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Abstract

Interestingly, LLMs yet struggle with some
basic tasks that humans find trivial to handle,
e.g., counting the number of character r’s in
the word “strawberry”. There are several pop-
ular conjectures (e.g., tokenization, architec-
ture and training data) regarding the reason
for deficiency of LLMs in simple word-based
counting problems, sharing the similar belief
that such failure stems from model pretraining
hence probably inevitable during deployment.
In this paper, we carefully design multiple eval-
uation settings to investigate validity of preva-
lent conjectures. Meanwhile, we measure trans-
ferability of advanced mathematical and coding
reasoning capabilities from specialized LLMs
to simple counting tasks. Although specialized
LLMs suffer from counting problems as well,
we find conjectures about inherent deficiency
of LLMs invalid and further seek opportunities
to elicit knowledge and capabilities from LLMs
that are beneficial to counting tasks. Compared
with strategies such as finetuning and in-context
learning that are commonly adopted to enhance
performance on new or challenging tasks, we
show that engaging reasoning is the most ro-
bust and efficient way to help LLMs better per-
ceive tasks with more accurate responses.

We hope our conjecture validation design could
provide insights into the study of future crit-
ical failure modes of LLMs. Based on chal-
lenges in transferring advanced capabilities to
much simpler tasks, we call for more attention
to model capability acquisition and evaluation.
We also highlight the importance of cultivating
consciousness of “reasoning before responding”
during model pretraining. !

1 Introduction

Recently, large language models (LLMs) are able
to achieve human-level performance on tasks such
as complex reasoning, taking proficiency exams,

LCodes and datasets are available at https://github.
com/xunannancy/LLMParadox.git.

code generation, multilingual understanding, and
math problem solving (LlamaWebsite, 2024; Ope-
nAl, 2024). They even obtain expert-level perfor-
mance on more challenging tasks like Mathemati-
cal Olympiad (DeepMind, 2024).

Surprisingly, LLMs yet struggle with some basic
tasks that are easy or trivial for humans to handle,
where no extensive word knowledge or compli-
cated reasoning is required (Ball et al., 2024; Shin
and Kaneko, 2024; Yehudai et al., 2024). For in-
stance, GPT-40 generates a wrong answer to the
questions of counting the number of character r’s
in the word “strawberry” (Karpathy, 2024b).

The research community has discussed ac-
tively over the mysterious reason for such unex-
pected failures. The top-voted conjecture attributes
such deficiency in counting characters to the sub-
word tokenization algorithm adopted by prevalent
LLMs (Shin and Kaneko, 2024; Karpathy, 2024b).
Other researchers speculate that LLMs haven’t seen
sufficient character-level data during pretraining,
hence lack the capability to understand character-
level relationships (Shin and Kaneko, 2024). Yehu-
dai et al. (2024) theoretically proved that the capa-
bility of transformer-based models to count char-
acters is constrained by their embedding size, and
the more unique characters in words the worse per-
formance achieved by LLMs. All the prior con-
jectures suggest that the deficiency of LLMs in
solving easy word-based counting tasks originates
from the design of LLM systems (i.e., tokenization
or model size) or the pretraining procedure (i.e.,
lack of character-level training), hence inevitable
during model deployment.

Considering the broader impacts of word-based
counting tasks on important research areas such as
morphological analysis (Shin and Kaneko, 2024),
we focus on investigating validity of above con-
jectures on LLM failures by carefully designing
multiple evaluation settings:
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Conjecture I: By evaluating LLMs with
character-level perturbation and explicit
character tokenization rather than the de-
fault subword input, we do not observe
noticeable performance improvement of
LLMs, hence invalidating the conjecture re-
garding subword tokenization.

J

Conjecture II: We consider classification
tasks (e.g., sentiment analysis) that LL.Ms
are proficient in with natural input. With
input phrased by rarely seen character for-
mat instead, we observe performance well
beyond random guess. This implies strong
capability of LLMs in performing character-
level reasoning, which conflicts with lack of
character-level training conjecture. )

Conjecture III: We conduct comprehen-

sive analysis on the impact of unique char-

acters within queried words, but observe

no clear connection to LLM performance,

implying invalidness of the conjecture re-
arding model size.

g g z )

We further evaluate specialized models,
such as Qwen2 Math (QwenLM, 2024b) and
CodeGemma (CodeGemmaTeam, 2024), aiming to
measure transferability of advanced mathematical
and coding reasoning capability to simple word-
based counting tasks. Unfortunately, neither math
nor coding LL.Ms are able to improve performance
over their base model trained on general domains
in the open-ended setting. In contrast, python
codes explicitly requested from coding LLMs
can complete counting tasks with perfection.
Such undesired failure from powerful specialized
LLMs trained on way more challenging task data
calls for more research in training strategies for
capability acquisition and benchmark construction
for comprehensive capability evaluation.

Motivated by invalidation of prevalent conjec-
tures regarding inherent deficiency of LLMs, we
seek opportunities to elicit knowledge and rea-
soning capabilities from LLMs that are beneficial
to simple counting tasks. Specifically, we evalu-
ate effectiveness of strategies commonly used to
enhance LLM performance on new or challeng-
ing tasks, i.e., widely adopted reasoning methods
such as chain-of-thought (Wei et al., 2022) and

self-consistency (Wang et al., 2022), finetuning
on counting data as well as in-context learning
(ICL) (Brown, 2020; Wei et al., 2023). Compared
with the other two directions, we find engaging rea-
soning is the most robust and efficient way to help
LLMs better perceive the task and enhance final
performance. With the aid of reasoning, GPT-40
is able to address all studied counting tasks with
perfection, which is consistent with the core idea of
“complex reasoning before responding” underlying
recently announced model OpenAl ol (OpenAl,
2024).

In summary, we analyze existing conjectures
over failure modes of LLLMs on simple word-based
counting problems. We hope our conjecture valida-
tion procedure could also give insightful guidance
in studying other unsolved deficiencies of LLMs
such as the lost-in-the-middle phenomenon (Liu
et al., 2024), distraction by irrelevant context (Shi
et al., 2023; Chen et al., 2024), etc. We also
show inability of specialized math or coding LLMs
to transfer advanced capabilities to much simpler
tasks, calling for more attention and research in
model capability acquisition during training and
comprehensive capability evaluation during bench-
marking. Lastly, we find effectiveness of reasoning
strategies to help elicit knowledge and problem-
solving capabilities from LLMs, highlighting im-
portance of cultivating consciousness of reasoning
during model pretraining.

2 Background

We introduce related work in Appx. §A.1.

