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Abstract

We introduce CluSanT, a novel text sanitization
framework based on Metric Local Differential
Privacy (MLDP). Our framework consists of
three components: token clustering, cluster
embedding, and token sanitization. For the first,
CluSanT employs Large Language Models
(LLMs) to create a set of potential substitute
tokens which we meaningfully cluster. Then,
we develop a parameterized cluster embedding
that balances the trade-off between privacy and
utility. Lastly, we propose a MLDP algorithm
which sanitizes/substitutes sensitive tokens in
a text with the help of our embedding. Notably,
our MLDP-based framework can be tuned with
parameters such that (1) existing state-of-the-
art (SOTA) token sanitization algorithms can be
described—and improved—under our frame-
work with extremal values of our parameters,
and (2) by varying our parameters, we enable
a whole spectrum of privacy-utility tradeoffs.
Our experiments demonstrate CluSanT’s bal-
ance between privacy and semantic coherence,
highlighting its capability as a valuable frame-
work for privacy-preserving text sanitization.

1 Introduction

The advent of digital technology has led to an ex-
ponential increase in the generation and process-
ing of textual data, elevating the importance of
privacy within the realm of Natural Language Pro-
cessing (NLP) (Carlini et al., 2021; Jegorova et al.,
2022). Differential Privacy (DP) (Dwork, 2006),
known for its strong mathematical privacy guaran-
tees, presents a viable solution to these challenges.
However, applying DP in NLP is fraught with dif-
ficulties due to the complex nature of textual data
(Song and Raghunathan, 2020).

Existing implementations of DP in NLP typi-
cally degrade semantic integrity and readability for
humans, posing significant challenges for appli-
cations requiring high-quality, coherent text pro-
cessing. This underscores the need for advanced

methods capable of finely balancing privacy with
utility (Lyu et al., 2020b; Anil et al., 2021; Dupuy
et al., 2022; Li et al., 2018; Mireshghallah et al.,
2021). Current state-of-the-art (SOTA) techniques,
such as SanText (Yue et al., 2021) and CusText
(Chen et al., 2023), illustrate these challenges. San-
Text, while focused on maximizing privacy, may
significantly diminish the utility of sanitized text.
Conversely, CusText can preserve better text utility
but can only achieve privacy in a limited manner.

SanText achieves metric local DP (MLDP) text
sanitization by probabilistically replacing individ-
ual sensitive tokens (e.g., ‘Paris’) with alternative
ones (e.g., ‘Lyon’). Replacements are selected with
probability proportional to their semantic distance
to the original, in a manner similar to the exponen-
tial mechanism (McSherry and Talwar, 2007) in DP
literature. While for smaller number of tokens this
achieves meaningful replacements, applying this
broadly can increase the likelihood of selecting less
desirable ones. For instance, while ‘Lyon’ should
be one of the top replacements for ‘Paris,’ the com-
bined probability of a large number of low-utility
city names can outweigh ‘Lyon,’ leading to poor
choices. In response, CusText proposed to first
cluster tokens based on their similarity. It then per-
forms replacements by selecting only tokens from
the relevant cluster, via the exponential mechanism.
Though improving utility, this approach also limits
CusText’s privacy guarantees to within each cluster.

How can we reconcile this conflict between pri-
vacy and utility in the SOTA? We answer this ques-
tion by introducing CluSanT,1 a novel framework
for text sanitization consisting of three components:
(1) token clustering, (2) cluster embedding, and (3)
token sanitization. CluSanT allows its users to tune
their desired privacy/utility tradeoff by controlling
the likelihood to choose a sanitized token from a
more optimal cluster. Independent of the frame-

1CluSanT: Cluster-based Sanitization of Text.
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work, we also propose several improvements and
evaluation metrics that we experimentally show
augment the SOTA. Notably, while CluSanT’s to-
ken sanitization algorithm is based on various pa-
rameters, it achieves MLDP guarantees (Thm. 5)
for any valid parameters, allowing for flexible plug-
and-play. We outline our general approach through
the following main technical challenges.

1.1 Technical Challenges

We summarize challenges in the SOTA, along with
our proposed solutions:

• SanText: There is a high probability density over
less desirable tokens.
Our Strategy: Given tokens clustered in a se-
mantically meaningful manner, CluSanT’s token
sanitization mechanism selects the optimal clus-
ter with high probability, then performs replace-
ments within the smaller, relevant cluster of to-
kens. This enhances the likelihood of selecting
semantically appropriate replacements, thereby
improving utility.

• CusText: CusText’s approach cannot achieve
standard MLDP (Theorem 4).
Our Strategy: We introduce a mechanism that
privately (with MLDP) selects a cluster based on
a cluster embedding. Parametrizing the cluster
embedding allows one to tune the probability of
selecting the optimal cluster, adapting to various
application scenarios.

• General Coherence: Previous approaches, in-
cluding SanText and CusText, have not ade-
quately addressed issues related to grammatical
or logical coherence within the text.
Our Strategy: Addressing this is crucial be-
cause SOTA and our framework produce human-
readable text, unlike other works that generate
text representations for downstream ML tasks
(Feyisetan et al., 2019, 2020; Lyu et al., 2020a,b).
Our experiments evaluate semantic similarity and
coherence in sanitized texts through various met-
rics, including those developed with the assis-
tance of Large Language Models (LLMs).

1.2 Summary of Contributions

General Framework for Text Sanitization with
Parametrizable Privacy. We introduce CluSanT,
a framework for MLDP text sanitization, which
can be parametrized by: (1) a clustering of tokens
of interest and (2) k : amplification factor which

controls cluster embedding. Our framework’s flexi-
bility allows its users to choose from a whole spec-
trum of MLDP algorithms to adapt to various text
sanitization needs. We demonstrate how SanText
and CusText (SOTA) are special (extremal) cases
within this spectrum of the CluSanT framework.

Improved Sensitive Token Set, Utility Metrics,
and Extensive Experiments. Independent of our
MLDP framework, we made improvements that
can also be applied to the SOTA. In particular, we
augment the set of sensitive tokens, improve em-
beddings for multi-word tokens, and utilize more
direct metrics and datasets to assess semantic simi-
larity and coherence of sanitized text, providing an
accurate reflection of text quality and usability. We
apply these improvements to extensively demon-
strate the effect of different CluSanT parametriza-
tions on the tradeoff between utility and privacy,
through utility improvement over the base case
(CluSanT parametrized to emulate SanText). We
show that under many parametrizations we can
closely match CusText in performance, while still
maintaining MLDP guarantees.

