu
et al., 2022), SCKD (Wang et al., 2023b), ConPL
(Chen et al., 2023), CPL (Ma et al., 2024) and
CPL+MI (Tran et al., 2024). Besides, the mod-
els are evaluated using pre-trained models consist-
ing of BERT (Devlin et al., 2018), and LLM2Vec
(BehnamGhader et al., 2024), on two benchmark
datasets: FewRel (Han et al., 2018) and TACRED
(Zhang et al., 2017). Besides, to further demon-
strate the efficiency and flexibility of our proposed
method, we conducted additional experiments on
the setting of FCED in two datasets: MAVEN
(Wang et al., 2020) and ACE (Walker et al., 2005).

We note that we have reproduced the results of
ConPL (Chen et al., 2023) under the same setting as
SCKD and CPL. The reason is that the evaluation
strategy in this paper is impractical for continual
learning scenarios. Please refer to Appendix C for
more details.

4.2 Main Results

Performance comparison Table 1 compares our
method and FCRE baselines, on TACRED and
FewRel datasets. Our approach, which integrates
data augmentation and special objective functions,
demonstrates consistent improvements regarding
both final average accuracy A8 and forgetting rate
∆ = A1 −A8, which is the discrepancy between
accuracy after learning the first task (A1) and after
learning the final one (A8).

On the FewRel dataset, our method achieves
a notable performance gain of up to 2.09% com-
pared to the strongest baseline. Similarly, on the

TACRED dataset, we observe an even more sub-
stantial improvement, with a performance gap of
2.49%. These results underscore the effectiveness
of our approach in mitigating catastrophic forget-
ting, as evidenced by the significantly reduced
accuracy drops. Specifically, our model outper-
forms CPL with accuracy drops of only 26.40%
on FewRel and 24.36% on TACRED, indicating
enhanced retention of knowledge from previous
tasks.

Ablation study To gain deeper insights into the
contributions of our proposed components, we con-
duct an ablation study using CPL as the baseline on
both TACRED and FewRel datasets. Table 3 illus-
trates the impact of the Margin Loss for Original
Single-label Space (LCR) and the Contrastive Loss
for Dual-label Space (LDL) on model performance.

The results demonstrate that both loss functions
play crucial roles in the overall performance of our
method. Removing LCR leads to a noticeable de-
crease in accuracy across most tasks, particularly
in the later stages of continual learning. This sug-
gests that LCR is essential for maintaining model
behavior with respect to the original label space.
Similarly, the absence of LDL results in perfor-
mance degradation, especially in the middle and
later tasks. This observation highlights the impor-
tance of exploiting the new perspective on data
provided by our pairing strategy, which encourages
the model to learn more robust representations.
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Figure 2: Applications of SAM in FCED models. "SAM-full" indicates the case we apply SAM on all data Dt from
the current task and memory buffer, "SAM-current" is when we apply SAM only on the data of the current task.

TACRED (5-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL + augment 95.02 84.88 80.85 76.39 75.2 72.09 69.86 67.82
w.o LCR 94.20 84.22 79.83 76.67 73.86 71.59 70.88 66.49
w.o LDL 94.56 86.02 77.4 75.16 75.16 70.0 69.66 63.66

FewRel (10-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL + augment 86.68 81.99 75.27 70.41 66.30 65.71 62.16 60.26
w.o LCR 86.46 81.37 75.59 69.96 64.61 65.53 60.13 57.36
w.o LDL 85.64 81.62 75.88 71.72 66.06 64.82 62.10 59.59

Table 3: Ablation study - Our special objective function

4.3 Improved SAM performance in Few-shot
Continual Learning

Table 4 presents the results when applying our data
augmentation method to ensure the effectiveness
of Sharpness Aware Minimization (SAM), across
various baselines and datasets. For each setting, we
compare the performance of the original baseline
models, models with SAM applied only to the cur-
rent task’s data (SAMcurrent), and our proposed
method combining SAMcurrent with data augmen-
tation.