2.1 Tokenization

Word-based tokenization algorithms used
in earlier non-transformer models such as
Word2Vec (Mikolov, 2013), FastText (Bojanowski
et al., 2017) and GloVe (Pennington et al., 2014),
split texts into words (probably with some extra
rules) and find numerical representation for each
of them. Words that are unseen in the training
corpus or ignored due to limited vocabulary size
are typically represented by an unknown token,
hence models lose their sensible information. On
the contrary, character- and byte-based tokeniza-
tion algorithms lead to much smaller vocabularies
and far fewer out-of-vocabulary tokens by splitting
texts into characters (e.g., CharBERT (Ma et al.,
2020) and Char2Subword (Aguilar et al., 2021))
and bytes (e.g., Canine (Clark et al., 2022) and
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Byt5 (Xue et al., 2022)), respectively. However,
character- and byte-based token representations are
less meaningful with sequence length drastically
expanded, posing the challenging efficiency issue
for modeling.

To take advantage of both worlds, subword tok-
enization algorithms, such as Byte-Pair Encoding
(BPE) (Sennrich, 2015), WordPiece (Wu, 2016)
and UnigramLLM (Kudo, 2018), decompose rare
words into meaningful subwords while keep fre-
quently used words intact. With the aid of open-
source fast tokenization tool tiktoken (OpenAl,
2024), BPE has become the dominant tokeniza-
tion algorithm adopted by recent large language
models like Llama 3 (Dubey et al., 2024) and GPT-
40 (OpenAl, 2024). We visualize how tokenizers
utilized by LLMs split the text differently, How
many r’s in the word "strawberry", as follows.

GPT-40: How many r ’s in the word
" st raw berry "?

Llama 3: How many r ’s in the word
" str aw berry "?

Gemma 1: How many r ’ s in the
word " strawberry "?

Mistral v0.3: How many r ’ s in the
word " st raw berry "?

DeepSeek V2: How many r ’ s in the
word " straw berry "?

Yi 1.5: How many r ’ s in the word

n

st raw berry " ?

2.2 Language Modeling

Given a sequence of m discrete tokens C' =
{z1,...,2m} decomposed by the tokenizer, the
language model predicts the next token according
to the learned distribution Py parameterized by 6.
Following different decoding strategies, the model
generates n more tokens step-by-step:

n

p($m+1:m+n‘c) = H Pg(iﬁtlc, T+l .- xm+t_1).

t=1

When the context C' represents a question from
the user, the continuation {41, - . . , Tymtn } from
the instructed or chat model can be 1) the direct
answer, 2) reasoning process followed by the final
answer (Wei et al., 2022; Kojima et al., 2022), or
3) the final answer followed by detailed explana-
tion (Xie, 2024).

3 Experimental Setup

Motivated by the problem of counting the number
of r’s in the word “strawberry” (Karpathy, 2024a),
we randomly sample 500 words from the NLTK
library (Bird et al., 2009) and prompt LLMs to
answer four distinct word-based questions in zero-
shot listed as follows, with their statistics listed
in Tab. 6.

Task I (Char Occur): How many {x}’s in the
word “{Y}”?

In this task, x is a character randomly sampled
from the word Y. For example, given the question
“How many r’s in the word “‘strawberry”?”, the
correct answer should be 3.

Task II (Substring Occur): Is the substring
“Ux}” part of the word “{Y}”’?

In this task, x is composed of a set of characters,
and could be present or absent from the word Y.
For instance, the answer to the question “Is the
substring “raw” part of the word “strawberry”?” is
“Yes”, while “No” is the answer to the question
when the substring is substituted by “rae” 2.

Task III (Word Len): How many characters in
the word “Y”?

This task requires LLMs to accurately count the
number of characters in one word. For example, the
ground-truth answer to the question “How many
characters in the word “strawberry”?” is 10.

Task IV (Distinct Char): How many distinct
characters in the word “Y”?

Different from Task III, the LLMs are examined
whether they are able to recognize each character
in the word as well as their frequency. For instance,
given the question “How many distinct characters
in the word “strawberry”?”, the correct answer is
8 since r repeats three times and should be consid-
ered one single character.

We provide detailed introduction to evalu-
ated language models and evaluation metrics
in Appx. §A.2. In Tab. 1, we show evaluation
results of different models on four studied tasks
and two widely adopted benchmarks for compar-
ison. Although the counting problems do not re-
quire extensive world knowledge or math problem-
solving abilities, all studied LLMs struggle with
these seemingly simple tasks, resulting in similar
or even worse accuracy than that on MMLU and

To mitigate potential bias of LLM towards affirmative
or negative response, we randomly extract one substring from
the word with the positive answer and replace one of the
characters so that the answer switches to negative, resulting in
one positive and one negative instance per word.
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Task

GPT-40 Llama3 Qwenl5 Gemmal InternLM2 Phi3 Mistral v0.3 DeepSeek V2 Yil.5

I: Char Occur 82.4 34.6 30.6 41.2 60.8 39.0 354 27.2 46.6
II: Substring Occur 874 58.2 58.9 50.8 50.3 73.0 57.7 61.5 59.6
III: Word Len 92.0 74.6 42.4 26.0 55.8 64.4 41.0 36.6 58.0
IV: Distinct Char 89.2 57.8 27.8 4.4 21.8 70.2 34.4 28.4 36.6
MMLU (0-shot) 85.0 64.2 58.5 50.4 59.2 75.7 59.3 53.0 67.0
GSMSK (0-shot) 86.3 78.9 58.0 38.6 67.9 82.2 47.8 70.6 81.8

Table 1: Performance of LLMs on simple word-based counting problems, as well as on the general benchmark
MMLU and the math benchmark GSM8K for comparison. Both open-source and proprietary LLMs struggle with
answering the correct numbers (i.e., Task I, III and IV) or identifying existence of subtrings in words (i.e., Task II).
After marking counting accuracy (2nd to 5th rows) higher than general and math benchmarks (bottom two rows) in
boldface, we find LLMs can hardly achieve much better performance than that on the more challenging benchmark

MMLU and GSM8K.

GSMBSK.

In this work, we mainly focus on the English do-
main, but observe similar issues (shown in Tab. 8)
when asked character occurrence questions in
words from other Germanic (i.e., German and
Swedish) and Romance (i.e., French, Spanish, Ital-
ian and Portuguese) Languages. We leave multilin-
gual analysis for future work.

Besides static prompts used for four counting
tasks, we find that prompt engineering does not
enhance llm capabilities to circumvent such failure
modes. We study two types of prompts per task
conveying similar semantic meanings to evaluate
effectiveness of prompt engineering: 1) four para-
phrased prompts created by human heuristics and
2) one improved prompt provided by Claude >. We
provide detailed analysis in Appx. §B.

