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Abstract

Recent progress in video-text retrieval has been
driven largely by advancements in model archi-
tectures and training strategies. However, the
representation learning capabilities of video-
text retrieval models remain constrained by low-
quality and limited training data annotations.
To address this issue, we present a novel ViDeo-
Text Retrieval Paradigm with RElevance-based
AugMentation, namely DREAM, which en-
hances video and text data using large founda-
tion models to learn more generalized features.
Specifically, we first adopt a simple augmenta-
tion method, which generates self-similar data
by randomly duplicating or dropping subwords
and frames. In addition, inspired by the recent
advancement in visual and language generative
models, we propose a more robust augmenta-
tion method through textual paraphrasing and
video stylization using large language models
(LLMs) and visual generative models (VGMs).
To further enrich video and text information,
we propose a relevance-based augmentation
method, where LLMs and VGMs generate and
integrate new relevant information into the orig-
inal data. Leveraging this enriched data, ex-
tensive experiments on several video-text re-
trieval benchmarks demonstrate the superiority
of DREAM over existing methods.

1 Introduction

Video-Text Retrieval (VTR) (Luo et al., 2022; Gao
et al., 2021b; Ma et al., 2022a; Liu et al., 2022a;
Zhao et al., 2022; Gorti et al., 2022; Fang et al.,
2022; Wang et al., 2023b; Wang and Shi, 2023;
Yu et al., 2022) is a fundamental task in visual-
language understanding (Wang et al., 2020b; Xu
et al., 2021b; Park et al., 2022a; Miyawaki et al.,
2022; Fang et al., 2023b,c; Kim et al., 2023; Jian
and Wang, 2023). The recent progress in VIR is
mostly driven by powerful pretraining models (Luo
etal., 2022; Gao et al., 2021b; Ma et al., 2022a; Liu
et al., 2022a), improved retrieval methods (Berta-
sius et al., 2021; Dong et al., 2019; Jin et al., 2021),

and the newly emerged large-scale video-language
benchmark datasets (Xu et al., 2016a; Chen and
Dolan, 2011; Fabian Caba Heilbron and Niebles,
2015).

The most widely adopted VTR paradigm (Luo
et al., 2022; Ma et al., 2022a; Liu et al., 2022b)
learns a joint feature space across the visual and
textual modalities, where video and text data are
directly compared. Inspired by the success of
CLIP (Radford et al., 2021a), CLIP4Clip (Luo
et al., 2022) finetunes CLIP (Radford et al., 2021b)
and investigates three similarity measures for video-
sentence contrastive learning, with satisfying re-
trieval performance. Subsequently, X-CLIP (Ma
et al., 2022b) introduces a novel multi-grained con-
trastive learning framework to further enhance the
detailed association between video and text modali-
ties. Following these pioneering works, many other
methods have also been proposed (Wu et al., 2023b;
Cao et al., 2022; Liu et al., 2022a,b; Park et al.,
2022b; Zhao et al., 2022; Fang et al., 2023a; Wang
et al., 2023c; Jin et al., 2023b; Ma et al., 2022b).

Though different modeling or training tech-
niques have been employed to improve the per-
formance on the modeling side, data issues still
exist. For example, most methods are trained us-
ing datasets with one-to-one video-text labels, as-
suming that the video and text data can be well-
aligned one-to-one in the same feature space. How-
ever, this assumption may not hold tight (Wang
et al., 2022d) for some popular video-text bench-
mark datasets (Xu et al., 2016a; Chen and Dolan,
2011; Fabian Caba Heilbron and Niebles, 2015),
because in real applications, a single video may
correspond to multiple valid sentences, and vice
versa. As shown in Figure 1 (an example from
MSR-VTT (Xu et al., 2016a)), the basketball video
in Figure 1 is paired with the text, “various young
people play challenging games of basketball”, al-
though it can also match with many other seman-
tically similar sentences such as “guy putting the
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Figure 1: Existing video retrieval works focus on improving representation learning ability by learning from
benchmarks that have many semantically similar data points, as shown in the top rows. It leads to vague annotations
and associations between videos and texts, further hindering the representation learning ability of video-text
retrieval models. To counteract this issue, in this study, we propose DREAM. Specifically, instead of learning from
original noisy data, DREAM augments data with three proposed augmentation methods, i.e., simple augmentation,
augmentation by text paraphrasing and video stylization (“Aug. 2 Parapharse” in the figure), and augmentation by
relevance enhancing (“Aug. 3 Relevance Enhance” in the figure).

basketball into the basket” or “cbs news is speaking
about various basketball players and celebrities”.
Similarly, one text can also potentially corrrespond
to many different videos. One possible solution to
this mismatch problem is to have better datasets
with precise one-to-one video-text pairs. However,
it is extremely challenging to have a sufficiently
large dataset with high-quality due to the nature of
the ambiguity of video and text data themselves.
Thus, instead of collecting new high-quality
datasets, in this paper, we propose a simple yet
effective framework, namely DREAM, to enhance
the one-to-one matching between video and text by
semantically augmenting video and text data. As
shown in Figure 1, though videos and texts have
many semantically similar neighbors, they still dif-
fer from each other with minor differences. Moti-
vated by the success of data augmentation for better
representation learning in computer vision (Chen
et al., 2020) and natural language processing (Gao
et al., 2021a), we utilize data augmentation to en-
large the minor differences between semantically
similar data for enhancing the quality of datasets.
Specifically, we first introduce a simple augmen-
tation method, which generates semantically sim-
ilar videos and texts through random duplication
or deletion of frames or subwords. Our experi-
ments show that even such a simple augmentation
method can improve the text-to-video Recall@1 on
MSR-VTT from 46.1 to 50.8. Next, inspired by the
success of the latest large foundation models such
as large language models (LLMs) (Touvron et al.,
2023a,b; Groeneveld et al., 2024; Brown et al.,

2020a) and visual generative models (VGMs) (Sa-
haria et al., 2022; Zhang et al., 2023; Brooks et al.,
2023; Wang et al., 2023a), we utilize these off-
the-shelf models and propose two augmentation
strategies, i.e., augmentation by text paraphrasing
and video stylization (TPVS) and augmentation by
relevance enhancing (RE). TPVS employs off-the-
shelf large models to generate semantically sim-
ilar videos and text by stylization (e.g., cartoon
style) and text paraphrasing. In addition, to in-
fuse video and text with richer information, we
introduce a relevance-based augmentation method,
where videos and texts are expanded with relevant
information given the input video or text. Two ad-
vanced methods further improve the text-to-video
Recall@1 on MSR-VTT from 46.1 to 56.0 and
60.8. To the best of our knowledge, we are the first
to exploit the latest foundation models to augment
data for VTR.