2 Related Works

The most direct strategy for sanitizing text is
directly masking sensitive elements (Pilán et al.,
2022; Microsoft, 2023), which can reduce text
utility. Instead, differential privacy can replace
quasi-identifiers with semantically similar terms.
The SOTA are SanText (Yue et al., 2021) and Cus-
Text (Chen et al., 2023), which we detail in Sec. 3.

The most recent work in this line (Tong
et al., 2023) proposed RanText, an exponential
mechanism-based approach for token replacement,
with the goal to produce perturbed prompts for
LLMs. However, their stated privacy (Theorem
2) is limited to tokens in specific adjacency lists
(similar to how CusText’s privacy is limited to each
clustering), rather than standard MLDP2. Another
work (Carvalho et al., 2023) attempts to choose
replacement words within a radius of the original
word; however, as radii generally do not partition
the set of words, this method appears incompatible
with clustering-based algorithms like CusText. We
moreover were not able to find the code of the
algorithm. Consequently, we choose not to exper-

2In fact, since their adjacency lists may not be a parti-
tion of tokens (unlike CusText’s and CluSanT’s clusterings),
RanText’s privacy guarantees are incomparable with those of
CluSanT and SOTA.
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imentally compare with these works at this time.
One improvement we made in our experiments

are the datasets used. Instead of an ad-hoc method
of identifying sensitive words, we use the TAB
benchmark of (Pilán et al., 2022), a corpus of 1,268
English-language court cases from the European
Court of Human Rights (ECHR), with the sensitive
data manually-annotated in each document.

Several works add DP noise to text represen-
tations (Feyisetan et al., 2019, 2020; Lyu et al.,
2020a,b) or use adversarial training (Xie et al.,
2017; Coavoux et al., 2018; Elazar and Goldberg,
2018; Li et al., 2018) to create these representations.
These methods produce non-human-readable out-
puts for ML pipelines, addressing different prob-
lems. Other works specific to downstream tasks
include e.g., training a learning algorithm (Igam-
berdiev and Habernal, 2023; Habernal, 2021). Like
SOTA, we produce sanitized text for general use
rather than private representations.

Lastly, (Mattern et al., 2022) argues that saniti-
zation via replacing individual tokens within a text
limits syntax variability, and can lead to e.g., gram-
mar errors. They instead propose paraphrasing via
GPT-2. However, we believe our line of works will
continue to be useful, since (1) token-based saniti-
zation, such as CluSanT, do not appear to conflict
with, and may even complement paraphrasing, and
(2) certain contexts require specific syntax, e.g.,
legal documents (Vogel, 2009) in our experiments.
Moreover, one may mitigate certain grammar is-
sues through clustering to separate grammatically
dissimilar tokens (e.g., by putting ‘Britain’ and
‘British’ in different clusters).

3 Preliminaries

Following SOTA, we privatize text by randomising
each token (e.g., ‘Paris’, ‘United States’) deemed
‘sensitive’, in a way that preserves metric local dif-
ferential privacy (MLDP) (Alvim et al., 2018). We
call a token sanitization mechanism a (randomised)
algorithm which takes as input a token and outputs
a token which we call the sanitized token. Below,
we define LDP. Informally, a mechanism M is LDP
if from its output (sanitized token) y, one cannot
tell if the original input (token) was x or x′.

Definition 1. (Local Differential Privacy (LDP)
(Duchi et al., 2013)) M : X → Y satisfies ϵ-LDP
if ∀x, x′ ∈ X, y ∈ Y , Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ.

Metric LDP (Alvim et al., 2018) is a vari-
ant/extension of LDP for better utility, by tuning

privacy with respect to a distance metric. Here,
one can more easily distinguish whether y is the
output of M(x) or M(x′)—if x, x′ are far apart.
Specifically, a mechanism M satisfies MLDP for a
given privacy parameter ϵ ≥ 0 and distance metric
d : X×X → R≥0, if the following condition holds
for all x, x′ ∈ X, y ∈ Y : Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ·d(x,x
′).

Lastly, the exponential mechanism has been ap-
plied extensively in previous work on token sani-
tization (e.g., SanText, CusText, RanText). Infor-
mally, it selects a sanitized token with probability
proportional to its closeness to the original token
(with closeness defined via utility function u).
Definition 2. [Exponential Mechanism (McSherry
and Talwar, 2007)] Let I be a finite set denoting
the input space, and O be a finite set denoting
the output space. Let u(x, y) be a utility func-
tion3 defined for any x ∈ I and y ∈ O, and let
∆u ≥ 0, ϵE ≥ 0. The exponential mechanism,
parametrized by I,O, u,∆u, runs the following:
ME(x) (with x ∈ I): Randomly select y ∈ O,
where

Pr(ME(x) = y) =
exp(ϵE · u(x, y)/(2∆u))∑

y′∈O exp(ϵE · u(x, y′)/(2∆u))

Two useful facts from (McSherry and Talwar,
2007; Yue et al., 2021) are as follows.

Theorem 1. For the exponential mechanism ME ,
the following hold:

1. Fix any x, x′ ∈ I and y ∈ O. Then
Pr(ME(x)=y)
Pr(ME(x′)=y) ≤ exp

(
ϵE |u(x,y)−u(x′,y)|

∆u

)

2. If we set the parameter ∆u =
max (|u(x, y)− u(x′, y)|) (called sensi-
tivity of u) then ME is ϵ-LDP. If we set
parameter ∆u = 1 and let u(x, y) = −d(x, y)
for a metric d, then ME is ϵ-MLDP.

3.1 Notation
For ease of reading, we standardize the notation
used to describe SOTA.

• X: the set of all tokens within texts of interest.
Each token is represented by a real vector Rℓ

for some constant ℓ (this mapping from token to
vector is called a token embedding).

• X ′: a set of sensitive tokens. We usually name
sensitive tokens as x, x′. X ′ may be a sub- or
super-set of X . For experiments, we use an initial
set of sensitive tokens from X as seeds, which we

3Note u is called a utility function by convention, but
the ‘utility’ of a sanitized text may be defined on completely
different metrics; see Experiments Sec. 5.
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then expand several-fold with additional tokens
of a similar nature. For instance, if ‘British’ is a
seed token, we may add ‘French’ and ‘German’,
even if they were not initially in X .