4 Why LLMs Struggle with Simple
Counting Problems

There are three major conjectures trying to explain
LLMs deficiency in simple word-based counting
problems, detailed as follows:

Conjecture I: Tokenization Issues

As introduced in §2.1, subword tokenization has
become the dominant algorithm to convert text into
numerical representations, making it challenging
to perceive intrinsic characteristics and nuances
of individual characters within words (Karpathy,
2024b; Shin and Kaneko, 2024). Moreover, the
relationship between individual characters within a
word can hardly be captured by the attention mech-
anism.

Conjecture II: Lacking Character-level Train-
ing

Existing large language models are mainly pre-

3https://www.anthropic.com/news/
prompt-improver

trained and post-trained on word-level data (Bai
et al., 2023; Cai et al., 2024; Dubey et al., 2024),
hence not optimized for tasks that require character-
level analysis.

Conjecture III: Excessive Unique Characters
within Words

Recent literature theoretically proves that the ca-
pability of transformers to count letters in words
is upper bounded by their embedding size (Yehu-
dai et al., 2024). Empirically they find that Gem-
ini (Reid et al., 2024) tends to make more mistakes
when distinct characters in words increase.

In this section, we verify the above conjectures
one-by-one by designing characteristic settings and
comparing LL.M performance with the default one
introduced in §3.

4.1 Conjecture I: Tokenization Issues

To verify the conjecture “LLMs fail on simple
word-based count problems due to the subword
tokenization”, we

e Design settings where the tokenizer has to
implicitly or explicitly split texts into characters
rather than subwords.

e Check the performance of LLMs on four count-
ing tasks within the new tokenization.

e Analyze the implications:

1) If we observe noticeable improvement, then
the conjecture is correct;

2) If the performance maintains similar or even
degrades, then the conjecture is invalid.

Settings To expose more character-level informa-
tion of the studied word to LLMs, we follow liter-
ature that studies robustness of NLP models (Liu
et al., 2020; Moradi and Samwald, 2021; Rocamora
et al.) by conducting character-level word perturba-
tions: 1) delete, 2) insert, 3) repeat, 4) replace, 5)
swap, 6) left shift, 7) right shift, 8) shuffie, 9) map-

3347


https://www.anthropic.com/news/prompt-improver
https://www.anthropic.com/news/prompt-improver

Accuracy Diff.

—-20 1

—30 1

t

GPT-40
Llama 3
Qwen 1.5
Gemma 1
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DeepSeek V2
Yi 1.5

bet

delete insert repeat replace swap left
shift  shift

Settings

right shufflemappingnapping dash space comma

alphabetspecial

(a) Performance difference after switching to implicit character-level tokenization by adopting character-level word perturbations.

60.8
60
> 44.0 46.6 437
o 41.2 39.0 39.2 :
@ 401 34.6 338 354,
o 30.6 o 28.0 27.2 30.8
O .
< 201 13.0
Llama3  Qwenl.5 Gemmal InternLM 2 Phi 3 Mistral v0.3 DeepSeek V2  Yi 1.5

Original Subword

Force Char

(b) Performance comparison between original subword tokenization () and explicitly forced character tokenization (“).

Figure 1: Performance comparison on Task I with different tokenization strategies to verify Conjecture I that
deficiency in word-based counting is caused by subword tokenization of LLMs.Top: There is no perturbation
that benefits all studied models identifying core character-level information (above 0). Bottom: Directly feeding
character tokens instead of subword tokens does not help LLMs perceive individual characters within words. Above
comparison as well as results on other three studied tasks shown in Fig. 7 refuse the conjecture regarding LLM

tokenization.

ping to alphabetical character, and 10) mapping
to special character *. Besides, we also manually
split characters among the word without altering
the final answer by adding special characters in be-
tween: 1) dash, 2) space, and 3) comma. In Tab. 9,
we present an example for every character-level
word perturbation method.

Beyond above implicit character-level tokeniza-
tion, we explicitly interfere with the tokenization
process during inference so that the studied word is
tokenized into a list of individual character tokens
while other words are tokenized to subwords.

Results In Fig. 1, we demonstrate performance
comparison when LLMs are provided with the orig-
inal subword tokens and our proposed implicit (top)
or explicit (bottom) character tokens. Noticeably,
LLMs do not benefit from inputs represented by
either implicit or explicit character tokens to better
perceive character-level information of key words,
leading to similar or even worse performance than

*The answers may change after character-level perturba-
tions like delete, insert, repeat, and replace, while keeping
unaltered after perturbations such as swap, left/right shift,
shuffle and alphabeticallspecial mapping.

that given subword input. Therefore, we empir-
ically refute the popular conjecture that the sub-
word tokenization leads to LLMs failure in word-
based counting tasks.

4.2 Conjecture II: Lacking Character-level
Training

In order to validate the correctness of the conjec-
ture, “LLLMs haven’t trained on sufficient character-
level data, hence lack ability to understand and
handle tasks requiring character-level reasoning,”
we

e Evaluate performance of LLMs on tasks they
are proficient in, but with character input.

e Compare the performance of LLMs between
natural text and the rarely seen format of character
input.

e Analyze the implications:

1) If we observe significant performance drop,
then the conjecture is correct;

2) If the performance maintains similar or be-
come slightly worse, then the conjecture is invalid.

Settings We consider three sentiment analysis
benchmarks where LLLMs are able to achieve much
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Figure 2: Performance comparison of LLMs between natural word and character input on classification dataset
IMDB. Although questions represented by individual characters are rarely seen, all studied models are able to
achieve accuracy much higher than random guess denoted by - - -. The minor performance drop compared with
natural word input implies that LLMs have the ability to handle tasks requiring character-level understanding,
rejecting the conjecture relevant to lack of character training. Figure 8 shows similar observations on other datasets.
word length=12 unique chars=8

word length=8 unique chars=4

100 100 100 —~ 100
g i i j 751 % = 751 T
501 50 50 50
o —— | —o— Il
S 251 251 251 25 I v
() T T 0+ T T T 0+ T T 0 T T T
4 6 8 6 8 10 12 4 6 8 100 125 150

Figure 3: Performance variation from GPT-40 on four tasks. 1st & 2nd column: there is no noteworthy correlation
between model performance and number of unique characters in queried words. 3rd & 4th column: we observe
clear trend of performance drop from both models when the word length keeps on increasing since 10. We leave

similar trend from Llama 3 in Fig. 9.

higher accuracy than random guess in zero-shot
setting: /) Emotion: a dataset of 2000 English
Twitter messages with six basic emotions: anger,
fear, joy, love, sadness, and surprise (Saravia et al.,
2018); 2) IMDB: a movie review dataset > for bi-
nary sentiment classification (Maas et al., 2011);
3) SST-2: 872 single sentences ® extracted from
movie reviews for binary classification (Socher
et al., 2013). We present sentiment classification
tasks as multiple-choice questions to LLMs, with
options randomly ordered per question to avoid
model bias towards specific options.