To understand how our proposed augmentation
methods improve VTR performance, extensive ex-
periments on three representative VIR benchmarks
show that our proposed DREAM outperforms our
baseline and previous methods by a large margin.

In summary, our contributions are as follows,

* We identify the challenge of video-text re-
trieval as the ambiguous one-to-one labels that
hinder learning robust representations. We ex-
plore augmentation techniques along several
dimensions as a way to address this challenge.

* Our proposed DREAM includes three aug-
mentation methods, i.e., simple augmentation
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(SA), augmentation by text paraphrasing and
video stylization (TPVS), and augmentation
by relevance enhancing (RE). We are among
the pioneers in the use of the latest large lan-
guage models and visual generative models to
assist video-text retrieval.

» Extensive experiments show that our pro-
posed DREAM achieves state-of-the-art per-
formances on three popular benchmarks MSR-
VTT, MSVD, and ActivityNet.

2 Related Works

Video-Text Retrieval (VIR). VTR, which in-
volves cross-modal alignment and abstract un-
derstanding of temporal images (videos), has
been a popular and fundamental task of language-
grounding problems (Wang et al., 2020a,c, 2021;
Yu et al., 2023). Inspired by the success of self-
supervised pretraining methods (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020b) and
vision-language pretraining (Li et al., 2020; Gan
et al., 2020; Singh et al., 2022) on large-scale un-
labeled cross-modal data, recent works (Lei et al.,
2021; Cheng et al., 2021; Gao et al., 2021b; Ma
et al.,, 2022a; Park et al., 2022a; Wang et al.,
2022a,c; Zhao et al., 2022; Gorti et al., 2022)
have attempted to pre-train or fine-tune video-text
retrieval models in an end-to-end manner. Pre-
vious methods have focused on improving the
representation learning ability by advanced archi-
tectures. However, due to the nature of bench-
marks (Xu et al., 2016a; Chen and Dolan, 2011;
Fabian Caba Heilbron and Niebles, 2015), learning
from such benchmarks makes the learning proce-
dure unstable. To address this issue, we propose
to augment data using large language models and
visual generative models.

Learning from data augmentation. Data augmen-
tation (Yang et al., 2023b), as an effective way to
improve the sufficiency and diversity of training
data, has become a necessary part of the success-
ful application of computer vision (Majurski et al.,
2019; Liu et al., 2023b; Chen and Lu, 2023; Yuan
et al., 2023) and natural language processing (Wei
and Zou, 2019; Zhou et al., 2022; Xu et al., 2021c;
Kobayashi, 2018). Similarly, we first introduce
a simple augmentation method that randomly du-
plicates and drops frames and words to generate
self-similar data.

Learning from synthetic data. As the emergence
of language and visual generative models (Touvron

et al., 2023a,b; Groeneveld et al., 2024; Brown
et al., 2020a; Saharia et al., 2022; Zhang et al.,
2023; Brooks et al., 2023; Wang et al., 2023a),
generating data for learning representation has at-
tracted extensive attention recently. In natural lan-
guage processing, large language models have been
used for generating data and labels (You et al.,
2023; Chong et al., 2022; Khalifa et al., 2021) for
a while. It shows an impressive ability to help
researchers collect high-quality domain-specific
data (Li et al., 2023c; Xiao et al., 2023). On the
other side, the attempt to use visual generative mod-
els to train models without any human-annotated
data succeeds in image segmentation (Feng et al.,
2023a), domain adaptation (Tang and Jia, 2023;
Wang et al., 2025), and more (Zeng et al., 2023;
Takmaz et al., 2023; Cascante-Bonilla et al., 2023;
Yang et al., 2023a). Drawing inspiration from these
works, we leverage generative models to augment
data by caption paraphrasing and video stylization
with relevant information conditioned on the origi-
nal data.

3 Method

In this section, we present the definition of video-
text retrieval and the details of DREAM, along with
three proposed simple but effective augmentation
methods as shown in Figure 1.

3.1 Problem Definition

In this paper, we focus on video-text retrieval
(VTR), aiming to learn a pair of encoders that map
data from video and text into a common space
where they can be directly compared. The query
and gallery modalities are denoted as X and ).
The (test) gallery, denoted by G = {g1,..., 8N}
contains all the embeddings of the gallery data,
where Ng is the size of the gallery data. In VTR,
the gallery data does not overlap with the train-
ing data. A video is composed of several frames,
asV =[W,..., Vmemes], where Nyqmes is the
number of frames of that video, and V; is the -
th frame of that video. A text is represented by
multiple words, as T' = [T1,...,Tn,,,,.], Where
Nyords 18 the number of (sub-)words, and 7; is the
i-th (sub-)word. The goal of VTR is to learn a
video encoder fyideo(+) and a text encoder freq:(-)
that map video and text into a common space, on
which paired video-text data are close.
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3.2 DREAM

The motivation of DREAM is that low-quality
benchmarks (Xu et al., 2016b; Chen and Dolan,
2011; Fabian Caba Heilbron and Niebles, 2015)
lead to unsatisfying representation learning. On
the other side, the simple self-augmenting method
(SA) improves the retrieval performance, as shown
in Figure 1 and tables 4 and 5. Inspired by the
results, we propose three simple but effective data
augmentation methods to enrich data and further
boost retrieval performance, as shown in Figure 1.
Specifically, for each video V' and text T', we
augment it by generating positive views as V and
T. Then, instead of doing multi-query retrieval,
we concatenate the positive views with the original
data for a fair comparison with previous methods.
After that, we use a representative VTR method,
i.e., X-CLIP (Ma et al., 2022b), as our learning
method for aligning video and text spaces.

3.2.1 Simple Augmentation (SA)

SA targets generating self-similar data without
any prior or pretrained models. A simple im-
plementation is randomly duplicating and drop-
ping some frames and words without changing
the original order. Specifically, denoting the orig-
inal video and text as V' = [Vi,..., VN, . ]|

and T = [T1,.. orae)s We sample N Frame
frames or Nwords words with replacement to form
the augmented videos V and texts 7. For exam-
ple, for a 2-frame video V' = [Vi, V3], we will
have three different augmentations, i.e., [V1, V1],
[Va, V2], and [V7, V5], Similarly, for a 2-subword
text T' = [T7, T»|, we also have three different aug-
mentations, i.e., [11,T1], [T2, T3], and [T7, T3]

'7TNw

3.2.2 Augmentation by Text Paraphrasing
and Video Stylization (TPVS)

The goal of DREAM is to add as many as pos-
sible details in the video and text to enrich the
data and thus further improve the representation
learning ability for boosting retrieval performance.
One straightforward approach to enriching data is
generating videos and texts based on data from an-
other modality using multi-modal generative mod-
els (Daras and Dimakis, 2022; Li et al., 2022,
2023a; Wang et al., 2022b; Reed et al., 2016; Feng
et al., 2023b). That could be useful during training,
as it brings extrat precise information. However,
this cannot be used for test time augmentation, as
during inference, the data from another modadl-
ity is not available. That prompts us to focus on

generalizations based on a single modality.