On the TACRED dataset (5-way 5-shot),
our method combined with SAM, consistently
outperforms both the original baselines and the cor-
responding SAM-based versions (+SAMcurrent)
across all tasks and model configurations
(CPLBERT , CPLBERT+MI, CPLLLM2V ec).
Notably, compared with CPLBERT+MI, our
approach can achieve the accuracy of 65.11% after

the final task, outperforming the baseline and its
SAM-based version by a gap up to 10%.

On the FewRel dataset (10-way 5-shot), our
method also demonstrates the improvements from
the baselines’ versions, especially in later tasks.
For CPLBERT , we achieve the final accuracy of
68.43%, outperforming both the baseline (64.50%)
and its SAM-based (66.84%) versions by the gap
up to 4%.

In addition, extended experiments in the setting
of FCED, on ACE (2-way 5-shot) and MAVEN
(2-way 10-shot) datasets, further confirm the effec-
tiveness of our approach in ensuring the positive
effect of SAM in the challenging setting of Fewshot
Continual Learning (FCL).

These comprehensive results across multiple
tasks and datasets confirm that our data augmenta-
tion strategy effectively mitigates the primary limi-
tation of SAM in FCL scenarios, as outlined in 3.2.
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TACRED (5-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPLBERT 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39
CPLBERT+SAMcurrent 86.33 81.84 74.53 71.9 65.78 66.87 64.47 61.36
CPLBERT+SAMcurrent+augment 86.58 82.05 75.35 73.31 69.20 68.55 64.68 62.62
CPLBERT+MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48
CPLBERT+MI+SAMcurrent 86.77 81.48 73.13 70.12 64.02 62.13 57.71 55.00
CPLBERT+MI+SAMcurrent+augment 86.55 82.75 76.16 73.93 71.14 70.37 67.36 65.11
CPLLLM2V ec 89.12 82.93 78.24 75.20 74.37 74.23 71.55 71.35
CPLLLM2V ec+SAMcurrent 88.74 80.87 79.57 75.97 75.98 74.62 73.08 70.35
CPLLLM2V ec+SAMcurrent+augment 88.45 82.85 80.32 76.79 77.13 77.23 74.16 73.38

FewRel (10-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPLBERT 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50
CPLBERT+SAMcurrent 94.68 85.06 80.55 76.99 75.11 71.94 69.37 66.84
CPLBERT+SAMcurrent+augment 94.48 84.34 80.80 77.29 75.75 73.07 70.45 68.43
CPLBERT+MI 94.69 85.58 80.12 75.71 73.90 70.72 68.42 66.27
CPLBERT+MI+SAMcurrent 94.53 84.97 80.12 76.38 74.48 71.62 69.57 67.41
CPLBERT+MI+SAMcurrent+augment 94.59 85.62 80.79 77.40 75.73 72.61 70.04 68.57
CPLLLM2V ec 96.38 87.22 82.67 79.20 77.00 74.63 72.22 69.49
CPLLLM2V ec+SAMcurrent 96.12 87.65 81.33 78.56 77.21 74.04 71.16 69.93
CPLLLM2V ec+SAMcurrent+augment 95.98 88.11 83.88 80.34 78.54 75.60 73.61 71.85

ACE (2-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5

HANetBERT 61.16 63.07 57.50 53.21 54.31
HANetBERT+SAMcurrent 61.34 64.71 55.79 54.53 55.97
HANetBERT+SAMcurrent+augment 63.51 64.99 56.46 61.45 57.11

MAVEN (2-way 10-shot)
Method T 1 T 2 T 3 T 4 T 5

HANetBERT
∗∗ 57.64 53.28 58.67 56.23 54.85

HANetBERT+SAMcurrent 57.18 54.33 58.90 56.77 56.91
HANetBERT+SAMcurrent+augment 58.31 56.59 58.98 56.93 56.53

Table 4: Effectiveness of Our Method in Improving SAM Performance Across Various Datasets and Baselines.
**Results for MAVEN dataset under 2-way 10-shot settings were reproduced using the provided source code.