• y ∈ Y : output of the token sanitization mech-
anism. Previous work differ in set Y ; in the
interest of fairness and ease of presentation, we
set Y = X ′ in all experiments.

• u: utility function; ∆u: sensitivity of u (Expo-
nential Mechanism Def. 2)

• M : X ′ → Y : token sanitization mechanism

SanText (Yue et al., 2021) In SanText, the token
sanitization mechanism M : X ′ → X ′ is based on
the exponential mechanism (Def. 2), with a mod-
ification that the utility function sensitivity ∆u is
replaced by the constant 1 (see Thm. 1). The utility
function is defined as u(x, x′) = −d(x, x′), where
d(x, x′) is a metric distance (e.g., Euclidean) be-
tween the real-vector embeddings of tokens x, x′.
We formalize this mechanism in the Appendix. San-
Text achieves the following privacy guarantee.

Theorem 2 (Privacy of SanText). The token saniti-
zation mechanism M of SanText, satisfies ϵ-MLDP.

We note that SanText+ is a variation introduced
in the same paper (Yue et al., 2021). However,
SanText+ sanitizes non-sensitive tokens as well as
sensitive ones; thus, for fairness in utility compar-
isons (as sanitizing more tokens lowers the text
utility), we focus on SanText.

CusText (Chen et al., 2023) CusText improves
the utility of SanText by first partitioning all tokens
in the lexicon X into disjoint sets called clusters
based on token similarity. Then, given a fixed set of
clusters, CusText performs exponential mechanism
(Def. 2) within each cluster.

Since CusText only ever replaces x with tokens
in the cluster containing x, CusText’s privacy ap-
plies only within each cluster.

Theorem 3 (Privacy of CusText). Let C be a clus-
ter. Let MC : C → C be the mechanism M de-
fined above, but with domain and range restricted
to cluster C. Then MC satisfies ϵ-LDP.

However, CusText’s mechanism M does not in
general satisfy (metric) LDP, when there is more
than one cluster. Intuitively, if tokens x, x′ are in
different clusters, M(x) and M(x′) have disjoint
supports and thus are easily distinguishable.

Theorem 4 (Proof in Appendix). For any cluster-
ing with at least two clusters, the mechanism M

defined in CusText cannot satisfy ϵ-(metric) LDP
for any ϵ ∈ R.

4 CluSanT: Cluster Exponential
Mechanism with MLDP Guarantees

CluSanT first clusters tokens based on their simi-
larity. It then sanitizes sensitive tokens by first se-
lecting a cluster, then selecting the replacement to-
ken from within that cluster. This approach makes
contextually relevant replacements, improving the
utility of sanitized text over SanText while still
maintaining MLDP. CluSanT’s privacy guarantees
hold for any clustering, allowing for flexible inte-
gration of different clustering methods.

In this section, we present two of the compo-
nents in our CluSanT framework: cluster embed-
ding (Sec. 4.1) and token sanitization (Sec. 4.2).
The method of obtaining a token clustering is in-
dependent of this section and will be detailed in
our experiments (see Sec. 5). Through parameter-
izing our clustering, and cluster embedding with
a parameter k, we obtain a spectrum of token san-
itization mechanisms that range from SanText at
one extreme and CusText at the other extreme (see
Sec. 4.1.1). For now, we assume we already have a
set of token clusters {C}.

Notation:

• Mapping f between token x and its vector repre-
sentation in Rℓ is called a token embedding.

• Mapping f ′ between clusters and real vectors is
called a cluster embedding.

• {C}: A clustering, a set of subsets C (clusters)
partitioning X ′∪Y (or X ′ if Y = X ′). Cx is the
(unique) cluster containing token x.

• dc : Rℓ × Rℓ → R: Any distance function
that is a metric. We extend this to measure
the distance between clusters, i.e., dc(C,C ′) =
dc (f

′(C), f ′(C ′)) for clusters C,C ′.

• d : Rℓ ×Rℓ → R: Any distance measure (which
is not assumed to be a metric, and may be differ-
ent from dc) between two tokens.

4.1 Cluster Embedding
We first define a cluster embedding given a token
embedding and a clustering. Recall, a token
embedding f is a mapping from a token to a
real vector. A cluster embedding f ′, on the other
hand, maps a cluster to a real vector. Our cluster
embedding is parameterized by k ≥ 1.
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Our cluster embedding f ′ (Fig. 1) is
parametrized by a standard token embed-
ding f , a clustering, and k, which intuitively tunes
how ‘pushed apart’ the clusters are from each other
in the embedding. Looking ahead, our privacy
Thm. 5 holds when the distance between clusters
dc(Cx, Cx′) can be increased by tuning k (the
choice of dc being a Lp-norm satisfies this).

Specifically, our cluster embedding f ′ embeds
both tokens and clusters. It defines cluster embed-
dings by ‘pushing’ cluster apart by a factor of k
(Step 1). Meanwhile, it maintains the original (ac-
cording to f ) difference between the embeddings
of tokens from within the same cluster. This is
done in Step 2(b), by adding the vector difference
(f(x)− Cx) to the new cluster centroid, k · Cx.
How is cluster embedding used? Looking ahead,
our sanitization mechanism: it first selects a cluster,
then selects a token from within this cluster. By
parametrizing f ′ with a larger k and a distance dc
that grows with k4, we select more optimal clusters
with higher probability.
Effect of parameter k. Since k only affects clus-
ter selection (f ′), we ensure that words within the
same cluster remain ‘indistinguishable’ from each
other, regardless of their embedding—we apply a
standard LDP mechanism when selecting a token
from within a cluster. Conversely, tokens from
different clusters may be more distinguishable, de-
pending on k. The larger k is, the more probability
of choosing a better cluster, but the more distin-
guishable the clusters are (while still preserving
MLDP). We formally describe the effect of k on
privacy leakage in App. D. Utility gains from larger
k depend on evaluation metric; we give examples
in our experiments (Sec. 5).

Defining a cluster-based embedding follows the
spirit of (Chatzikokolakis et al., 2013) and (Andrés
et al., 2013)’s concept of geo-indistinguishability,
where a radius naturally defines a cluster of
close/indistinguishable geo-points within the ra-
dius. In our case, CluSanT forms clusters of words
based on their (semantic/syntactic) similarity using
word embeddings, where we leave the definition of
‘similarity’ up to user interpretation.