Recently, with the emergence of visual gener-
ative models (VGMs) and large language mod-
els (LLMs), enriching the video and text data
by paraphrasing (Bansal et al., 2023) and styliza-
tion (Zhang et al., 2023) become a valid solution.
Inspired by the advancement in LLMs and VGMs,
we propose to generate the paraphrased text and a
new style of the original video with standard foun-
dational models.

Text paraphrasing Specifically, for augmenting
text captions, we use the following prompts:

This is a hard problem. The following is
a caption from a video: ["text"”]. Based

on this caption, carefully generate a

paraphrased caption capturing the key

information ﬁnd main themes in one
lsentence with up to twenty words:

Our prompt has two specific designs for gen-
erating high-quality paraphrased texts, which are
essential for VIR as a more detailed caption will
help models learn a precise mapping, as shown
below:

Interrogative/instructive hints (This is a hard
problem). Previous studies (Kojima et al., 2022)
show that adding short interrogative/instructive sen-
tences to the beginning of a prompt can improve
zero-shot performance. We add a short sentence,
“this is a hard problem”, at the beginning of our
prompt for generating paraphrases and found that
this generally improved the quality of paraphrased
captions.

Style transfer and contextual captions (care-
fully generate a paraphrased caption capturing the
key information and main themes in one sentence
with up to twenty words). We add specific guidance
on this goal and lead LLMs to generate semanti-
cally similar captions without adding too many
irrelevant words.

Video sylization For augmenting videos, though
recent years have witnessed huge progress in video
stylization (Yin et al., 2023; Wu et al., 2023a;
Khachatryan et al., 2023) and generation (Gao
et al., 2023; Ruan et al., 2023; Shen et al., 2023;
Ni et al., 2023), the performance of video genera-
tion is still far behind image generation (Saharia
et al., 2022; Zhang et al., 2023; Brooks et al., 2023;
Wang et al., 2023a; Rangwani et al., 2023) and styl-
ization (Kang et al., 2023; Yang et al., 2023c; Liu
et al., 2023a; Li et al., 2023d; Zhou et al., 2023),
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due to the high requirement of understanding tem-
poral association and highly informative context.
Besides, as video generation methods have high
computation requirements, due to these issues, in-
stead of employing off-the-shelf video generation
methods (Shen et al., 2023; Ni et al., 2023; Muaz
et al., 2023; Wang et al., 2023c), we employ image
stylization methods (Zhang et al., 2023; Yang et al.,
2023c), which show better performance and effi-
ciency. Specifically, we use each frame of a video
as the input of ControlNet (Zhang et al., 2023) and
generate semantically similar frames without any
text guidance using ControlNet under different pre-
defined stylized text prompts.

3.2.3 Augmentation by Relevance Enhancing
(RE)

While TPVS shows satisfying retrieval perfor-
mance, it restricts the addition of extra informa-
tion and further hinders the quality of data pairs.
As LLMs and VGMs show the ability to under-
stand the world, we propose the third augmenta-
tion method, Augmentation by Relevance Enhanc-
ing (RE), which utilizes “world models” to enrich
the visual and language information in video-text
paired data.

Text relevance enhancing Specifically, for aug-
menting text captions with the enhanced relevant
details, we use the following prompts:

This is a hard problem.
a caption from a video: ["text"]. Based

on this caption, carefully generate a

paraphrased caption capturing the key
information and main themes in one
sentence with up to twenty words (feel

free to add more relevant dftalls based
_on your knowledge and specalutaion)

The following is

Compared with the prompt used in TPVS, we have
one more special design to incorporate additional
information.

Encouraging uncertainty (feel free to add more
relevant details based on your knowledge and
specalutaion). In our prompt design, we aim to
encourage the model to include potential uncer-
tainty in the paraphrased texts. The uncertainty can
be seen as semantically similar information, which
is effective for better capturing key features.

Video relevance enhancing Similar to TPVS,
we employ image stylization methods (Saharia
etal., 2022; Zhang et al., 2023; Brooks et al., 2023;
Wang et al., 2023a), use each frame of a video

as the input of the image stylization model, and
generate semantically similar frames as augmented
views. However, to add relevant visual cues, we
use ControlNet (Zhang et al., 2023) without any
text guidance in guess mode.

3.3 Base Model and Training Objectives

In this part, we present a general VTR framework
widely used by previous methods (Luo et al., 2022;
Liu et al., 2022a). With this paradigm, we obtain
two representations for video and text modalities,
i.e., video representation e, and text representation
e; by modality-dependent encoders f;qeo(-) and
ftext(+). Then, the similarity between the video and
the text sim(e,, e;) is calculated by the cosine sim-
ilarity s = cosine(e,,e;). Finally, the retrieved
data is ranked based on the cosine similarity to the
query input.

The training objective is the contrastive loss. Fol-
lowing Clip4Clip (Luo et al., 2022), we employ the
symmetric InfoNCE loss as,

ésim :£U2t + €t2v
1 exp(si,i
S
N (€[] Zje[N} exp(si,;)

where s; ; is similarity between i-th video and j-th
text and NN is the number of paired data.

4 Experiments

Benchmarks. To evaluate the proposed DREAM,
we use three representative VTR benchmarks, i.e.,
MSR-VTT (Xu et al., 2016a), MSVD (Chen and
Dolan, 2011), and ActivityNet (Fabian Caba Heil-
bron and Niebles, 2015). Details are deferred to
the Appendix due to the limitation of space.
Evaluation Protocols. To evaluate the retrieval
performance of our proposed DREAM, we use re-
call at Rank K (R@K, higher is better), median
rank (MdR, lower is better), and mean rank (MnR,
lower is better) as retrieval metrics, which are
widely used in previous retrieval works (Radford
et al., 2021b; Luo et al., 2022; Ma et al., 2022a).
Implementation Details.  Our baseline (base
model) is X-CLIP (Ma et al., 2022a). Follow-
ing Luo et al. (2022); Ma et al. (2022a), we use
a standard vision transformer (Dosovitskiy et al.,
2021) with 12 layers that are initialized with the
public CLIP (Radford et al., 2021b) checkpoints.
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Methods Venue Text-to-Video Retrieval Video-to-Text Retrieval