By significantly increasing the amount of training
data through cross-matching, SAM is better able
to identify flat regions where the learned model
demonstrates improved performance and general-
ization across all tested configurations.

5 Conclusion

This work addresses the challenges of catastrophic
forgetting and overfitting in few-shot continual re-
lation extraction under conditions of limited data
availability. First, we introduce a novel data aug-
mentation technique that generates additional train-
ing samples by combining both old and new data,

transforming them into more complex textual struc-
tures. Our method not only expands the training
data but also enhances the model’s ability to cap-
ture word relationships based on the specified rela-
tion type, rather than relying solely on grammatical
or other general semantic associations. Further-
more, we propose specialized objective functions
designed to inherently induce adversarial training
effects and increase discriminative representation
among relation types. Finally, this work represents
the first step toward investigating the application of
Sharpness-Aware Minimization (SAM) in few-shot
continual information extraction. The findings pro-
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vide valuable insights for the research community.

Limitations

Our data augmentation method, while effective,
may introduce training imbalances in Few-shot
Continual Learning scenarios. The augmentation
process amplifies the existing disparity between
current and previous task data. Consequently, with
limited batch sizes, many minibatches may contain
samples from only a few specific labels, primarily
from the current task. This imbalance could poten-
tially impact the model’s ability to maintain equal
representation across all tasks, affecting its per-
formance in mitigating catastrophic forgetting and
potentially biasing predictions towards the current
task. Future work could explore balanced augmen-
tation techniques or adaptive sampling methods to
address this limitation.
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Appendices
A Related work

Continual Learning (CL) is a learning scenario that challenges models to continuously acquire new
knowledge from a sequence of tasks over time. A major problem in CL is catastrophic forgetting (French,
1993; Thrun and Mitchell, 1995; French and Chater, 2002), where the model significantly loses its ability
to perform previous tasks. To address this issue, one effective approach is memory-based techniques
(Rebuffi et al., 2017; Shin et al., 2017; Wang et al., 2019; Han et al., 2020b), which proposed storing a few
key samples from the current task in a memory buffer and revisiting them when learning new tasks to
reinforce past knowledge.

Fewshot Continual Relation Extraction (FCRE) is a challenging scenario, which was introduced
by (Qin and Joty, 2022c) for Relation Extraction problems. To deal with catastrophic forgetting and
overfitting phenomenon caused by the extremely limited availability of data for each new task, recent work
like Wang et al. (2023b); Chen et al. (2023); Ma et al. (2024) propose memory-based approaches, which
suggest imposing regularization functions during training. Specifically, Wang et al. (2023b) proposed
using serial objective functions based on contrastive and distillation, Qin and Joty (2022c) proposed
leveraging extra training data from external unlabeled text, and Chen et al. (2023) proposes a prototype-
based learning strategy to help the model enhance the ability to distinguish between different relation
representations. Recently, (Tran et al., 2024) introduced a novel approach where the often discarded
component - pretrained LM heads are employed as a regularization strategy, which helps reduce overfitting
as well as forgetting significantly.

We find that the root cause of FCRE is the limited training data. Therefore, unlike existing works, we
propose a novel data augmentation strategy where models can have opportunities to gain fresh perspectives
on new data samples, incorporating both old and new task knowledge. This creates a robust training
strategy and achieves superior testing results.

Sharpness Aware Minimization Flat minimizers have been shown to be more robust to the shifts
between training and test losses, thereby enhancing the generalization ability of neural networks (Jiang
et al., 2020; Petzka et al., 2021; Dziugaite and Roy, 2017). Among the flat minimizers, Sharpness-Aware
Minimization (SAM), introduced by Foret et al. (2020), has gained significant attention due to its effec-
tiveness and scalability. SAM’s versatility has been leveraged across a wide range of tasks and domains,
including domain generalization (Cha et al., 2021; Wang et al., 2023a), federated learning (Caldarola
et al., 2022), etc.