4.1.1 Describing SanText and CusText in
Terms of CluSanT

CluSanT can be parametrized, via the clustering,
parameter k, and distances, to achieve a spec-
trum of ϵ-MLDP token sanitization mechanisms.

4Such as e.g., Euclidean used in SOTA.

Cluster Embedding f ′:

• Inputs: Parameter k, token embedding f ,
clustering {C} of X ′ ∪ Y

• Output: Embedding f ′. On input a cluster
C or token x ∈ X ′ ∪ Y , f ′ outputs a real
vector Rℓ, which defines the embedding of
the cluster C or token x.

1. For each cluster C ∈ {C}:

(a) Compute the centroid of C. We over-
load notation and also use C to de-
note the centroid of this cluster. C =
1
|C|

∑
x′∈C f(x′).

(b) Define f ′(C) := k · C

2. For each token x ∈ X ′ ∪ Y :

(a) Compute the centroid of Cx. We over-
load notation and also use Cx to de-
note the centroid of this cluster. Cx =
1

|Cx|
∑

x′∈Cx
f(x′).

(b) Define f ′(x) := k ·Cx+(f(x)−Cx)

Figure 1: Cluster embedding with parameter k

We show that SanText and CusText are instantia-
tions of CluSanT, situated at extremal ends of this
parametrization.

Fact 1. SanText and CusText are equivalent to Clu-
SanT for specific choices of parameters.

SanText. SanText’s algorithm is the same as Clu-
SanT (Fig. 2) parametrized by k = 1, dc being
Euclidean (same metric as SanText), and each clus-
ter containing exactly one token (i.e., #clusters is
equal to #tokens). Note this means that Step 1 is
equivalent to SanText, and since each cluster has
only one token, then Step 2 always chooses the
same token (regardless of distance d), making this
algorithm equivalent to SanText (recall, SanText
does not consider token clustering).

CusText. CluSanT can be parametrized to asymp-
totically approach the behaviour of CusText, which
always chooses a token from an ‘optimal’ cluster.
We first define the clustering and distance d to be
the same as CusText’s, setting dc as Euclidean, and
letting k → ∞. When k → ∞, dc between f ′ em-
beddings of different clusters is infinitely large, and
Step 1 of Fig. 2 will with overwhelming probability
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M(x): The mechanism is parameterised by
the set of clusters {C} (where all tokens in
clusters are in set X ′ ∪ Y ), token embedding
f , cluster embedding f ′, metric dc, distance
d, and privacy parameter ϵ.
Input: token x ∈ X ′; Output: token in Y

1. Choose a cluster C: Run exponential mech-
anism parametrised by ϵE = ϵ/2, input
and output space are both {C} (set of all
clusters) with the cluster embedding f ′,
utility uc(C,C

′) = −dc(C,C
′), and set-

ting parameter ∆uc to 1.

2. Choose token within cluster C: Run expo-
nential mechanism parametrised by ϵE =
ϵ/2, input space X ′, token embedding f ,
output space C∩Y (Y tokens in cluster C),
utility u(x, x′) = −d(x, x′), and setting
∆u = max(1,maxx,x′,y∈X′ |d(x, y) − d(x′, y)|).
(Note: Some embeddings, e.g., MPNet we use, are

normalized and thus already have sensitivity 1).

3. Output the token chosen above.

Figure 2: CluSanT’s ϵ-MLDP Sanitization Mechanism

choose the cluster Cx of the original token x.

4.2 Token Sanitization Mechanism for Metric
LDP Guarantees

The main observation behind CluSanT’s token san-
itization mechanism is the following: CusText
achieves good utility since it ensures that a token
x is replaced only by another (possibly the same)
token x′ ∈ Cx, the cluster which x is in. However,
by Thm. 4 we showed that this approach is impos-
sible to achieve MLDP. Instead, CluSanT achieves
privacy (and still good utility) by giving a small
probability of selecting ‘less good’ clusters.

Our mechanism is in Fig. 2. Intuitively, Step 1
(cluster selection) is MLDP following the exponen-
tial mechanism-style approach of SanText. Then,
Step 2 (selecting within a cluster) achieves guaran-
tees similar to CusText. Parametrizing Steps 1 and
2 via the clustering, cluster embedding (k), and
distances d, dc, gives us a spectrum of ϵ-MLDP
mechanisms that include SanText and CusText.

Theorem 5. Consider d, dc, f , f ′ (with parameter
k), and the clustering are chosen s.t.:

• dc is a metric.

• For all x, x′ (using embedding f ′ for dc, and f ′

for d): (1) dc(x, x′) ≥ 1 or dc(x, x′) ≥ d(x, x′),
and (2) if Cx ̸= Cx′ , dc(Cx, Cx′) + 1 ≤ 2 ·
dc(x, x

′). 5

Then, M(x) in Fig. 2 achieves ϵ-metric LDP for
metric dc, and embedding f ′.

Proof. Fix any x, x′ ∈ X ′, y ∈ Y . If x = x′ then
Pr(M(x)=y)
Pr(M(x′)=y) = 1 = e0 so the MLDP inequality
trivially holds. Thus, consider x ̸= x′.

We have Pr(M(x) = y) equal to Pr(M1(x) =
Cy) Pr(M2(x) = y|M1(x) = Cy) where (1)
M1(x) = Cy is the event that Step 1 of M chooses
Cy, and (2) M2(x) = y|M1(x) = Cy is the event
that Step 2 of M ′ chooses token y, given Step 1
chooses Cy.

Conditioned on Step 1 choosing clus-
ter Cy, Step 2 runs exponential mecha-
nism with (both LDP and MLDP) pri-
vacy ϵ/2. Thus, Pr(M2(x)=y|M1(x)=Cy)

Pr(M2(x′)=y|M1(x′)=Cy)
≤

min
(
eϵ/2, eϵd(x,x

′)/2
)
. Moreover, by Thm 1,

Pr(M1(x) = Cy)

Pr(M1(x′) = Cy)
≤ exp

( ϵ

2
|dc(Cx, Cy)− dc(Cx′ , Cy)|

)

Thus,
Pr(M(x) = y)

Pr(M(x′) = y)

≤ e
ϵ
2
|dc(Cx,Cy)−dc(Cx′ ,Cy)|e

ϵ
2
min(1,d(x,x′))

Now consider the following two cases:

1. Cx = Cx′ : Then, |dc(Cx, Cy) −
dc(Cx′ , Cy)| = 0 and e

ϵ
2
min(1,d(x,x′)) ≤

eϵ·dc(x,x
′) by theorem assumption (1) on dc.