R@11 R@51 R@I10t MdR]| MnR| | R@l1t R@57 R@I10T MdR| MnR|
VLM (Xu et al., 2021a) ACL21 28.1 55.5 67.4 4.0 - - - - - -
VideoCLIP (Xu et al., 2021b) EMNLP’21 30.9 55.4 66.8 - - - - - - -
LGDN (Lu et al., 2022) NeurIPS’22 43.7 71.4 80.3 2.0 - 42.6 71.6 80.6 2.0 -
BLIP-based
BLIP (Li et al., 2022) ICML22 414 63.3 72.8 2.0 - - - - - -
LiteVL-S (Chen et al., 2022) EMNLP’22 46.7 71.8 81.7 2.0 - - - - - -
LiteVL-L (Chen et al., 2022) EMNLP’22 50.8 76.3 84.4 2.0 - - - - - -
ViT (CLIP)-based
CLIP (Radford et al., 2021a) ICML21 31.2 53.7 64.2 4.0 - 27.2 51.7 62.6 5.0 -
CLIP4Clip (Luo et al., 2022) NeurComp’22 | 44.5 71.4 81.6 2.0 15.3 - - - - -
VCM (Cao et al., 2022) AAAT22 43.8 71.0 - 2.0 14.3 45.1 72.3 82.3 2.0 10.7
DiscreteCodebook (Liu et al., 2022a) ACL’22 434 72.3 81.2 - 14.8 42.5 71.2 81.1 - 12.0
X-Pool (Gorti et al., 2022) CVPR’22 46.9 72.8 82.2 2.0 14.3 - - - - -
TS2-Net (Liu et al., 2022b) ECCV’22 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2
NCL (Park et al., 2022b) EMNLP’22 439 71.2 81.5 2.0 15.5 449 71.8 80.7 2.0 12.8
Align&Tell (Wang et al., 2022c) TMM’22 452 73.0 82.9 2.0 - 434 70.9 81.8 2.0 -
TABLE (Chen et al., 2023) AAAT23 47.1 74.3 82.9 2.0 13.4 47.2 74.2 84.2 2.0 11.0
VOP (Huang et al., 2023) CVPR’23 44.6 69.9 80.3 2.0 16.3 44.5 70.7 80.6 2.0 11.5
PIDRo (Guan et al., 2023) CVPR’23 48.2 74.9 83.3 2.0 12.6 47.4 74.8 84.1 2.0 8.7
HBI (Jin et al., 2023a) CVPR’23 48.6 74.6 83.4 2.0 12.0 46.8 74.3 84.3 2.0 8.9
UATVR (Fang et al., 2023a) CVPR’23 475 73.9 83.5 2.0 12.3 46.0 73.7 82.8 2.0 8.7
Cap4Video (Wu et al., 2023b) ICCV’23 49.3 74.3 83.8 2.0 12.0 47.1 73.7 84.3 2.0 8.7
UCOoFiA (Wang et al., 2023c) ICCV’23 49.4 72.1 - - 12.9 47.1 74.3 - - -
ProST (Li et al., 2023b) ICCV’23 48.2 74.6 834 2.0 124 46.3 74.2 83.2 2.0 8.7
DiffusionRet (Jin et al., 2023b) ICCV’23 49.0 75.2 82.7 2.0 12.1 47.7 73.8 84.5 2.0 8.8
RAP (Cao et al., 2024) ACL24 44.8 71.4 81.5 - 14.4 44.0 71.9 82.4 - 10.1
T-MASS (Wang et al., 2024) CVPR’24 50.2 75.3 85.1 1.0 11.9 - - - - -
X-CLIP (Ma et al., 2022b) (Baseline) ACM MM’22 | 46.1 74.3 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1
DREAM 60.8 84.5 91.4 1.0 5.8 60.6 85.2 92,5 1.0 5.9

Table 1: Video-Text retrieval results on MSR-VTT. The best results are marked in bold. “NeurComp” refers to

Neurocomputing.

We use SeqTransformer as the temporal encoder,
similar to (Luo et al., 2022). We directly use the
text encoder of CLIP as our text encoder, which
is also initialized with the public CLIP check-
points. All models are optimized for 5 epochs
on MSR-VTT and MSVD, and for ActivityNet,
the models are trained for 20 epochs. We use
AdamW (Loshchilov and Hutter, 2019) with a
weight decay of 0.2 and decay the learning rate
using a cosine schedule (Loshchilov and Hutter,
2017), following the method used in CLIP (Rad-
ford et al., 2021b). For all experiments, we uni-
formly sample 12 frames from every video, resizing
each frame to 224x224 as per previous works (Luo
et al., 2022; Ma et al., 2022a). For text augmen-
tation, we use LLaMA?2 (Touvron et al., 2023b),
while for video frame augmentation, we employ
ControlNet (Zhang et al., 2023).

4.1 Quantitative Results

In this part, we present a series of experiments
on MSR-VTT, MSVD, and ActivityNet to demon-
strate the effectiveness of DREAM in Tables 1 to 3,
8 and 9.

MSR-VTT. The results are shown in Table 1.

DREAM significantly outperforms all previous
methods across different retrieval metrics, achiev-
ing remarkable top scores with a Recall@1 of 60.8
and 60.6, Recall@5 of 84.5 and 85.2, and Re-
call@10 of 91.4 and 92.5, for text-to-video and
video-to-text, respectively. This leap in perfor-
mance highlights the effectiveness of DREAM, set-
ting a new benchmark for the field.

MSYVD. Corresponding results are shown in Ta-
bles 2 and 8. With a Text-to-Video Retrieval Re-
call@1 of 61.6, Recall@5 of 87.1, and Recall@10
of 93.2, alongside a MdR and MnR of 1.0 and 5.6
respectively, DREAM establishes new SOTAs.

ActivityNet. Corresponding results are shown in
Tables 3 and 9. DREAM achieves the highest scores
across both text-to-video and video-to-text retrieval
tasks, with Text-to-Video Retrieval scores of Re-
call@1 at 59.1.