Results We demonstrate performance compar-
ison between natural word and character input
in Fig. 2. Without further tuning, all studied
LLMs can perform sentiment analysis with accu-
racy above 90% on binary classification and above
50% on 6-way classification. Meanwhile, we ob-
serve minor performance drop when input format
switches from natural words to rarely seen charac-
ters, which is still well above random guess perfor-
mance. This suggests that pretrained LLMs have
the capability to perform character-level reasoning,

SWe randomly sample 500 instances from the 25k testing
set for efficient inference. Note that we drop reviews contain-
ing more than 4000 characters to ensure the input within the
context length of all LLMs (i.e., 8192).

®We evaluate on the validation set since labels on the
testing set are not publicly available.

although similar data is not sufficiently seen during
model pretraining or fine-tuning. Therefore, we
deny the conjecture that deficiency of LLMs in
simple word-based counting tasks is attributed to
lack of training on similar data.

4.3 Conjecture III: Excessive Unique
Characters within Words

Yehudai et al. (2024) regard the counting problem
as a more difficult one compared with the popular
“needle in haystack” (Kamradt, 2023; Ivgi et al.,
2023), since the former requires considering mul-
tiple occurrences of a given string, while the lat-
ter aims to retrieve only one appearance in a long
context. They further find that the more unique
characters showing up in the string, the more chal-
lenging for transformer-based LLMs to count the
occurrence. On the contrary, model performance
is barely sensitive to the extension of string length.
We conduct systematic evaluation of model capa-
bilities to handle word-based counting tasks when
character uniqueness and total counts vary.

Settings We select the closed-source model GPT-
40 and open-source model Llama 3, then evaluate
on four sets of words by keeping the total number
of characters or the number of distinct characters
fixed while varying the other: 1) 500 words with 8
characters, 2) 500 words with 12 characters, 3) 500
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Figure 4: Performance comparison among LLMs trained on general and special domain data for Task II. Models
specialized in mathematical reasoning (" ) or theorem proving (:1) can not better handle word-based counting tasks
than general (") ones. Although code models are able to write Python codes () and solve tasks successfully, they
fail to reason and answer accurately in open-ended setting (") . We leave results containing similar observations on

three other tasks in Fig. 10.

words with 4 distinct characters, and 4) 500 words
with 8 distinct characters.

Results As shown in Fig. 3, opposite to obser-
vations discovered in prior work (Yehudai et al.,
2024), the increasing number of distinct characters
in queried words does not lead to degraded perfor-
mance on word-based counting problems. Instead,
when the total number of characters reaches 10 and
keeps increasing, we find obvious accuracy drop in
both models. Hence, the conjecture that excessive
unique characters in queried words lead to poor
word-based counting performance is incorrect.

5 Whether Math/Code Train Data Helps

Recently, many open-resource base LLMs have
been further tuned on billions or trillions
math (QwenLLM, 2024b; Ying et al., 2024; Mis-
tralAl, 2024b; Shao et al., 2024) or formal theorem-
proving data (Wu et al., 2024; Xin et al., 2024) in or-
der to solve advanced mathematical problems that
require complex, multi-step logical reasoning. Sim-
ilarly, quite a few code models (QwenLL.M, 2024a;
CodeGemmaTeam, 2024; MistralAl, 2024a; Zhu
et al., 2024; 01AI, 2024) have been built on top
of base LLMs and additionally trained on diverse
programming language datasets, demonstrating sig-
nificant advancements in various aspects of code-
related tasks such as code generation (Chen et al.,
2021; Austin et al., 2021), completion (Liu et al.,
2023) and insertion (Allal et al., 2023).

In this section, we focus on evaluating whether
additional training on mathematical or coding data
helps LLMs understand and improve reasoning
over word-based counting tasks.

Results We provide detailed introduction to
evaluated models and implementation details
in Appx. §C.1. We visualize performance of mod-

els with different capabilities in Fig. 4. We observe
that models additional trained on mathematical rea-
soning can not bring obvious improvement over
those trained on general-domain data. This indi-
cates that their acquired reasoning capability over
math problems is not sufficient to handle word-
based counting tasks. On the other side, code mod-
els are able to solve the counting tasks successfully
when prompted to generate Python codes explicitly,
suggesting that the studied tasks are of easy level.
Interestingly, the powerful code models fail when
prompted in open-ended setting, implying that they
do not distill problem-solving capabilities during
training on code-specific tasks.

Although specialized LLMs substantially en-
hance coding or mathematical reasoning capabili-
ties over general LLMs, they still struggle in solv-
ing easy word-based counting problems that re-
quire easy-level reasoning.

6 How to Make LLLMs Experts Again

As we have verified in §4, the popular conjectures,
such as tokenization and lack of character-level
training, are not the true barriers for LLMs to
solve counting tasks. Meanwhile, LLMs achieve
competitive performance on far more challenging
reasoning (Clark et al., 2018; Zellers et al., 2019;
Rein et al., 2023) and mathematical (Cobbe et al.,
2021; Hendrycks et al., 2021) benchmarks. There-
fore, we believe LLMs possess the knowledge and
skills to solve counting problems if guided properly.
We investigate whether reasoning strategies (Wei
et al., 2022; Wang et al., 2022; Madaan et al., 2024;
Sprague et al., 2024; Yao et al., 2024) could elicit
strong capabilities from LLMs to help perceive,
reason and finally solve the problem.

Reasoning Strategies We investigate the follow-
ing reasoning methods that have demonstrated
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Figure 5: Benefits of applying different reasoning strategies to LLMs for Task I Char Occur. We observe noticeable
improvement from all studied reasoning strategies over baselines that particularly request numeric responses (- ) or
open-ended answers (“). GPT-40 with the additional reasoning procedure can even solve tasks with perfection. We
show similar improvement on other three tasks in Fig. 11.