2. Cx ̸= Cx′ : Since dc is a metric, |dc(Cx, Cy)−
dc(Cx′ , Cy)| ≤ dc(Cx, Cx′). Moreover, by
assumption, for Cx ̸= C ′

x, dc(Cx, Cx′) + 1 ≤
2 · dc(x, x′). Thus,

e
ϵ
2
(|dc(Cx,Cy)−dc(Cx′ ,Cy)|+1) ≤ e

ϵ
2
(2·dc(x,x′))

= eϵ·dc(x,x
′)

5 Experiments

Previous work (Feyisetan et al., 2020; Yue et al.,
2021; Chen et al., 2023) evaluated the quality

5We refer to App. C for more details on satisfying these
assumptions. In short, (1) can be satisfied with appropriate
choices of distances and embeddings. (2) can be satisfied by
choosing dc based on any Lp-norm.
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of sanitized text based on the performance of
downstream tasks (e.g., sentiment analysis) on
sanitized text. In this work, we evaluate the
quality of sanitized text using more direct metrics
that capture the semantic integrity and linguistic
naturalness of sanitized text.

Metrics and Dataset We evaluate sanitized text
primarily with semantic similarity and perplex-
ity, and four additional metrics assessing common
sense, coherence, cohesiveness, and grammar qual-
ity, using GPT-4o. In App. E we show (1) example
sanitized texts, evaluated using cosine similarity,
and (2) evaluations of a sanitized text validation set
based on the SST2 (Socher et al.) dataset used in
SanText and CusText.

Cosine/Semantic similarity is measured using
embedding vectors from the all-MiniLM-L6-v2
(sentence embedder) model6. We compute co-
sine similarity, a fundamental component of many
downstream text mining tasks such as sentiment
classification (Thongtan and Phienthrakul, 2019),
between embeddings of original and sanitized texts
to assess semantic preservation.
Perplexity measures the naturalness of the sanitized
text by how well it aligns with typical language pat-
terns, with lower perplexity indicating more natural
text (higher probability). We evaluate the perplex-
ity of sanitized texts with GPT-2.
GPT-4o is used to evaluate grammar, common
sense, coherence, and cohesiveness. LLMs’ capa-
bilities in assessing these metrics has been shown
to match or surpass human evaluators in accuracy
and consistency (Chiang and Lee, 2023; Yu et al.,
2024) in various NLP evaluations (e.g., RAG).

We use the TAB dataset (Pilán et al., 2022),
which includes 1,268 annotated English-language
court cases from the European Court of Human
Rights. This dataset offers a robust framework
for evaluating general-purpose text anonymization,
with high-quality annotations and diverse content.
More experiment setup details are in App. E.

Experimental Methodology In our experi-
ments 7, we use a simple CusText clustering
method (Chen et al., 2023): given a set of tokens
X to cluster, it randomly picks a token x, creates
a cluster Cx, and inserts into Cx the top h− 1 to-
kens similar to x from X , simultaneously removing

6https://docs.trychroma.com/guides/embeddings
7For code and more details on our experiments please see

https://github.com/AwonSomeSauce/CluSanT.git.

them from X . This process is repeated until X is
empty, resulting in each cluster containing exactly
h tokens. While this simple clustering method can
be improved, the choice of clustering method is or-
thogonal to our work. By varying h, we can control
the size and number of clusters. In our study, we
test with 40, 180, 360, and 720 clusters.

Augmented Token Set We improve previous ap-
proaches like SanText and CusText by augmenting
the set of sensitive words and phrases, making it
more realistic and contextual. We consider the set
X ′ as all sensitive words or phrases from the TAB
dataset, supplemented with 100 words/phrases of
similar nature for each using GPT-4o. For example,
for “Sinn Fein headquarters,” we obtained phrases
of similar nature like “Labour Party headquarters,”
“Conservative Party headquarters,” etc., rather than
only similar terms like “Irish” which, while similar
in vector embedding space, are not of the same
nature. This approach extends the set of sensi-
tive tokens to include additional, realistic phrases
not originally in a text collection but still sensitive.
In contrast, SanText and CusText recognizing the
limitations of a restricted set of sensitive tokens,
attempt to mitigate this by allowing replacements
with non-sensitive words. However, this method of-
ten leads to replacements that do not always make
sense. For example, replacing “Sinn Fein headquar-
ters” with a non-sensitive word, such as “Irish” can
render the text nonsensical.

Multi-word Embeddings SanText and CusText
rely on single-word embeddings like GloVe (Pen-
nington et al., 2014), which cannot directly handle
multi-word phrases such as “Sinn Fein headquar-
ters.” Our approach, on the other hand, employs the
all-MiniLM-L6-v2 sentence embedder, designed
to handle phrases and provide more accurate con-
textual representations. Our experiments ensure
fairness for SanText and CusText by using the same
set X ′ of words/phrases for replacement and the
same token embedder, all-MiniLM-L6-v2. Finally,
we use Euclidean distance for all methods.

Numerical Results We show partial experimen-
tal results, in Figures 3, 4, 5, 6 and full results in
Figures 7, 8, 9, 10, 11, 12 in the Appendix. Fig-
ures show improvements achieved by CluSanT in
terms of semantic similarity, perplexity, common
sense, coherence, cohesiveness, and grammar over
SanText. For all metrics except perplexity, higher
scores are better, while for perplexity, lower scores
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Figure 3: Semantic similarity improvement over San-
Text (%). CluSanT abbreviated by CST, CusText by CT.
Horizontal axis varies parameter k of CluSanT. Vertical
axis varies the number of clusters. Same axes apply for
the other heatmaps as well. Unless otherwise mentioned,
the higher, the better.
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Figure 4: Peplexity improvement over SanText (%); the
lower, the better

are preferred. We abbreviate CluSanT by CST and
CusText by CT. We consider CT as a special ver-
sion of CluSanT where k = ∞.