4.2 Qualitative Results

Quality of augmented data. To qualitatively val-
idate the effectiveness of DREAM, we present
examples of augmented data in Figures 2 and 4,
respectively.  For paraphrasing text, we em-
ploy LLaMA2 (Touvron et al., 2023b) and
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Text-to-Video Retrieval

Methods Venue R@I7 R@57 R@I0T MdR| MnR|
CLIP4Clip NeurComp22 | 452 755 843 20 103
CLIP2Video Arxiv'21 47.0 76.8 85.9 2.0 9.6
X-Pool CVPR'22 412 714 860 ; 93
NCL EMNLP'22 | 478 77.5 859 20 99
CenterCLIP SIGIR'22 476 768 856 20 99
TABLE AAAT'23 499 793 874 20 9l
PIDRo CVPR'23 475 775 860 20 92
UATVR CVPR'23 460 763 851 20 104
Cap4Video 1cCV°23 518 808 883 1.0 83
UCoFiA 1cCV°23 4714 716 - } 9.6
DiffusionRet 1cCV'23 466 759 84l 20 157
RAP ACL 24 498 782  86.1 ; 9.7
X-CLIP ACMMM22 | 47.1 778 ; ; 9.5
DPREAM(VIT-B/32) 61.6 8.1 932 10 56

Table 2: Text-to-Video retrieval results on MSVD. Best
in bold.

Text-to-Video Retrieval

Methods Venue R@It R@5F R@107 MdR| MnR|
CLIPACLp  NeurComp22 | 40.5 724 981 20 7.4
VCM AAAT'22 408 728 - 20 73
TS2-Net ECCV'22 410 736 845 20 84
NCL EMNLP'22 | 459 768 983 20 67
Align&Tell  TMM 26 738 - 2.0 -

CenterCLIP ~ SIGIR'22 435 750 859 20 69
PIDRo CVPR'23 449 745 8.1 20 64
HBI CVPR'23 422 730 846 20 66
UCOFiA 1cCcv23 457 760 - - 6.6
DiffusionRet ICCV'23 458 756 863 20 65
RAP ACL'24 484 762 864 - 7.0
X-CLIP ACMMM?22 | 443 741 - - 7.9
DREAM 591 829 953 1.0 52

Table 3: Text-to-Video retrieval results on ActivityNet.
Best in bold.

Video %ggmentation Text Augmentation

Original &i’ & ‘[j! f'/‘§1 Original
Video | o\ r Text
a1 < BT e,

while other friends too try and hitting the basket
another is eager to achieve his fourth successful
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An eager basketball player tries to score his fourth
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D atmosphere.
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Figure 2: Qualitative examples of data generated by
DREAM. “Aug. 2” and “Aug. 3” refer to augmentation
by text paraphrasing and video stylization and augmen-
tation by relevance enhancing.

OLMo (Groeneveld et al., 2024). For generat-
ing semantically similar video frames, we use
ControlNet (Zhang et al., 2023) and Instruct-
Pix2Pix (Brooks et al., 2023). We notice that for
text paraphrasing, both LLaMA and OLMo are able
to grasp the main idea based on the input and gener-
ate semantically similar texts. For video frame gen-
eration, though the generation for a frame is inde-
pendent of other frames, we still observe that Con-
trolNet can generate frames within a similar style,

Rank 01, 27.01, young men in a middle of the bush almost naked and
scratching themselves

Rank 02, 21.80, there are two men swimming in a pond

Baseline

Rank 95, [14:20, a naked child runs through a field @

Rank 01, 23:31, a naked child runs through a field. Video shows film mm@
body swimming with beach child at the age of six. Image showing the beach

Rank 02, 21.80, there are two men swimming in a pond. Image of movie'sicko
movies in video.

Rank 03, 1420, two boys sneak up to a girls performing choir. Photo of Video
by the teacher.

Videos
» Rank 01, 24.50) 1
Q =

DREAM

‘S Rank 02, 23.99
(%]

©
0 Rank 03, 23.20

= Rank 01, 12.90
<
= Rank 02, 05.4

a computer generated cartoon
figure operates a control panel
the scene in which a robot brain
was injected into an animated

while another character sleeps in
the background. Video showing

film
D
g
=
=
3
S
S
h |
=
. |

Figure 3: Retrieval examples by the baseline and
DREAM. “Rank x” means that the example is ranked at
2. The numbers in blue represent the similarity to the
query. Texts in blue and video frames surrounded by
green lines are augmented data.

while the frames generated by Instruct-Pix2Pix are
always in different styles. A failure case is the sec-
ond frame in the last row where a man is holding a
human head as a basketball.

Retrieval examples. To qualitatively validate the
effectiveness of DREAM, we present examples of
video-to-text and text-to-video retrieval on MSR-
VTT in Figure 3. The retrieval results show the
satisfactory performance of DREAM, benefiting
from the augmented semantics, compared with the
baseline. While the baseline struggles with match-
ing, DREAM demonstrates precise identification of
objects (computer) and humans (child), indicating
its proficiency in capturing intricate details.

4.3 Ablation Studies

In this section, we present the ablation studies
on DREAM regarding the number of paraphrased
texts and generated videos on MSR-VTT utiliz-
ing DREAM with X-CLIP (ViT-B/32) as the base
model. Due to the space limitation, the results on
video-to-text are presented in Tables 10 to 13.

Number of paraphrased texts. Table 4 offers
an insightful look into the effects of varying the
number of augmented texts. With simple augmen-
tation, a gradual increase in performance is seen
with the number of texts. Moving to augmentation
by text paraphrasing and video stylization, the per-
formance leaps further, highlighting the value of
leveraging external, sophisticated models to enrich
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Text-to-Video Retrieval
R@11T R@51 R@I10t MdR| MnR]

Baseline ‘ 46.1 74.3 83.1 2.0 13.2

# of Text

Augmentation 1: Simple Augmentation

1 50.8 76.7 84.6 1.0 11.1
2 50.1 75.3 84.1 1.0 12.2
3 51.3 77.0 85.5 1.0 11.3
4 51.6 76.4 84.7 1.0 11.5
5 52.0 76.5 84.7 1.0 11.0

Augmentation 2: Text Paraphrasing and Video Stylization

1 56.1 81.3 89.4 1.0 9.7
2 55.7 80.8 88.8 1.0 9.6
3 56.0 80.5 88.7 1.0 10.0

Augmentation 3: Relevance Enhaching

1 56.7 83.0 90.1 1.0 8.1
2 60.1 83.1 90.1 1.0 59
3 60.4 85.3 91.0 1.0 5.8
4 59.2 84.0 91.1 1.0 7.1
5

60.8 84.5 914 1.0 5.8

Methods LLMs

R@11 R@57 R@10f MdR| MnR]
| 461 743 831 20 132

‘ Text-to-Video Retrieval

Baseline

Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization

DREAM LLaMA-2-7b-chat-hf | 54.7 80.3 88.9 1.0 9.3
OLMo-7b 53.2 77.9 86.3 1.0 9.8
Augmentation 3: Augmentation by Relevance Enhaching
DREAM LLaMA-2-7b-chat-hf | 60.8 84.5 91.4 1.0 58
’ OLMo-7b 58.7 81.2 89.5 1.0 7.5
Text-to-Video Retrieval
Methods VGMs ‘ R@IT R@57 R@I107 MdR| MR}
Baseline ‘ 46.1 74.3 83.1 2.0 13.2

Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization

DREAM ControlNet 54.7 80.3 88.9 1.0 9.3
instruct-pix2pix 56.7 83.0 90.1 1.0 8.1

Augmentation 3: Augmentation by Relevance Enhaching
ControlNet 60.8 84.5 91.4 1.0 5.8

DREAM ‘

instruct-pix2pix 57.8 82.9 90.2 1.0 79

Table 6: Text-to-video retrieval results on MSR-VTT
using different image generation methods for generating
stylized video frames. Best in bold.