However, the potential of SAM in Few-shot Continual Information Extraction tasks, particularly in
FCRE, remains underexplored. To address this gap, we conducted extensive experiments and offer
valuable insights that contribute to advancing research in this area.

B Background

B.1 The base FCRE method (CPL)

This method proposed techniques including prompt design, representation learning loss, and memory
augmentation strategy to address the challenges of catastrophic forgetting and overfitting in FCRE:

(a) The prompt designing CPL employs a soft prompting technique, where learnable tokens guide the
behavior of models instead of explicit, human-understandable words. The template is defined as:

T (x) = x.[v0:n0−1]eh[vn0:n1−1][MASK]

[vn1:n2−1]et[vn2:n3−1].
(7)

where x is the input sentence, eh and et are the head and tail entities, [vi] are learnable continuous tokens,
nj determines the number of tokens in each phrase, and [MASK] represents the relation between entities.
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(b) For representation learning, CPL leverages a margin-based contrastive learning (MCL) objective
function, where the loss for each sample xi is formulated as follows:

LMCL(i) = −
∑

p∈P (i)

log
exp(αi,p · si,p/τ)∑
a∈I exp(αi,a · si,a)/τ

(8)

where P (i) = {p ∈ I : yp = yi} is the index set of positive samples w.r.t sample xi, I = {1, 2, ...n} is
index set of all n training samples; si,p =

zi·zp
∥zi∥·∥zp∥ is the similarity between the representations zi and zp

of samples xi and xp, respectively; αi,p is a relaxation factor, and τ is a temperature parameter.
(c) Finally, the memory augmentation component utilizes ChatGPT to generate diverse samples guided

by well-crafted prompts, aiming to reduce overfitting in this low-resource scenario. These augmented
samples are combined with the original ones to form a new training set for memory replay.

The training process consists of two primary steps: (I) current task training, where the model is trained
on new relation samples using the MCL loss, and (II) memory replaying, where the model revisits
augmented samples from previous tasks to consolidate knowledge and prevent forgetting.

For relation prediction, CPL employs a Nearest-Class-Mean (NCM) classifier, defined as:

ŷx = argmin
r∈R̃t

∥zx − pr∥2, pr =
1

L

L∑

i=0

zx̂r
i
, (9)

where pr is the prototype of relation r, x̂r
i denotes the sample with label yx̂r

i
= r in the memory buffer.

B.2 Few-Shot Continual Event Detection

To further demonstrate the efficacy and versatility of our proposed methodology, we conducted additional
experiments on the Few-Shot Continuous Event Detection (FCED) problem.

FCED aims to detect emerging events with limited sample data. Given a set of tasks T =
{T1, T2, . . . , Tn}, each task Ti comprises individual training, validation, and testing sets: Ti =
Dtrain

i , Ddev
i , Dtest

i . Each set Di = {(Xj
i , Y

j
i )}mj=1 consists of samples X and their corresponding la-

bels Y , where m denotes the number of event types in each task. The initial task T1 serves as the base
task Tbase, containing a substantial number of training samples. Subsequent tasks are defined as few-shot
incremental tasks Tinc = T2, T3, . . . , Tn, each containing only a limited number of samples (e.g., 5 or
10) for each new event type. It is important to note that for any two tasks Ti and Tj , their event types
are mutually exclusive: Ti ∩ Tj = ∅. At time step t, for FCED task Ct, the training set is defined as
C train
t = Dtrain

t , while the validation/testing set is C test
t = Dtest

t ∪ C test
t−1. This formulation requires the

CFED system to maintain consistent performance on all previously observed labels Lt =
⋃t

i=1{Y
j
i }mj=1

using only the currently available training samples in task Tt.
For comparative analysis, we consider the Continual Few-shot Event Detection via Hierarchical