Finetuneon TaskI TaskII Task III Task IV ‘ MMLU IFEval GPQA Hellaswag GSMS8K HumanEval

- 34.6 58.2 74.6 57.8 ‘ 64.3 68.6 30.6 67.6 78.9 59.1
Task I 7047 549] 64.4) 35.00 ‘ 62.8] 645, 289] 69.6 1 77.9) 60.4 1
Task II 306/  58.31 76.27 31.4) ‘ 62.4] 59.3) 3067 59.0) 76.6) 59.1
Task III 2821  56.60 74.2| 22.8] ‘ 63.5. 628, 2770 53.8] 77.1. 57.30
Task IV 45.01  56.4] 39.4] 87.21 ‘ 60.7] 599/  282] 54.2) 72.9) 57.9]

Table 2: Performance of finetuned Llama 3 models on in- and out-distribution testing set. In each row, we train on
task-specific data and test on same-distribution (results marked by _ ) and other testing data, with performance
improvement marked by 1 and drop by | compared with the untuned Llama 3 model (- in 2nd row). Finetuning on
task-specific data does not necessarily enhance model capabilities in that task, even leading to worse performance in
out-of-distribution tasks (left block) as well as other general, reasoning, math or coding benchmarks (right block).

great improvement in math and reasoning (Sprague
et al., 2024): 1) CoT: chain-of-thought (Wei et al.,
2022) encourages models to reason before provid-
ing the final answer, which becomes the de facto
method for eliciting reasoning capabilities from
LLMs. 2) self-consistency: first samples a diverse
set of reasoning paths instead of only taking the
greedy one, and then selects the most consistent
answer by majority voting (Wang et al., 2022). 3)
self-refine: uses a single LLM as the generator, re-
finer, and feedback provider (Madaan et al., 2024).
4) ToT: tree-of-thought actively maintains a tree
of thoughts, where each thought is a coherent lan-
guage sequence that serves as an intermediate step
toward problem solving (Yao et al., 2024). In con-
trast, we also append the instruction, “Directly
answer the number” after each question, to re-
quest direct numeric answers from LLMs.

Other Strategies In supervised finetuning (SFT),
collecting and mixing instruction tuning data are
important steps to improve performance for spe-
cific capabilities (Dubey et al., 2024). Hence we
finetune open-source LLMs with task-specific train
data 7 and evaluate on both in-distribution test data

"Motivated by benefits of reasoning procedures to count-
ing tasks demonstrated in §6.1, we provide detailed reasoning
before correct answers in the ground-truth responses.

and widely adopted benchmarks. By providing
similar examples as context, in-context learning
(ICL) (Brown, 2020; Wei et al., 2023) has become
another popular train-free method to efficiently im-
prove LLM performance. We describe implemen-
tation details in Appx. §D.1.

6.1 Reasoning

In Fig. 5, we compare diverse reasoning strate-
gies introduced before with baseline strategies, i.e.,
directly responding with numeric values and open-
ended generation. We find that all studied reason-
ing approaches are helpful to greatly improve per-
formance over those without reasoning across four
counting tasks, among which self-consistency ex-
hibits consistent advantage over other reasoning
strategies for diverse LLMs. In addition, we show
scaling law of self-consistency in Fig. 12, where no
clear trend of performance boost as utilizing more
reasoning paths is observed 8. We provide case
study from baseline strategies and CoT in Tab. 10.

With the aid of reasoning procedures, the most
powerful model GPT-40 is capable of solving

%The observation is quite different from that shown
in (Wang et al., 2022), where using 40 reasoning paths
achieved the best performance by LaMDA-137B and GPT-3
code-davinci-001. We speculate that the model scale and task
difficulty level may be the major reason.

3351



[0¢]
N
Q@
i

AS)
75 o0 68 73
> 57
0 55 54 52
49 48
© 50 46 44 46
= 40 41 41 39 42 39
§ 34 30 35 34 .
> 251
GPT-40  Llama3 Qwenl.5 Gemmal InternLM2  Phi3  Mistral vO.3DeepSeek V2  Yi1.5
0-shot 4-shot 8-shot
(a) Task I: Char Occur.
89
75
75 70
L:; 60 57
5 507 41
¥ 35 35 34 33 38 34 36 34
9 27 2 30 27 28 26 29 31
< 251 6 25 1622
4
GPT-40  Llama3 Qwenl.5 Gemmal InternLM2  Phi3  Mistral v0.3DeepSeek V2  Yil.5

0-shot

4-shot 8-shot

(b) Task I'V: Distinct Char.

Figure 6: In-context learning performance of LLMs. Providing similar examples as demonstrations helps slightly
improve performance of open-source models on Task I, while lead performance drop for most models on Task IV.

We leave results on Task IT and IIT in Fig. 13.

counting tasks with accuracy approaching 100%,
indicating that the model can leverage its possessed
knowledge and problem-solving abilities individ-
ually without external assistance. We also no-
tice considerable performance margin from some
LLMs between directly answering numerical value
and open-ended generation, implying that they con-
sciously invoke the reasoning process before pro-
viding the final answer for certain instances. We
expect performance improvement in future LLMs
if reasoning-related training is strengthened.

6.2 Supervised Finetuning

In Tab. 2, we evaluate capabilities of Llama 3 mod-
els finetuned on different task data. When training
and testing on the same distribution, we do observe
significant accuracy boost in Task I (from 34.6% to
70.4%) and Task IV (from 57.8% to 87.2%), while
minor performance drop on the other two tasks.
However, the acquired specific counting capability
from training on 7ask I or IV can hardly transfer
to other evaluated counting tasks, resulting in even
much worse performance than the untuned model.
Moreover, we find undesired lowered accuracy on
benchmarks evaluating important capabilities such
as reasoning and math, manifesting negative im-
pacts of solely training on specific domains without
considering other aspects. This emphasizes the im-
portance of careful design for the proportion of
different data sources, which is consistent with dis-

coveries in literature (Bai et al., 2023; Dubey et al.,
2024) and leaves the finetuning strategy a less ef-
ficient way to improve performance of LLMs on
new or challenging tasks compared with reasoning.

6.3 In-context Learning

We demonstrate the influence of demonstrations
on counting tasks in Fig. 6. For Task I, open-
source LLMs achieve much higher accuracy in few-
shot settings than zero-shot one, and more demon-
strations exhibit further performance improvement.
However, benefits of demonstrations are not al-
ways guaranteed. For example, additional exam-
ple context greatly hurts performance of GPT-40
and the majority of open-source LLMs for Task I1
(in Fig. 13a) and 1V (in Fig. 6b).