Table 4: Text-to-video retrieval performance with dif-
ferent numbers of augmented captions using three aug-
mentation methods on MSR-VTT. Best in bold.

Text-to-Video Retrieval
R@11T R@51 R@10T MdR| MnR|

Baseline ‘ 46.1 74.3 83.1 2.0 13.2

# of Video

Augmentation 1: Simple Augmention

1 504 75.8 84.9 1.0 11.2
2 48.7 75.6 84.3 2.0 11.4
3 50.0 75.0 84.2 1.5 12.4
4 49.8 74.4 82.8 2.0 11.6
5 504 77.2 86.0 1.0 10.7

Augmentation 2: Text Paraphrasing and Video Stylization

1 53.8 80.7 88.6 1.0 9.9
2 544 79.3 87.4 1.0 10.1
3 54.7 80.3 88.9 1.0 9.3

Augmentation 3: Relevance Enhaching

1 60.4 84.4 914 1.0 6.2
2 60.0 84.0 91.2 1.0 6.4
3 60.8 84.5 91.4 1.0 5.8

Table 5: Text-to-video retrieval performance with differ-
ent numbers of generated videos using three augmenta-
tion methods on MSR-VTT. Best in bold.

the dataset. The last one, augmentation by rele-
vance enhancing, showcases the most significant
performance boosts, especially with 5 texts, achiev-
ing the highest Recall@1 of 60.8, along with the
best Recall@5, Recall@10, and the lowest MdR
and MnR scores.

Number of generated videos. Table 5 presents an
ablation study on the impact of different numbers of
generated videos. For simple augmentation, we no-

Text-to-Video Retrieval | Video-to-Text Retrieval
R@11 R@5t MnR| | R@1t R@51 MnR|

UCoFiA ‘ 494 72.1 12.9 47.1 743 114
DREAM(UCOFIA)  58.6 84.3 6.1 58.0 83.6 5.1

Table 7: Text-to-video retrieval performance with
UCOoFiA as the base model on MSR-VTT. Best in bold.

tice considerable improvements, particularly with 5
videos, achieving an R@1 of 50.4 on text-to-video.
When moving to augmentation by text paraphrasing
and video stylization, it further elevates the perfor-
mance, with the best results observed when using
3 videos, where T2V R@1 reaches 54.7 and V2T
R@1 peaks at 56.4. This suggests that leveraging
foundation models for augmentation can signifi-
cantly impact retrieval effectiveness, likely due to
the richer, more diverse semantic representations
introduced. The last strategy, augmentation by rel-
evance enhancing, achieves the highest T2V R@1
of 60.8, alongside the best R@5 and R@10 scores,
underscoring the efficacy of augmentation in cap-
turing diverse semantic content.

Choice of LLM for paraphrasing. To understand
how LLMs impact retrieval performance, we also
use OLMo (Groeneveld et al., 2024) for gener-
ating paraphrased captions, as shown in Table 6
and fig. 2. The data showcases a notable improve-
ment when using LLMs over the baseline, with
LLaMA achieving the highest performance across
all metrics compared to OLMo, underscoring its su-
periority in understanding and generating nuanced
paraphrased captions that significantly benefit re-
trieval accuracy.

Choice of image generation methods. We also

3044



use Instruct-Pix2Pix (Brooks et al., 2023) for gen-
erating video frames, as shown in Table 6 and fig. 2.
It underscores the superiority of the ControlNet in
the Augmentation by relevance enhancing, mark-
ing it with 60.8 for Recall@1.

Generalization on more base models. As shown
in table 7, we also employ UCoFiA as our
base model. Results show that DREAMshows
strong generalization ability as the performance
of UCOFIA is improved by a large margin.

5 Conclusion

In this paper, we proposed a novel video-text learn-
ing paradigm, DREAM, which effectively aligned
video and text spaces using generated information
conditioned on original data. First, we showed
a simple but effective method, self-augmenting,
which generated self-similar data without any pa-
rameters by randomly duplicating or removing
frames and subwords, significantly enhancing rep-
resentation learning and mitigating overfitting is-
sues commonly observed with current models. Sec-
ond, inspired by the advancement in large lan-
guage models (LLMs) and video generative models
(VGMs), DREAM employed a novel augmentation
method, which augmented data through paraphras-
ing captions and transferring video styles. Last, to
enrich video and text data with relevant informa-
tion, we proposed to augment data with relevance,
which encouraged LL.Ms and VGMs to inject rel-
evant information, and further novel information
into the generated data. This method significantly
enriched the data pool, contributing to the robust-
ness and depth of the learned representations. Fi-
nally, comprehensive experiments conducted on
several video-text retrieval benchmarks underline
the superior performance of DREAM.

Limitations

It would be interesting to test whether the pro-
posed augmentation methods can improve the per-
formance of more base models. Moreover, lim-
ited by computation resources, we only use image-
generation methods to augment videos. It would
be interesting to investigate the power of video gen-
eration methods that consider temporal association
in the input. Inspired by the recent progress of
vision-language models (VLMs), such as BLIP, In-
ternVL, and LLaVA, we present the preliminary
results using those powerful VLMs. It is promising
to employ powerful VLMs for video retrieval with

advance augmentation techniques.

Ethical Considerations

As visual generative models (VGMs) and large
language models (LLMs) are used in this study to
provide data augmentations, the bias of VGMs and
LLMs could be attributed to the bias of retrieval
methods. On the other side, the proposed methods
do not have any potential risks.
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In this technical appendix, we present the ex-
perimental results on Video-to-Text retrieval and
detailed qualitative results.

A Experiments

A.1 Details of Benchmark Datasets

MSR-VTT (Xu et al., 2016a) contains 10,000
videos with length varying from 10 to 32 seconds,
each paired with about 20 human-labeled captions.
Following the evaluation protocol from previous
works (Yu et al., 2018; Miech et al., 2019), we use
the training-9k / test 1k-A splits for training and
testing, respectively.