Augmentation Networks (HANet) (Zhang et al., 2024) as a baseline. HANet proposes a memory-based
framework incorporating two key components: prototypical augmentation and contrastive augmentation.
The HANet model employs a BERT-based event detector for trigger extraction and classification. Given
an input sentence S = x1, x2, . . . [es, . . . , ee], . . . , xn containing event triggers E = [es, . . . , ee], the
model generates a hidden representation H ∈ Rn×d. The hidden states of a trigger He are constructed by
concatenating their start and end representations. The probability of an event type yi ∈ Lt at stage t is
computed as:

p(yi|he) =
exp(W T

i he + bi)∑
j exp(W

T
j he + bj)

where Wi and bi are learnable parameters. To mitigate catastrophic forgetting, HANet implements
prototypical augmentation in the memory set. For each event type, an exemplar is selected, and its feature
space is reconstructed using a Gaussian distribution:

Ĥj
e = {ĥje,1, . . . , ĥje,n} ∼ N (µj , σ

2
j )
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where µj represents the exemplar’s representation and σ2
j denotes the variance calculated during exemplar

selection. To address overfitting in few-shot scenarios, HANet introduces contrastive augmentation at the
token level. This involves constructing positive and negative pairs from augmented tokens and applying
contrastive losses for sentence and trigger representations.

To integrate our method into HANet, we consider the representation of the trigger as a proxy for the
relation representation.

C Experimental setting

C.1 Datasets
C.1.1 Few-shot Continual Relation Extraction (FCRE)
Our experiments for the FCRE scenario utilize two benchmark datasets:

• FewRel (Han et al., 2018): This dataset comprises 100 relations with 70,000 samples. Following Qin
and Joty (2022c), we employ a configuration of 80 relations, partitioned into 8 tasks, each containing
10 relations (10-way). The initial task, T 1, includes 100 samples per relation, while subsequent tasks
are structured as few-shot tasks under 5-shot settings.

• TACRED (Zhang et al., 2017): This dataset encompasses 42 relations with 106,264 samples extracted
from Newswire and Web documents. Consistent with (Qin and Joty, 2022c), we exclude instances
labeled as “no_relation” and distribute the remaining 41 relations across 8 tasks. The first task, T 1,
comprises 6 relations with 100 samples each, while subsequent tasks involve 5 relations (5-way) in
5-shot configurations.

C.1.2 Few-shot Continual Event Detection (FCED)
For the FCED scenario, we construct benchmarks based on two publicly available datasets, following the
approach of (Zhang et al., 2024):

• MAVEN (Wang et al., 2020): This dataset originally contains 168 event types, representing a
comprehensive general domain event detection corpus. We adopt the training/validation/testing
split methodology of Yu et al. (2021b), constructing the test set from the initial development set
and randomly selecting samples from the original training set to form a new development set. For
incremental task splits, we select the most frequent event types to construct FCED tasks, randomly
sampling 100 instances for each type in the base task, and 5 or 10 instances for each type in the
incremental tasks.

• ACE 2005 (Walker et al., 2005): This dataset consists of 33 event types. We utilize the train-
ing/validation/testing split as established in previous works (Nguyen et al., 2016). The incremental
task split methodology is identical to that applied to the MAVEN dataset for constructing FCED
tasks.

Our experimental design incorporates 5 sub-tasks. We define an m-way k-shot CFED task as one
containing m event types per subtask and k training samples per type. We select the 10 most frequent
types to conduct 2-way 5-shot and 2-way 10-shot tasks. For the base task Tbase, we randomly sample 100
instances per type, while for incremental tasks Tinc, we sample 5 and 10 instances per type, respectively.

C.2 Baselines
This study evaluates our approach against state-of-the-art methods in FCRE and FCED. The selected
baselines are as follows:

C.2.1 FCRE Baselines
• CRECL (Hu et al., 2022): extends beyond conventional few-shot learning by imposing additional

constraints on training data. It accomplishes this by integrating information regarding support
instances to augment instance representations. Furthermore, it advocates for open-source task
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enrichment to facilitate cross-domain knowledge aggregation and introduces the TinyRel-CM dataset
tailored specifically for few-shot relation classification with restricted training data. Experimental
results illustrate its efficacy in enhancing performance under conditions of limited data availability.