We plotted the number of clusters on the vertical
axis and the centroid pushing factor k of CluSanT
on the horizontal axis, creating heatmaps for each
ϵ value considered: 0.5, 1, 2, 4, 8, 16. Due to space
constraints, we only show results for ϵ = 1 and
ϵ = 8 here and include the rest in the Appendix.

For all ϵ values, as k increases (moving right
in the maps), the semantic similarity improvement
(over SanText) increases. Additionally, as the num-
ber of clusters increases (moving down), semantic
similarity improvement also increases.

The most significant improvement of CluSanT
over SanText is observed for ϵ = 8 and 720 clus-
ters. Generally, the more clusters used, the greater
the improvement over SanText. For ϵ = 16, the im-
provement in semantic similarity for CluSanT over
SanText is not as pronounced as for ϵ = 8. This is
because, while the semantic similarity of sanitized
text to the original text for CluSanT approaches 1
for this ϵ (the highest value possible, being a cosine
similarity), the semantic similarity for SanText also
increases for larger ϵ values, resulting in a slightly
reduced improvement margin.
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Figure 5: Common sense improv. over SanText (%)
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Figure 6: Coherence improvement over SanText (%)

Similar trends are observed for perplexity, com-
mon sense, and coherence, as well as for grammar
and cohesiveness (detailed in Appendix). As the
number of clusters and k increase, CluSanT’s
performance improves significantly over SanText,
approaching that of CusText. While CusText
shows better performance across metrics, it is only
marginally better than CluSanT. However, this
comes at the cost of weaker privacy guarantees.
We note that these metrics represent general trends;
as LLM judgments can be noisy, smaller k values
may occasionally yield better results.

6 Conclusion

We introduced CluSanT, a novel framework for text
sanitization that achieves metric local differential
privacy (MLDP). CluSanT comprises token cluster-
ing and token sanitization, leveraging Large Lan-
guage Models to generate substitute tokens, which
are then clustered, and sanitized using a MLDP
algorithm. Our MLDP framework encompasses a
range of privacy-utility tradeoffs via tuneable pa-
rameters between state-of-the-art algorithms San-
Text and CusText, allowing users to achieve strong
privacy or high utility as required. Our framework
achieves MLDP guarantees regardless of the clus-
tering, allowing for plug-and-play (and future opti-
mization) of this component in our framework. In
summary, CluSanT advances the area of privacy-
preserving text processing, offering a robust, tune-
able solution for handling sensitive text.
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Limitations

• We inherit some limitations of San-
Text/CusText. In particular, sanitizing a
text by sanitizing individual tokens can lead
to mistakes. For example, when a token
has two different meanings in different
contexts, the token sanitization may not
know which meaning it should take. While
we use a sentence embedder that generates
different embeddings for ‘London, Ontario’
and ‘London, England,’ it is not helpful for
distinguishing ‘Jordan’ as a country from the
name ‘Jordan.’ To achieve this, the embedder
would need to consider the meaning of the
entire passage. However, accomplishing this
is challenging and requires further work.
We believe our framework can be improved
in follow-up studies by considering token
context in our clustering and text sanitization.

• While we improved the sensitive token set
and multi-word embedding in our framework,
we tested only one clustering method (that of
CusText’s) and primarily used Euclidean dis-
tances. One direction to enrich our framework
is by parametrizing it with other clustering
methods and distance metrics. Whereas Clu-
SanT presents a general framework and pri-
vacy theorem for an arbitrary clustering, build-
ing an optimal clustering methods appears to
be a highly non-trivial task which we defer to
future work.

• Our privacy theorem for the CluSanT frame-
work makes some assumptions on the rela-
tionship between the distances and the param-
eter k chosen (though they can be satisfied by
common choices of distances, see App. C)
A meaningful research direction can be to
weaken such assumptions.
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B SanText and CusText

B.1 SanText
Below, we detail the operational steps of the to-
ken sanitization mechanism M of SanText when
processing an input token x:

1. M is parameterized by the privacy parameter
ϵ and employs a metric d to measure distances
between tokens.

2. The utility function u is defined such that
u(x, x) = −d(x, x). Under this definition, M
selects an output from Y based on the exponen-
tial mechanism (Def. 2) tailored for the specified
ϵ, but with parameter ∆u set as 1.

B.2 CusText
We describe CusText’s token sanitization algorithm
M : X ′ → X for input token x.

1. M is parametrized by the formed clusters, a
distance d, and the privacy parameter ϵ.

2. Let C ⊆ X be the cluster x belongs in.

3. Let utility u : C × C → R be the neg-
ative of the normalised distance u(x, y) =

−d(x,y)−dmin

dmax−dmin
(dmin = minx,y∈C d(x, y) and

dmax = maxx,y∈C d(x, y)), so that sensitivity
∆u = 1.

4. Using the above utility function, replace x with
some token in C via the exponential mechanism
(Def. 2) for privacy ϵ.

We present the proof for Thm. 4 that CusText
cannot achieve standard (M)LDP when there is
more than one cluster.

Proof. We prove first for LDP. Suppose for contra-
diction that there exists ϵ ∈ R such that M satisfies
ϵ-LDP. Then for all x, x′ ∈ X ′, y ∈ X , this in-
equality must hold:

Pr(M(x) = y) ≤ eϵ Pr(M(x′) = y)

Since there are at least two clusters, there must exist
x, x′ ∈ X ′ that belong in different clusters. Let y
be a token in the cluster of x, which means y is not
in the cluster of x′. This means that Pr(M(x) =
y) > 0 and eϵ Pr(M(x′) = y) = eϵ · 0 = 0.
Thus the above inequality cannot hold, which is a
contradiction, and thus there is no ϵ for which M
is ϵ-LDP.

The proof for metric LDP follows since if M
is ϵ-metric LDP then M is ϵ ·∆u-LDP. Since the

lexicon is finite, ∆u maximises over a finite set and
is also finite. Thus, if M is ϵ-metric LDP then it is
ϵ′-LDP for some finite ϵ′ (which we just proved is
impossible).

C Setting Parameters Satisfying Theorem
Assumptions

We discuss how to parameterize CluSanT in order
to leverage our general privacy Theorem 5. We
note that while we give specific examples of param-
eters below (e.g., dc set as Euclidean), our theorem
assumptions are stated more generally and may be
satisfied via other instantiations.