MSVD (Chen and Dolan, 2011) contains 1,970
videos with a split of 1200, 100, and 670 as the
train, validation, and test set, respectively. The
duration of videos varies from 1 to 62 seconds.
Each video is paired with 40 English captions.

ActivityNet (Fabian Caba Heilbron and Niebles,
2015) is consisted of 20,000 Youtube videos with
100,000 densely annotated descriptions. For a fair
comparison, following the previous setting (Luo
et al., 2022; Gabeur et al., 2020), we concatenate
all captions together as a paragraph to perform
a video-paragraph retrieval task by concatenating
all the descriptions of a video. Performances are
reported on the “vall” split of the ActivityNet.

A.2 Full Quantitative Results

Due to the limitation of space, the results on video-
to-text retrieval are presented in this technical ap-
pendix in Tables 8 and 9. We still observe signifi-
cant improvements broght by DREAM compared
with our baseline and previous SOTAs. Specifically,
DREAM improves the Recall@1 to 60.9 and 43.9
from 71.3 and 58.4 on MSVD and ActivityNet.

A.3 Full Qualitative Results - Augmentation
Examples

To qualitatively validate the effectiveness of
DREAM, we present more augmentation examples
on MSR-VTT in Figure 4, respectively. It is no-
table that Instruct-Pix2Pix performs worse than
ControlNet as Instruct-Pix2Pix puts a human head
in the hands of a basketball player. Also, we ob-
serve that LLaMA consistently outperforms OLMo
as it generates more details relevant to the original
text. These qualitative results correspond to the
quantitative results in Table 6.

Video-to-Text Retrieval

Methods Venue R@IT R@51 R@107 MdR| MR}
CLIP4AClip ~ NeurComp’22 | 62.0 87.3 92.6 1.0 43
CLIP2Video  Arxiv'21 587 856 916 10 43
NCL EMNLP22 69.6 899 954 1.0 33
CenterCLIP  SIGIR’22 579 836 905 10 52
X-CLIP ACMMM'22 | 609 878 - - 4.7
DREAM 713 894 960 1.0 40

Table 8: Video-to-Text retrieval results on MSVD. Best
in bold.

Video-to-Text Retrieval

Methods — Venue R@1T R@57 R@10F MdR}, MR}
CLIP4Clip  NeurComp’22 | 42.5 74.1 85.8 2.0 6.6
vCM AAAT22 06 749 . 20 64
NCL EMNLP'22 468 765 868 20 62
Align&Tell TMM 435 736 . 2.0 -
CenterCLIP  SIGIR'22 445 753 80 20 67
HBI CVPR23 94 730 80 20 65
UCOFiA  ICCV'23 463 765 - - -
X-CLIP ACMMM22 | 439 739 - - 76
DREAM 584 852 887 10 57

Table 9: Video-to-Text retrieval results on ActivityNet.
Best in bold.

A.4 Full Ablation Studies

Number of paraphrased texts. Tables 4 and 10 of-
fers an insightful look into the effects of varying the
number of augmented text on the retrieval perfor-
mance in the MSR-VTT dataset, utilizing DREAM
with X-CLIP (ViT-B/32) as the base model. With
simple augmentation, a gradual increase in per-
formance is seen with the number of texts, peak-
ing at 4 texts for text-to-video retrieval with a Re-
call@1 of 51.6, and similarly for video-to-text re-
trieval at 53.9. This suggests that self-generated
augmentations contribute positively to the model’s
understanding and retrieval capabilities. Moving to
augmentation by text paraphrasing and video styl-
ization, the performance leaps further, highlight-
ing the value of leveraging external, sophisticated
models to enrich the dataset. The best results are
achieved with 3 texts, indicating an optimal bal-
ance between augmentation quantity and retrieval
efficacy. The last augmentation method, augmenta-
tion by relevance enhancing, showcases the most
significant performance boosts, especially with 5
texts, achieving the highest Recall@1 of 60.8 for
text-to-video and 60.6 for video-to-text retrieval,
along with the best Recall@5, Recall@10, and the
lowest MdR and MnR scores. This illustrates the
power of relevance-based augmentation in dramati-
cally enhancing retrieval accuracy by introducing
more diverse and complex semantic representations
into the training process.
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Figure 4: Qualitative examples of data generated by DREAM. “Aug. 2” and “Aug. 3” refer to augmentation by text
paraphrasing and video stylization and augmentation by relevance enhancing.

4 of Text Text-to-Video Retrieval Video-to-Text Retrieval
R@l1t R@51t R@10T MdR| MnR| | R@11T R@51 R@10t MdR| MnR|
Baseline ‘ 46.1 74.3 83.1 2.0 13.2 ‘ 46.8 73.3 84.0 2.0 9.1
Augmentation 1: Simple Augmentation
1 50.8 76.7 84.6 1.0 11.1 53.6 76.6 85.2 1.0 8.7
2 50.1 75.3 84.1 1.0 12.2 51.3 76.3 84.1 1.0 9.5
3 51.3 77.0 85.5 1.0 11.3 52.9 78.1 85.0 1.0 8.3
4 51.6 76.4 84.7 1.0 11.5 53.9 78.0 84.7 1.0 8.3
5 52.0 76.5 84.7 1.0 11.0 51.2 76.5 85.3 1.0 10.0
Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization
1 56.1 81.3 894 1.0 9.7 52.4 77.3 84.9 1.0 8.0
2 55.7 80.8 88.8 1.0 9.6 53.4 80.4 87.7 1.0 8.3
3 56.0 80.5 88.7 1.0 10.0 55.2 814 89.3 1.0 8.0
Augmentation 3: Augmentation by Relevance Enhancing
1 56.7 83.0 90.1 1.0 8.1 56.7 83.1 90.4 1.0 6.5
2 60.1 83.1 90.1 1.0 59 57.7 84.2 91.6 1.0 6.2
3 60.4 85.3 91.0 1.0 5.8 60.3 84.1 91.3 1.0 6.6
4 59.2 84.0 91.1 1.0 7.1 57.3 83.8 90.3 1.0 7.4
5 60.8 84.5 914 1.0 5.8 60.6 85.2 92.5 1.0 5.9

Table 10: Full retrieval performance with different numbers of augmented captions using three augmentation

methods on MSR-VTT. Best in bold and the results on
space limitation.