7 Conclusions

By carefully designing multiple evaluation settings,
we first show that prevalent conjectures regarding
such unexpected failures are invalid. We further
show that specialized models with advanced mathe-
matical or coding reasoning capabilities also suffer
from addressing simple counting problems. We
also find that reasoning is the most robust and ef-
ficient way to aid models in better perceiving and
solving tasks, highlighting more research into “rea-
soning before responding” during pretraining.
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Limitations

We investigate deficiency of diverse open-source
LLMs as well as GPT-40 to address word-based
counting problems. This work may have the fol-
lowing limitations: /) Lack of analysis on more
proprietary LLMs: for the sake of cost, we only
consider GPT-40 and use it as the representative of
other models of similar strong capabilities. Some
online discussion has revealed similar issues from
closed-source models such as Claude and Gemini.
We hope researchers who develop these proprietary
models can get insights from our conjecture vali-
dation procedure and reasoning-driven solutions,
hence further boosting capabilities of top LLMs.
2) Reasoning incorporated in pretraining: we find
that reasoning before providing the final answer
during inference is effective in solving counting
problems, while leaving training design of incorpo-
rating reasoning into pretraining as future direction.

Ethics Statement

This paper presents comprehensive study of LLMs
from diverse families that have gone through ethi-
cal reviews in prior works. Therefore, we believe
our work does not pose additional ethical issues.
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A Appendix

A.1 Related Work

Failure Modes of LLMs Although LLMs have
exhibited strong capabilities to complete tasks re-
quiring extensive world knowledge and complex
reasoning, they still present some unexpected fail-
ures. Berglund et al. (2023) discovered the reversed
curve, where an LLM that recognizes “A is B” does
not necessarily learn that “B is A.” Another chal-
lenging posed to LLMs is irrelevant context, which
distracts models from completing tasks as normal.
For instance, Shi et al. (2023) found that adding ir-
relevant context in the problem statement leads to a
noticeable performance drop on multiple reasoning
benchmarks. Moreover, Chen et al. (2024) show
that including irrelevant rules degrades the logical
reasoning performance of LLMs. Sensitivity to text
order is another challenge that LLMs struggle with.
For example, Chen et al. (2024) observed that in
deductive reasoning tasks, presenting the premises
in the same order as the ground truth proof in the
prompt (as opposed to random ordering) drastically
increases the model’s accuracy, while permuting
the premise order can cause a performance drop
of over 30%. Another example is the lost-in-the-
middle phenomenon in the long-context scenario,
in which LLM performance drops drastically when
they need to utilize input context in the middle
rather than that in the beginning or the end (Liu
et al., 2024).

Word-based Counting Failure to count the num-
ber of specific character within the queried word is
arecently emergent problem that most LLMs strug-
gle with (Karpathy, 2024b). Yehudai et al. (2024)
attributed such deficiency to constraints from LLM
architecture, emphasizing that it is likely impossi-
ble for a size-limited transformer to complete the
counting task. Ball et al. (2024) examined capa-
bilities of GPT-4 on character occurrence task and
showed sensitivity of task-accuracy both to query
phrasing and input parameter population. Shin and
Kaneko (2024) observed significant performance
contrast between character and token (i.e. subword)
input. They also proposed the tokenization issue
and lack of training on similar data as potential
reasons for such failure.

Different from prior literature that focuses on
demonstrating the failure mode or proposing poten-
tial reasons, we carefully design multiple evalua-
tion settings and empirically show invalidness of

major conjectures. More importantly, we investi-
gate promising strategies and show that reasoning
is a promising direction to solve word-based count-
ing problems.

A.2 Experimental Setup

Language Models For comprehensive evalua-
tion of LLMs capabilities on simple word-based
counting problems, we consider 9 prevalent fam-
ilies of powerful instructed or chat models in-
cluding both open-source and proprietary ones:
Llama 3 (8B-instruct) (Dubey et al., 2024), Qwen
1.5 (7B-chat) (Bai et al., 2023), Gemma 1 (7B-
instruct) (Team et al., 2024), InternLM2 (7B-
chat) (Cai et al., 2024), Phi 3 (small-128k-
instruct) (Abdin et al., 2024), Mistral v0.3 (7B-
instruct) (Jiang et al., 2023), DeepSeek V2
(Lite-chat) (DeepSeek-Al, 2024), Yi 1.5 (9B-
chat) (Young et al., 2024), and GPT-40 (OpenAl,
2024). Unless otherwise stated, we follow prior
benchmark literature (Suzgun et al., 2022; Zhong
et al., 2024) by adopting greedy decoding ° to min-
imize the noise for open-ended text generation. We
list the checkpoint resource of tested open-source
LLMs in Tab. 7.

Evaluation Metrics For Task II Substring Cccur
where the ground-truth answer is “Yes” or “No”,
we measure accuracy using soft match, computed
by checking whether the true answer appears in
models’ responses or not. For the other three tasks
where models are expected to answer a number, we
extract the last digits from model responses auto-
matically and examine whether they are identical
to the true answer. We also consider the verbal rep-
resentation of numbers (e.g., “two” and “twice” for
“2”) with soft match by comparing the generated
output with word form of true numbers.

B Prompt Engineering

In Tab. 3, we list human prompts and improved
prompts from Claude '© on four counting tasks.
Different from concise human prompts, prompts

9We set the maximum number of tokens for generation to
128.

1%Prompt improver from Claude introduced the ability to
improve prompts for better completions, which takes existing
prompts and leverages Claude to automatically refine them
using advanced prompt engineering techniques. NOTE that
we have removed chain-of-thought reasoning instruction and
examples in the improved prompts to form fair comparison
with original simple prompts.
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Source

Prompt

Original Prompt

Task I: Char Occur
How many {{char}}’s in the word “{{word}}”?

Human Prompt I

How many times does the letter *{{char} }” appear in the word "{{word}}"?

Human Prompt IT Can you count the number of *{{char}}’s in "{{word}}"?
Human Prompt IIT How many {{char}}’s can be found in "{{word}}"?
Human Prompt IV How often does the letter *{ {char}}” show up in the word "{{word}}"?
You are tasked with counting the occurrences of a specific letter in a given word. Here are the inputs:
Letter to count:
<letter>
{{letter} }
</letter>
Word to analyze:
Claude Improved Prompt <word>
{{word}}
</word>
Your task is to count how many times the specified letter appears in the given word. Consider the following:
- The letter is case-sensitive.
- Spaces and punctuation marks, if any, should be ignored.
Please provide your response in a clear, concise sentence stating the count.
Task II: Substring Occur
Original Prompt Is the substring “{ {substring} }” part of the word “{{word}}”?

Human Prompt I

Does the word "{{word}}" contain the substring "{ { substring}}"?

Human Prompt I1 Does the sequence "{{substring}}" appear in the word "{{word}}"?
Human Prompt IIT Does the word "{{word}}" contain the sequence of letters "{{substring} }"?
Human Prompt IV Is "{{substring} }" present as a substring in the word "{{word}}"?

You are tasked with determining whether a given substring is part of a specified word. Here are the inputs:

<substring>{ { substring} } </substring>

<word>{{word} }</word>
Claude Improved Prompt

Example output structure:

[Yes/No], the substring [is/is not] part of the word.