Assumption (1) can be satisfied by an appro-
priate setting of the embedding or distances dc, d.
For example, one can choose dc as Euclidean, and
setting k to be large enough so that dc(x, x′) ≥
d(x, x′) (for embedding f ′ for dc and embedding
f for d; recall k does not change f ). Another way
is to achieve dc(x, x

′) ≥ 1 for x ̸= x′, by normal-
izing embeddings.

Fact 2. Assumption (2) can be satisfied for dc
being any Lp-norm (e.g., Euclidean/L2-norm used
in SanText), and a large enough k.

Proof. Assume tokens below use embedding pa-
rameterised by k. By triangle inequality (since dc
is a metric), we can write

dc(x, x
′) ≥ dc(Cx, Cx′)−dc(x,Cx)−dc(x

′, Cx′)

Now multiply both sides by 2:

2 · dc(x, x′)

≥ 2 · dc(Cx, Cx′)− 2 · (dc(x,Cx)− dc(x
′, Cx′))

= dc(Cx, Cx′) + [dc(Cx, Cx′)

− 2 · (dc(x,Cx)− dc(x
′, Cx′))]

To prove our inequality, we just need that the
above is ≥ dc(Cx, Cx′) + 1. We note that we al-
ready have the “dc(Cx, Cx′)” part of the sum, so
we want

dc(Cx, Cx′)− 2 · (dc(x,Cx)− dc(x
′, Cx′)) ≥ 1

For dc(y, z) equal to the Lp-norm of y −
z, limk→∞ dc(x, x

′) → ∞, but (dc(x,Cx) −
dc(x

′, Cx′)) remains constant (since distance be-
tween x and Cx is unaffected by k). Thus, we
can always find a k such that the above inequality
holds.
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Intuition for the above proof: Recall in CluSanT
we write the embedding of point x in terms of the
cluster centroid k · Cx when using embedding f
parametrised by k. So

x = k · Cx + (Cx − x)

and
x′ = k · Cx′ + (Cx′ − x′)

Importantly, the “distance to the centroid”, (Cx −
x) or (Cx′ − x′) remains constant regardless of k.
This is true for distances based on Lp-norm, like
Euclidean used in the SOTA. So when k is large,
this “(Cx − x)” term becomes less significant, so
approximately,

2 · dc(x, x′)

≈ 2 · dc(k · Cx, k · Cx′)

= 2 · dc(f(Cx), f(Cx′)) for our embedding f parametrised by k

for some large enough k, the above is ≥
dc(f(Cx), f(Cx′)) + 1

D Effect of Parameter k on Privacy

We formally quantify the effect privacy leakage
of CluSanT based on k, for the example where
dc is any Lp-norm (i.e., dc(x, x′) = ||x − x′||p.
Informally, k linearly degrades LDP guarantees.

Fact 3. Consider an instantiation M of CluSanT
that satisfies the assumptions of Thm. 5, and let
dc be any Lp-norm. Then this instantiation satis-
fies ϵ∆-LDP, where ∆ = maxx,x′ dc(x, x

′) + k ·
maxCx,Cx′ dc(Cx, Cx′) (using embedding f ).

Proof. M satisfies ϵ-MLDP by Thm. 5, that is,
∀x, x′, y (We explicitly show the embedding here
for clarity.):

Pr(M(x) = y) ≤ eϵ·dc(f
′(x),f ′(x′)) Pr(M(x′) = y)

= eϵ||f
′(x)−f ′(x′)||p Pr(M(x′) = y)

≤ eϵmaxx,x′ ||f ′(x)−f ′(x′)||p Pr(M(x′) = y)

Here,

||f ′(x)− f ′(x′)||p
= ||f(x) + k · f(Cx)− (f(x′) + k · f(Cx′))||p
≤ ||f(x)− f(x′)||p + ||k · Cx − k · Cx′ ||p

The first inequality above is due to dc being a
metric. Thus,

max
x,x′

||f ′(x)− f ′(x′)||p

≤ max
x,x′

dc(f(x), f(x
′)) + k · max

Cx,Cx′
dc(f(Cx), f(Cx′))

E Detailed Experimental Results

Here we give the detailed prompt for obtaining the
extended set X ′ of sensitive tokens using GPT-4o.

If I give you a word or phrase, example
“southern norrland,” can you give me 100
similar words/phrases of the same cate-
gory?

For example:

• If it is a location, give me other lo-
cations that are similar in nature.

• If it is an organization, give me
other organizations that are similar.

• If it is an object, give me other ob-
jects that are similar.

The similarity should be in terms of the
category and characteristics of the entity.
The words you give should make sense
if used as a replacement for the original
word/phrase in a similar context.

Format output as a list of words/phrases:

[word/phrase1, word/phrase2, ...]

Here the context that "{search_phrase}"
was used in: "{context}".

For example, when the search phrase was ‘sarps-
borg city court (tingrett)’ with its context in the
TAB text, the output we received from GPT-4o
was:

[‘oslo district court’, ‘bergen district court’,
‘trondheim district court’, ‘stavanger district court’,
‘kristiansand district court’, ‘tromsø district court’,
‘drammen district court’, ‘fredrikstad district court’,
‘skien district court’, ‘ålesund district court’, ‘bodø
district court’, ‘hamar district court’, ‘molde dis-
trict court’, ‘haugesund district court’, etc].

Now we give detailed experimental results on se-
mantic similarity (Figure 7), perplexity (Figure 8),
grammar (Figure 9), common sense (Figure 10), co-
herence (Figure 11), and cohesiveness (Figure 12).
For perplexity we used GPT-2. To judge the gram-
mar, common sense, coherence, and cohesiveness
of santized text, we used GPT-4o, with the follow-
ing prompt.

Could you please evaluate the following
passage for its grammar, common sense,
coherence, and cohesiveness? Score it
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on a scale from 1 to 5, where 1 is the
lowest (poor quality) and 5 is the highest
(excellent quality).

You should score based on these criteria:

• Grammar: Are the sentences struc-
tured correctly?

• Common sense: Does the con-
tent make logical sense in the real
world?

• Coherence: Do the ideas flow logi-
cally from one sentence to another?

• Cohesiveness: Do all parts of the
text come together in a unified
whole?

Please ONLY respond in JSON format
with the four keys ’grammar’, ’common
sense’, ’coherence’, and ’cohesiveness’,
each with a score attached to them.