• ERDA (Qin and Joty, 2022b): This study introduces Continual Few-Shot Relation Learning (CFRL)
as a novel challenge, recognizing the constraints of current methodologies that demand substantial
labeled data for new tasks. CFRL endeavors to acquire knowledge of novel relations with minimal
data while averting catastrophic forgetting. Addressing this challenge, ERDA presents a methodology
grounded in embedding space regularization and data augmentation. This strategy imposes con-
straints on relational embeddings and integrates supplementary relevant data through self-supervision.
Extensive experimentation showcases ERDA’s substantial performance enhancements over prior
state-of-the-art approaches in CFRL scenarios.

• SCKD (Wang et al., 2023b) SCKD implements a systematic knowledge distillation strategy to
preserve knowledge from previous tasks. The method integrates contrastive learning techniques with
pseudo samples to enhance the discriminative power of relation representations.

• ConPL (Chen et al., 2023) introduces a method comprising three core components: a prototype-
based classification module, a memory-enhanced module, and a consistent learning module designed
to maintain distribution consistency and mitigate forgetting. Furthermore, ConPL employs prompt
learning to enhance representation learning and integrates focal loss to reduce confusion among
closely related classes.

• CPL (Ma et al., 2024) CPL introduces a framework that employs prompts to generalize across
categories and utilizes margin-based contrastive learning to address challenging samples. This
approach aims to mitigate catastrophic forgetting and overfitting. Additionally, CPL incorporates a
memory augmentation strategy, leveraging ChatGPT to generate diverse samples, further addressing
overfitting in low-resource FCRE scenarios.

In this paper, to conduct the ablation study in Table ...

• CPL+MI (Tran et al., 2024) (Mutual Information Maximization) is designed to complement and
enhance existing baseline methods. It utilizes the often-neglected language model heads to preserve
prior knowledge from pre-trained backbones and improve representation learning. This is achieved
by maximizing the mutual information between the latent representations of the language model
head branch and the main classifier branch.

C.2.2 FCED Baselines
To date, the work of Zhang et al. (2024) represents the sole comprehensive study addressing FCED
(elaborated in Section B.2). Consequently, we adopt their methodology and comparative baselines as the
foundation for our FCED experiments. The following approaches serve as our benchmarks:

• KCN (Cao et al., 2020) A prominent continual event detection method that employs a memory
replay-knowledge distillation paradigm.

• KT (Yu et al., 2021a) This approach primarily adheres to the memory-based paradigm, incorporating
a novel initialization technique for effective knowledge transfer.

• EMP (Liu et al., 2022) In addition to memory replay, this method integrates prompt learning for
each event type to facilitate the retrieval of knowledge from previous types.

C.3 Training Configurations

This section delineates the optimal hyperparameter values employed across various experimental settings.
Tables 5, 6, 7, and 8 present the specific configurations for each model variant.
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Hyperparameter Value
Current-task training epochs 8
Memory training epochs 6
Learning rate 1× 10−5

Encoder output dimension 768
BERT input maximum sequence length 256
Margin (m) for Margin Loss 1.0
β1 0.25
β2 0.25
σ 0.1

Table 5: Hyperparameter configuration for CPLBERT +SAMcurrent+augment

Hyperparameter Value
Current-task training epochs 10
Memory training epochs 5
Learning rate 1× 10−5

Encoder output dimension 768
BERT input maximum sequence length 256
Margin (m) for Margin Loss 1.0
β1 0.25
β2 0.25
σ 0.05

Table 6: Hyperparameter configuration for CPLBERT +MI+SAMcurrent+augment

D Additional experimental results

D.1 Our method when ensure the efficiency of SAM in Fewshot Continual Learning
The empirical evidence presented in Tables 9 and 10 provides compelling support for the efficacy of our
proposed methodology when integrated with SAM, particularly in comparison to current state-of-the-art
baselines. Notably, our approach demonstrates significant performance improvements, yielding increases
in average accuracy of up to 3.34% on the TACRED dataset under the FCRE scenario, and 3.39% on the
ACE dataset in the FCED scenario compared with the strongest baseline.