Please provide your answer based on the given inputs.

Task III: Word Len

Original Prompt How many characters in the word “{{word}}”?

Human Prompt I

What is the total number of characters in the word "{{word}}"?

Human Prompt IT Can you count the letters in the word "{{word}}"?
Human Prompt IIT Could you tell me how many letters are in the word "{{word}}"?
Human Prompt IV How many alphabetic characters does the word "{{word}}" contain?
You are tasked with counting the number of characters in a given word.
Here is the word:
<word>
Claude Improved Prompt {{word}}
</word>

Note: Include all characters in your count, including letters, numbers, and any special characters that may be present.

Table 3: Diverse prompts used to evaluate impact of prompt engineering on LLM performance. Human prompts are
brief while prompts improved by Claude contain more detailed instructions and response format requirements. See
prompts for Task IV in Tab. 4.

automatically improved by Claude normally con-  strategies, neither human heuristics-driven nor auto-
tain detailed instructions and explicitly specify ex-  matically improved prompts from Claude are able
pected formats of responses. to elicit better capabilities to address the studied

We present LLM performance in response to dif-
ferent task prompts in Tab. 5. In contrast to stable
performance enhancement from reasoning-based

word-based counting problems. We conclude that
failures of LLMs for solving counting tasks are
irrelevant to how we phrase prompts.
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Source Prompt

Task IV: Distinct Char

Original Prompt

How many distinct characters in the word “{{word}}”?

Human Prompt I

How many different letters are found in the word "{{word}}"?

Human Prompt 11 What is the number of unique letters present in the word "{{word} }"?

Human Prompt IIT What'’s the count of distinct characters in the word "{{word}}"?

Human Prompt IV Can you identify how many unique characters make up the word "{{word}}"?
You are tasked with counting the number of distinct characters in a given word. Here is the word:
<word>
{{word}}

Claude Improved Prompt word>

Your final response should consist of only the integer representing the count of distinct characters.

Table 4: Diverse prompts used to evaluate impact of prompt engineering on LLM performance for Task I'V.

Models Original Humnanl HumanIl HumanIIl HumanlV Claude
Task I: Char Occur

GPT-40 82.4 91.6 89.6 91.2 93.4 85.2

Llama-3 34.6 26.4 55.4 24.6 40.4 22.4

Task II: Substring Occur

GPT-40 87.4 94.7 89 94 87.4 88.1

Llama-3 58.2 71.7 59.7 65.3 61.4 52.8
Task III: Word Len

GPT-4o0 92.0 92.4 96.2 95.4 96.8 97.6

Llama-3 74.6 92.6 91.0 79.2 77.8 96.8

Task IV: Distinct Char
GPT-40 89.2 87.2 78.0 90.6 95.8 52.8
Llama-3 57.8 56.8 82.6 63.2 43.2 21.6

Table 5: Impact of prompt engineering on word-based counting tasks. Neither human heuristics-driven prompts nor
improved prompts from Claude are able to consistently elicit better capabilities from LLMs for solving word-based

counting problems.

C Whether Math or Code Training Data
Helps

C.1 Setup

Math/Code Models We compare LLMs fine-
tuned on general instruction/chat data (described
in §3) with their counterparts specialized in math-
or code-related tasks: 1) Qwen2 Math (QwenlLM,
2024b) and CodeQwen 1.5 (QwenLM, 2024a),
2) CodeGemma (CodeGemmaTeam, 2024), 3)
InternLM?2 Math Plus (Ying et al., 2024) and
InternLM2 Step Prover (Wu et al.,, 2024), 4)
Mathstral v0.1 (MistralAl, 2024b) and Codestral
v0.1 (MistralAlL, 2024a), 5) DeepSeekMath (Shao
et al., 2024), DeepSeek Prover V1.5 (Xin et al.,
2024) and DeepSeek Coder V2 (Zhu et al., 2024),

6) Yi Coder (01AI, 2024). We list detailed model
information in Tab. 7.

Implementations Besides prompting LLMs to
answer the word-based counting tasks defined in §3
in the open-ended setting, we also explicitly request
code LLMs to generate Python codes !'. We then
measure correctness by executing codes and com-
paring output with the ground-truth.

"We adopt few-shot prompting used in (Gao et al., 2023;
Guo et al., 2024) so that models follow code formats demon-
strated in provided examples, which makes code extraction
easier and evaluation more accurate.
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Task Attribute Min Max Avg.

Occurence
I: Char of asked 1 4 1.22
Occur
character
II: Substring Lengtf} of 14 539
Occur substring
III: Word Len 00Ol 5 g g3y
characters
.. Number of
IV: Distinct distinct 3 13 7.50

Char
characters

Table 6: Statistics of evaluated tasks. In each row, we
list information of key component to each task. We
randomly sample 500 instances for Task I, III and IV,
while preparing a balanced dataset with 500 positive
and 500 negative instances for Task II.

D How to Make LLMs Experts Again

D.1 Implementations

We use greedy decoding and adopt the zero-shot
setting '? for model generation as introduced in §3
for most strategies. For self-consistency and ToT,
we follow the practice in literature (Wang et al.,
2022; Yao et al., 2024) by applying temperature
sampling with 7" = 0.7 and truncating at the top-k
(k = 40) tokens with the highest probability, we set
the reasoning path to 5 unless otherwise specified.
We finetune Llama 3 with Lora (Hu et al., 2021)
on 10, 000 training instances and set the learning
rate to 3e — 4, epoch to 1 and batch size to 128 on
a single A100 80G device 3. We also measure the
impact of finetuning on existing capabilities with
finetuned models evaluated on general (MMLU and
IFEval), reasoning (GPQA and Hellaswag), math
(GSMS8K) and coding (HumanEval) benchmarks
following (LlamaWebsite, 2024). For ICL, we ran-
domly sample 4 and 8 demonstrations per testing
instance from the training set.

"2To avoid impact of demonstrations on generation, we
use zero-shot rather than few-shot to evaluate effectiveness of
different reasoning strategies, where the expected format of
responses is included in questions.