CluSanT’s improvement over SanText generally
increases with the number of clusters used. In-
creasing the number of clusters and parameter k
significantly enhances CluSanT ’s performance, ap-
proaching that of CusText. Although CusText per-
forms better across metrics, it offers weaker privacy
guarantees. Note that these metrics represent gen-
eral trends, and due to noisy judgments from LLMs,
smaller k values can sometimes yield better results.

In the following, we present an example of an
original text from the court dataset collected by
(Pilán et al., 2022), along with the substitutions
made by SanText, CluSanT with the number of
clusters 100 and k = 16, 64, and CusText. We also
give the cosine similarities for each substitution
and average similarities.

The original text is as follows:

The case originated in an application (no.
18308/02) against the Republic of Turkey
lodged with the Court under Article 34
of the Convention for the Protection of
Human Rights and Fundamental Free-
doms (“the Convention”) by two Turkish
nationals.

We do not show the whole original text because
even though it is public, it still contains sensitive
information.
Comparison of Substitution Methods

SanText (ϵ = 4)

• Aliağa Public Prosecutor → 60,000 norwe-
gian kroner (nok) (approximately 7,500 eu-
ros): 0.0633

• Aliağa Criminal Court → district court of
öland: 0.5709

• Court of Cassation → court of the township:
0.5470

• Republic of Turkey → legal and services office:
0.2239

• Turkish Government → pdki (democratic
party of iranian kurdistan): 0.5242

Average Cosine Similarity: 0.2264

CluSanT (ϵ = 4, clusters = 1000, k = 16)

• Aliağa Public Prosecutor → manisa high
criminal court: 0.5344

• Aliağa Criminal Court → urban planning
court: 0.5415

• Court of Cassation → court of the vicar-
general: 0.6089

• Republic of Turkey → supreme court of north
macedonia: 0.3797

• Turkish Government → halkın gücü (people’s
power): 0.6460

Average Cosine Similarity: 0.5718

CluSanT (ϵ = 4, clusters = 1000, k = 64)

• Aliağa Public Prosecutor → bialya lead pros-
ecutor: 0.6840

• Aliağa Criminal Court → elblag regional
court: 0.6085

• Court of Cassation → court of the steward of
the marshalsea: 0.5849

• Republic of Turkey → republic of slovenia:
0.6537

• Turkish Government → balıkesir, edremit:
0.5269

Average Cosine Similarity: 0.6985

CusText (ϵ = 4, clusters = 1000, equivalent to
k → ∞)

• Aliağa Public Prosecutor → turhal public
prosecutor: 0.6318
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• Aliağa Criminal Court → storfors district
court (storfors tingsrätt): 0.5465

• Court of Cassation → court of the lord high
admiral: 0.5305

• Republic of Turkey → republic of azerbaijan:
0.7156

• Turkish Government → ottoman empire:
0.5591

Average Cosine Similarity: 0.6703

SanText produces some substitutions that are
quite off, for instance, replacing “Aliağa Pub-
lic Prosecutor” with “60,000 Norwegian kroner
(NOK) (approximately 7,500 euros)”, which is
meaningless in this context.

CluSanT with k = 16 provides more contex-
tually appropriate substitutions compared to San-
Text. However, improvements are seen with a
higher k value. CluSanT with parameters (ϵ =
4, clusters = 1000, k = 64) provides the most con-
textually appropriate substitutions with the highest
average cosine similarity, making it the best choice
for preserving the meaning and context of the orig-
inal text.

CusText also provides reasonable substitutions
but occasionally diverges, such as replacing “Turk-
ish Government” with “Ottoman Empire.”

E.1 SST2: Binary Classification for Sentiment
Analysis

We further demonstrate how CluSanT can be used
to improve the utility in downstream tasks through
the SST2 dataset (Socher et al.) which has also
been used to evaluate SanText, CusText (though
their experiments focused on sanitizing text for
training). For this experiment (Table 1), we evalu-
ated an already-trained model for the task Binary
Classification for Sentiment Analysis on a valida-
tion set sanitized either through SanText, CusText,
or CluSanT (various k parameters). We see that
with higher k, we achieve significantly higher ac-
curacy and lower loss than SanText and approach-
ing that of CusText (while still achieving standard
MLDP guarantees).
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Figure 7: Semantic similarity improvement over SanText (%); the higher, the better. CluSanT abbr. by CST and
CusText by CT. Horizontal axis varies parameter k of CluSanT. Vertical axis varies the number of clusters. Same
axes apply for the other heatmaps as well.
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Figure 8: Peplexity improvement over SanText (%); the lower, the better.
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Figure 9: Grammar improvement over SanText (%); the higher, the better.
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Figure 10: Common Sense improvement over SanText (%); the higher, the better.
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Figure 11: Coherence improvement over SanText (%); the higher, the better.
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Figure 12: Cohesiveness improvement over SanText (%); the higher, the better.
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ϵ num clusters Mechanism k Accuracy Loss
N/A N/A Unsanitized N/A 0.91954 0.263152
1 N/A Santext N/A 0.678161 1.467184
1 336 CluSanT 8 0.643678 1.762656
1 336 CluSanT 16 0.666667 1.544436
1 336 CluSanT 32 0.724138 1.129536
1 336 Custext N/A 0.804598 0.828578
4 N/A Santext N/A 0.62069 1.799631
4 336 CluSanT 1 0.666667 1.569011
4 336 CluSanT 8 0.712644 1.466076
4 336 CluSanT 16 0.735632 1.144738
4 336 CluSanT 32 0.793103 1.056569
4 336 Custext N/A 0.724138 1.346923
8 N/A Santext N/A 0.703561 1.394245
8 336 CluSanT 1 0.678161 1.420536
8 336 CluSanT 8 0.689655 1.5434
8 336 CluSanT 16 0.770115 0.993965
8 336 CluSanT 32 0.793103 0.860854
8 336 Custext N/A 0.827586 0.760091
16 N/A Santext N/A 0.712644 1.474932
16 336 CluSanT 1 0.804598 1.168481
16 336 CluSanT 8 0.850575 0.564254
16 336 CluSanT 16 0.885057 0.463717
16 336 CluSanT 32 0.882357 0.463717
16 336 Custext N/A 0.873563 0.486622

Table 1: SST2 Binary Classification for Text Sentiment Analysis (Socher et al.) on existing trained model when
validation set is sanitized with various mechanisms.
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