D.2 Our method helps avoid forgetting
To illustrate how our method helps avoid forgetting, we provide the accuracy of the learned model on
each task overtime in Table 11.

D.3 Training time
While our method does increase the training data volume, it’s important to note that in the FCRE scenario
from task T 2 onwards, the training data only includes a small number k samples per class (e.g., 5 samples
in 5-shot setting). Therefore, the actual training overhead is not substantial. To quantify this, we conducted
timing experiments on an A100 40GB GPU (Table 12).

D.4 Additional ablation study
In this part, we provide additional ablation experiments to demonstrate the behaviour of our method on
the latest state-of-the-art (CPL+MI+augment) and obtained the notable results in Table 13. These results
are consistent with our previous findings on CPL+augment and further validate the crucial role of both
loss functions LCR and LDL in improving model performance.
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Hyperparameter Value
Current-task training epochs 8
Memory training epochs 6
Learning rate 1× 10−5

Encoder output dimension 4096
BERT input maximum sequence length 256
Margin (m) for Margin Loss 1.0
LoRA α 16
LoRA rank 8
LoRA dropout rate 0.05
β1 0.25
β2 0.25
σ 0.05

Table 7: Hyperparameter configuration for CPLLLM2V ec+SAMcurrent+augment

Hyperparameter Value
Training epochs 30
Learning rate 2× 10−5

Encoder output dimension 768
BERT input maximum sequence length 256
Margin (m) for Margin Loss 1.0
β1 0.5
β2 0.5
σ 0.05

Table 8: Hyperparameter configuration for HANet+SAMcurrent+augment

FewRel (10-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 avg

ERDA 92.43 64.52 50.31 44.92 39.75 36.36 34.34 31.96 49.32
CRECL 93.93 82.55 74.13 69.33 66.51 64.60 62.97 59.99 71.75
ConPL∗∗ 95.18 79.63 74.54 71.27 68.35 63.86 64.74 62.46 72.50
SCKD 94.77 82.83 76.21 72.19 70.61 67.15 64.86 62.98 73.95
CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 75.93
CPL+MI 94.69 85.58 80.12 75.71 73.90 70.72 68.42 66.27 76.93
CPL+augment+SAMcurrent 94.48 84.34 80.80 77.29 75.75 73.07 70.45 68.43 78.08
CPL+MI+augment+SAMcurrent 94.59 85.62 80.79 77.4 75.73 72.61 70.04 68.57 78.17

TACRED (5-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 avg

ERDA 81.88 53.68 40.36 36.17 30.14 22.61 22.29 19.42 38.32
CRECL 87.09 78.09 61.93 55.60 53.42 51.91 47.55 45.53 60.14
ConPL∗∗ 88.77 69.64 57.50 52.15 58.19 55.01 52.88 50.97 60.64
SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11 66.28
CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 69.28
CPL+MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48 70.83
CPL+augment+SAMcurrent 86.58 82.05 75.35 73.31 69.20 68.55 64.68 62.62 72.79
CPL+MI+augment+SAMcurrent 86.55 82.75 76.16 73.93 71.14 70.37 67.36 65.11 74.17

Table 9: Comparative analysis of accuracy (%) for various BERT-based methodologies evaluated on the TACRED
and FewRel datasets under 5-shot settings in the FCRE scenario.
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ACE (2-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 avg

KCN 60.86 56.38 47.56 38.62 37.05 48.09
KT 53.16 42.55 33.93 38.48 31.27 39.88
EMP 54.78 40.49 24.32 27.15 22.53 33.85
HANet 61.16 63.07 57.50 53.21 54.31 57.85
HANet+augment+SAMcurrent 63.51 64.99 56.46 61.45 57.11 60.70