BConsidering limited GPU memory, we employ the batch
size of 2 and set the gradient accumulation steps to 64 in
practice.)
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LLMs #Params Download Links/Version

Llama 3 8B https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct
Qwen 1.5 7B https://huggingface.co/Qwen/Qwen1.5-7B-Chat

Qwen2 Math 7B https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct
CodeQwen 1.5 7B https://huggingface.co/Qwen/CodeQwenl.5-7B-Chat
Gemma 1 7B https://huggingface.co/google/gemma-7b-it
CodeGemma 7B https://huggingface.co/google/codegemma-7b-it
InternLM2 7B https://huggingface.co/internlm/internlm2-chat-7b
InternLM2 Math Plus 7B https://huggingface.co/internlm/internlm2-math-plus-7b
InternL.M2 Step Prover 7B https://huggingface.co/internlm/internlm2-step-prover
Phi 3 7B https://huggingface.co/microsoft/Phi-3-small-128k-instruct
Mistral v0.3 7B https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.3
Mathstral v0.1 7B https://huggingface.co/mistralai/Mathstral-7B-vo.1
Codestral v0.1 22B https://huggingface.co/mistralai/Codestral-22B-v0.1
DeepSeek-V2 16B https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
DeepSeekMath 7B https://huggingface.co/deepseek-ai/deepseek-math-7b-rl
DeepSeek Prover V1.5 7B https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-RL
DeepSeek Coder V2 16B https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
Yil.s 9B https://huggingface.co/01-ai/Yi-1.5-9B-Chat

Yi Coder 9B https://huggingface.co/@1-ai/Yi-Coder-9B-Chat
GPT-40 - gpt-40-2024-05-13

Table 7: Information of tested LLMs. We list their model sizes and the download links if available or the model
version for the proprietary model.

Task GPT-40 Llama3 Qwenl.5 Gemmal InternLM2 Phi3 Mistral v0.3 DeepSeek V2 Yil.5
Germanic Languages

English 824 34.6 30.6 41.2 60.8 39.0 354 27.2 46.6

German 69.6 27.2 20.6 52 50.6 40.2 21.8 34.8 384

Swedish 80.6 39.0 18.8 5.8 61.2 38.0 34.4 55.6 42.6
Romance Languages

French 75.6 38.0 16.4 10.0 63.6 45.0 26.0 40.2 52.6

Spanish 76.2 32.6 254 104 64.6 45.6 28.0 38.2 50.4

Italian 71.4 24.8 22.0 15.6 552 37.6 20.4 37.0 49.6

Portuguese 65.0 31.2 21.4 23.0 65.4 52.6 26.0 45.8 474

Table 8: Performance of LLMs on Task I Char Occur in different languages from Germanic and Romance language
families. LLMs cannot better identify occurrence of characters in less common words.
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Perturbation Perturbed Word Description

delete straberry "w" is deleted

insert strawbekrry "k" is inserted

repeat sttrawberry "t" is repeated

replace strswberry "a" replaced with "s"

swap strywberra "a" and ’y" are swapped

left shift trawberrys all letters shift left with the first letter "s" moving to the end
right shift ystrawberr all letters shift right with the last letter "y" moving to the start
shuffle rasbretyrw all letters arranged in random order

Eﬁﬁgg‘gfﬁcal) abcdefghhi letters from left to right replaced by "a", "b", "c", etc.
2;55;;% @#$%&’ (() letters from left to right replaced by "!", "@", "#", etc.
+dash s-t-r-a-w-b-e-r-r-y  dash ’-’ inserted between every two letters

+space strawberry space’’ inserted between every two letters

+comma s,tr,a,w,berry comma’, inserted between every two letters

Table 9: Character-level perturbation examples on the word "strawberry" when the question is "How many r’s in the
word "strawberry"?"
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Figure 7: Performance comparison on three other word-based counting tasks to further verify that Conjecture I is
incorrect.
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Figure 9: Performance variation from Llama 3 on four tasks.
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Figure 10: Performance of math and code LLMs on three word-based counting tasks.
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Figure 11: Impact of different reasoning strategies on LLM performance for three word-based counting tasks.
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Figure 12: Scaling trend of the self-consistency strategy by different LLMs on four tasks.
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Question: How many a’s in the word "confusable"?

True Answer: 1

Direct Answer Number: 2 X

Open-ended: There are 2 a’s in the word "confusable". X

CoT: Here’s the step-by-step reasoning:

Reasoning:

1. Start by looking at the word "confusable".

2. Identify each letter in the word: c-o-n-f-u-s-a-b-1-e.
3. Count the number of "a"s in the word: there is one
"a" in the word.

Answer:
1v

Table 10: Case study of baseline and CoT generation
from Llama 3 on Task I Char Occur. We mark correct
answer by ¢ and wrong ones by X. We provide exam-
ples on other three datasets in Tab. 11.

3368



Task II: Substring Occur
Question: Is substring "Elvp" part of the word "Elvis"?
True Answer: No.
Direct Answer Yes/No: Yes. (Wrong)
Open-ended: A simple question!

Yes, the substring "Elvp" is indeed part of the word "Elvis". (Wrong)
CoT: Here’s the step-by-step reasoning:

Reasoning:

1. The word "Elvis" is a sequence of characters: E-L-V-I-S.

2. The substring "Elvp" is a sequence of characters: E-L-V-P.

3. To determine if "Elvp" is a part of "Elvis", we need to check if all the characters in "Elvp" are present in the same order in "Elvis".
4. Comparing the characters, we can see that the first three characters "Elv" are present in both "Elvp" and "Elvis".

5. However, the fourth character "P" is not present in "Elvis", which has an "I" instead.

6. Since the characters in "Elvp" are not present in the same order in "Elvis", "Elvp" is not a part of "Elvis".

Answer:
No, the substring "Elvp" is not part of the word "Elvis". (Correct)

Task III: Word Len
Question: How many characters in the word "Missourianism"?
True Answer: 13
Direct Answer Number: 12 (Wrong)
Open-ended: Let me count them for you!

The word "Missourianism" has 12 characters: M-I-S-S-O-U-R-I-A-N-I-S-M. (Wrong)
CoT: Here’s the step-by-step reasoning:

Reasoning:
To count the number of characters in the word "Missourianism", I will break it down into individual letters and count them one by one.

00NN R L=

=R 0w ow =

—_——
—_ O
-]

12. s
13. m

Answer:
There are 13 characters in the word "Missourianism". (Correct)

Table 11: Case study of Llama 3 on Task II and III. See examples on Task IV in Tab. 12.
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Task IV: Distinct Char
Question: How many distinct characters in the word "mutch"?
True Answer: 5
Direct Answer Number: 5 (Correct)
Open-ended: The word "mutch" contains 5 characters: m-u-t-c-h. There are 4 distinct characters: m, u, t, and c. (Wrong)
CoT: Reasoning:To find the number of distinct characters in the word "mutch”, I will start by writing down the word and identifying
each character:

m-u-t-c-h

Next, I will look for any duplicate characters. In this case, I see that there is no repeated character.
Finally, I will count the number of unique characters, which are:

m,u,t,ch

Answer:
5 (Correct)

Table 12: Case study of Llama 3 on Task I'V.
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