Number of generated videos. Tables 5 and 11
presents an ablation study on the impact of different
numbers of generated videos. For simple augmen-
tation, we notice considerable improvements, par-
ticularly with 5 videos, achieving a Text-to-Video
Retrieval (T2V) R@1 of 50.4, and a Video-to-Text
Retrieval (V2T) R@1 of 51.6. When moving to
augmentation by text paraphrasing and video styl-
ization, it further elevates the performance, with
the best results observed when using 3 videos,
where T2V R@1 reaches 54.7 and V2T R@1
peaks at 56.4. This suggests that leveraging foun-

video-to-text retrieval are deferred to Appendix due to the

dation models for augmentation can significantly
impact retrieval effectiveness, likely due to the
richer, more diverse semantic representations in-
troduced. The last strategy, augmentation by rele-
vance enhancing, achieves the highest T2V R@1
of 60.8 and V2T R@1 of 60.6, alongside the best
R@5 and R@10 scores, underscoring the efficacy
of relevance-based augmentation in capturing nu-
anced, diverse semantic content, thus markedly im-
proving retrieval precision. The progressive in-
crease in retrieval performance across the augmen-
tation strategies, especially with the augmentation
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Text-to-Video Retrieval

Video-to-Text Retrieval

#ofVideo | p@it R@St R@10T MdR| MnR| | R@1f R@5t R@I0F MdR, MnR |
Baseline ‘ 46.1 74.3 83.1 2.0 13.2 ‘ 46.8 73.3 84.0 2.0 9.1
Augmentation 1: Simple Augmentation

1 50.4 75.8 84.9 1.0 11.2 52.1 76.9 85.0 1.0 9.1
2 48.7 75.6 84.3 2.0 11.4 50.7 76.6 84.2 1.0 8.9
3 50.0 75.0 84.2 1.5 12.4 48.9 76.5 84.4 2.0 9.6
4 49.8 74.4 82.8 2.0 11.6 49.9 74.1 84.3 2.0 10.3
5 50.4 77.2 86.0 1.0 10.7 51.6 77.6 854 1.0 8.5

Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization
1 53.8 80.7 88.6 1.0 9.9 55.6 79.6 88.2 1.0 7.7
2 54.4 79.3 87.4 1.0 10.1 56.4 80.3 87.9 1.0 7.2
3 54.7 80.3 88.9 1.0 9.3 55.3 80.8 87.9 1.0 6.8
Augmentation 3: Augmentation by Relevance Enhancing
1 60.4 84.4 914 1.0 6.2 59.3 84.8 91.5 1.0 6.5
2 60.0 84.0 91.2 1.0 6.4 58.8 85.9 91.4 1.0 7.0
3 60.8 84.5 91.4 1.0 5.8 60.6 85.2 92.5 1.0 5.9

Table 11: Full retrieval performance with different numbers of generated videos using three augmentation methods

on MSR-VTT. Best in bold.

Methods LLMs Text-to-Video Retrieval Video-to-Text Retrieval
) R@1T R@51t R@107 MdR| MnR| | R@It R@57 R@10f MdR| MnR]}
Baseline - ‘ 46.1 74.3 83.1 2.0 132 ‘ 46.8 73.3 84.0 2.0 9.1
Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization
DREAM LLaMA-2-7b-chat-hf | 54.7 80.3 838.9 1.0 9.3 55.3 80.8 87.9 1.0 6.8
OLMo-7b 532 77.9 86.3 1.0 9.8 53.7 77.4 87.2 1.0 7.5
Augmentation 3: Augmentation by Relevance Enhaching
DREAM LLaMA-2-7b-chat-hf | 60.8 84.5 91.4 1.0 5.8 60.6 85.2 92.5 1.0 5.9
OLMo-7b 58.7 81.2 89.5 1.0 7.5 59.2 83.7 90.3 1.0 7.1
Table 12: Full retrieval results on MSR-VTT using different LLMs for generating paraphrased captions. Best in
bold.
Text-to-Video Retrieval Video-to-Text Retrieval
Methods VGMs R@I? R@57 R@I07 MdR| MnR| | R@1t R@5t R@I107 MdR| MnR|
Baseline - ‘ 46.1 74.3 83.1 2.0 13.2 ‘ 46.8 73.3 84.0 2.0 9.1
Augmentation 2: Augmentation by Text Paraphrasing and Video Stylization
DREAM ControlNet 54.7 80.3 88.9 1.0 9.3 55.3 80.8 87.9 1.0 6.8
instruct-pix2pix | 56.7 83.0 90.1 1.0 8.1 56.7 83.1 90.4 1.0 6.5
Augmentation 3: Augmentation by Relevance Enhaching
DREAM ControlNet 60.8 84.5 91.4 1.0 5.8 60.6 85.2 92.5 1.0 5.9
instruct-pix2pix | 57.8 82.9 90.2 1.0 7.9 58.2 814 87.8 1.0 8.0

Table 13: Full retrieval results on MSR-VTT using different image generation methods for generating stylized video
frames. Best in bold.

by relevance enhancing, highlights the potential of
sophisticated, creative augmentation techniques in
enhancing the capabilities of text-video retrieval.

Choice of LLM for paraphrasing. To understand
how LLMs impact retrieval performance, we also

use OLMo (Groeneveld et al., 2024) for generat-
ing paraphrased captions. The results are shown
in Tables 6 and 12. The data showcases a notable
improvement when using LLMs over the baseline,
with LLaMA achieving the highest performance
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across all metrics, underscoring its superiority in
understanding and generating nuanced paraphrased
captions that significantly benefit retrieval accuracy.
Specifically, LLaMA demonstrates exceptional ca-
pability in both augmentation strategies but particu-
larly excels in Augmentation by relevance enhanc-
ing, where it achieves the best recall rates (60.8
in Text-to-Video and 60.6 in Video-to-Text) and
the lowest rank metrics (MdR and MnR at 1.0 and
5.8/5.9, respectively). These findings underscore
the importance of selecting appropriate LLMs for
paraphrase generation in multimedia retrieval tasks,
highlighting how advanced models like LLaMA
can effectively bridge semantic gaps between text
and video content to improve retrieval outcomes.
Choice of image generation methods. To
understand how image generation methods im-
pact retrieval performance, we also use Instruct-
Pix2Pix (Brooks et al., 2023) for generating video
frames. The results are shown in Table 13. It under-
scores the superiority of the ControlNet method in
the augmentation by relevance enhancing category,
marking it with the highest recall scores (60.8 for
Text-to-Video and 60.6 for Video-to-Text) and the
lowest ranks (MdR and MnR of 1.0 and 5.8/5.9,
respectively), significantly outperforming the base-
line and showcasing the potential of leveraging
relevance-bsaed techniques in enhancing video-text
retrieval tasks. It also highlights the pivotal role of
advanced image generation methods in improving
the semantic alignment between video and text, of-
fering promising directions for future research in
multimedia retrieval.
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