ACE (2-way 10-shot)
Method T 1 T 2 T 3 T 4 T 5 avg

KCN 60.86 59.41 57.39 46.48 44.3 53.69
KT 53.16 59.12 50.02 49.02 28.54 47.97
EMP 54.78 37.28 19.6 34.69 24.19 34.11
HANet 61.16 66.84 64.68 58.02 54.37 61.02
HANet+augment+SAMcurrent 63.60 65.96 67.06 64.67 60.75 64.41

MAVEN (2-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 avg

HANet∗∗ 57.64 50.23 55.82 52.07 52.35 53.62
HANet+augment+SAMcurrent 58.42 54.58 57.10 54.60 53.84 55.71

MAVEN (2-way 10-shot)
Method T 1 T 2 T 3 T 4 T 5 avg

HANet∗∗ 57.64 53.28 58.67 56.23 54.85 56.13
HANet+augment+SAMcurrent 58.31 56.59 58.98 56.93 56.53 57.47

Table 10: Comparative analysis of HANet baseline and HANet integrated with our proposed methodology on ACE
and MAVEN datasets. Results depict accuracy (%) under 5-shot and 10-shot settings in the FCED scenario.
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CPL-MI on FewRel (10way-5shot)

Task T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

T 1 94.87 – – – – – – –
T 2 89.00 78.27 – – – – – –
T 3 84.10 75.35 76.03 – – – – –
T 4 79.62 72.42 69.89 78.88 – – – –
T 5 75.22 69.03 65.56 76.35 76.84 – – –
T 6 71.28 65.65 62.99 72.23 73.02 68.91 – –
T 7 70.12 62.35 59.33 70.82 70.27 65.72 73.96 –
T 8 66.21 60.32 58.00 65.28 69.51 60.78 68.96 71.73

∆ ↓ 28.67 17.97 18.03 13.52 7.33 8.12 5.00 –

CPL-MI-aug on FewRel (10way-5shot)

Task T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

T 1 94.45 – – – – – – –
T 2 90.22 80.48 – – – – – –
T 3 87.43 77.23 78.22 – – – – –
T 4 82.08 74.21 71.69 80.62 – – – –
T 5 78.66 71.18 68.36 78.64 78.51 – – –
T 6 75.55 68.44 66.01 76.36 76.13 72.53 – –
T 7 73.14 66.06 63.09 73.75 73.77 68.34 75.65 –
T 8 70.74 64.04 59.12 70.23 71.14 65.76 73.16 74.64

∆ ↓ 23.71 16.44 19.08 10.39 7.37 6.77 2.49 –

Table 11: Accuracies on each task overtime

Setting Model Training Time (mins) Overhead Increase

5-way 5-shot TACRED CPL-MI (Baseline) 97.30 -
5-way 5-shot TACRED CPL-MI-SAM-aug 107.92 10.91%

10-shot FewRel CPL-MI (Baseline) 141.80 -
10-way 5-shot FewRel CPL-MI-SAM-aug 160.09 12.90%

Table 12: Training Time and Overhead Increase for Different Models

FewRel (10way-5shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL+MI+augment 94.76 85.48 80.24 77.69 75.60 72.94 70.74 68.36
w.o. LCR 94.01 84.84 79.70 78.10 74.23 73.11 68.92 67.03
w.o. LDL 94.53 83.90 78.74 76.90 73.98 71.35 67.76 67.50

TACRED (5way-5shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL+MI+augment 86.33 82.31 76.35 70.93 68.28 65.04 62.60 61.97
w.o. LCR 85.43 81.23 76.29 71.16 65.20 66.20 61.18 59.47
w.o. LDL 83.89 80.79 75.80 69.25 67.01 65.43 61.88 60.34

Table 13: Ablation study on CPL+MI
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