
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2629–2648

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

SAPIENT: Mastering Multi-turn Conversational Recommendation with
Strategic Planning and Monte Carlo Tree Search

Hanwen Du♣ Bo Peng♣ Xia Ning♣♠♡B
♣Department of Computer Science and Engineering, The Ohio State University, USA

♠Department of Biomedical Informatics, The Ohio State University, USA
♡Translational Data Analytics Institute, The Ohio State University, USA

{du.1128,peng.707,ning.104}@osu.edu

Abstract
Conversational Recommender Systems (CRS)
proactively engage users in interactive di-
alogues to elicit user preferences and pro-
vide personalized recommendations. Exist-
ing methods train Reinforcement Learning
(RL)-based agent with greedy action selec-
tion or sampling strategy, and may suffer from
suboptimal conversational planning. To ad-
dress this, we present a novel Monte Carlo
Tree Search (MCTS)-based CRS framework
SAPIENT. SAPIENT consists of a conversa-
tional agent (S-agent) and a conversational
planner (S-planner). S-planner builds a conver-
sational search tree with MCTS based on the
initial actions proposed by S-agent to find con-
versation plans. The best conversation plans
from S-planner are used to guide the train-
ing of S-agent, creating a self-training loop
where S-agent can iteratively improve its capa-
bility for conversational planning. Furthermore,
we propose an efficient variant SAPIENT-e for
trade-off between training efficiency and perfor-
mance. Extensive experiments on four bench-
mark datasets validate the effectiveness of our
approach, showing that SAPIENT outperforms
the state-of-the-art baselines. Our code and
data are accessible through https://github.
com/ninglab/SAPIENT.

1 Introduction

Conversational Recommender Systems (CRSs) are
developed to proactively engage users with inter-
active dialogues to understand user preferences
and provide highly personalized recommendations
(Christakopoulou et al., 2016; Lei et al., 2020b).
For example, on an online dining platform such
as Yelp (Lei et al., 2020b), CRS can chat with
users through natural language dialogues (e.g.,
ask a question like, “What is your preferred food
type?”) and recommend products that best match
the users’ preferences expressed in the conversa-
tion. Among different settings of CRS (Sun and

Zhang, 2018; Deng et al., 2021; He et al., 2023),
the Multi-turn Conversational Recommendation
(MCR) setting (Lei et al., 2020b,c; Deng et al.,
2021) is popular as it can interact/communicate
with users multiple times (i.e., multiple turns) to
iteratively learn user preferences (Fu et al., 2020;
Jannach et al., 2021). In this work, we develop
an innovative Monte Carlo Tree Search (MCTS)-
based MCR framework to enhance the strategic
conversational planning ability for MCR, offering
a fresh perspective for handling complex conversa-
tion environments and enhancing user experiences.

A key of MCR is to decide what action (ask-
ing a question on specific attribute values or rec-
ommending specific items) to take at each con-
versational turn—a conversational turn consists of
the CRS taking an action and the user respond-
ing to that action—to effectively elicit information
on user preferences and make personalized recom-
mendations (Fu et al., 2020; Lei et al., 2020a). To
achieve this, previous methods formulated MCR
as a Markovian Decision Process (MDP) (Bellman,
1957), and trained policy-based (Sun and Zhang,
2018; Lei et al., 2020b) or value-based (Deng et al.,
2021; Zhang et al., 2022) agents via Reinforcement
Learning (RL) to learn conversation strategies. De-
spite promising, these methods could suffer from
myopic actions and limited planning capability due
to the following reasons. First, they base their plan-
ning solely on observations of the current state (e.g.,
items that the user indicates a negative preference
for) without exploring potential future states. As
a result, they could take myopic actions (Anthony
et al., 2017; Cohen et al., 2022). Second, they gen-
erate conversation trajectories, also referred to as
conversation plans, by sequentially sampling ac-
tions, and thus could suffer from the cumulative
error, especially when generating long trajectories
for planning (Kumar et al., 2019; Lan et al., 2020).

To address these limitations, we present a novel
MCTS-based MCR framework—Strategic Action
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User: Hi, I'm looking for a 
restaurant in Pittsburgh.

S-agent: What star rating do you prefer? 
(A) One (B) Two (C) Three (D) Four (E) Five
User: (D)

S-agent: What price range do you prefer?
(A) Low (B) Medium (C) High (D)Premium
User: (B)

S-agent: You may like “Seviche”.
User: No!

S-agent: You may like “Enrico Biscotti”.
User: Yes! Thank you!

S-agent: You may like “Primanti Bros. 
Restaurant and Bar”.
User: No!

S-agent: You may like 
“Hofbrauhaus Pittsburgh”.
User: No!

S-agent: What restaurant type do you prefer?
(A) Buffets (B) Steakhouses (C) Diners (D) Others
User: (D)

S-agent: What food type do you prefer?
(A) Bagels (B) Donuts (C) Others
User: (C)

S-agent: You may like “P&G’s 
Pamela’s Diner”.
User: No!

S-agent: What price range do you prefer?
(A) Low (B) Medium (C) High (D)Premium
User: (B)

S-agent: You may like “Meat & Potatoes”.
User: No!

…

… …

Ask Rec

… …… …

… …

… …

A Conversational Turn (Asking for Attribute Values)

A Conversational Turn (Recommending Items)

Start of Conversation

Figure 1: An example of conversational search tree for a user. Conversation starts at the root node with the user
specifying preference on an attribute type and its value. The search tree expands as S-agent decides different action
types—ask and rec—at each turn. Red line connects the highest-rewarded conversation plan found by the tree.

Planning with Intelligent Exploration Non-myopic
Tactics, referred to as SAPIENT. SAPIENT com-
prises a conversational agent, referred to as S-agent,
where S-agent utilizes an MCTS-based algorithm,
referred to as S-planner, to plan conversations.
S-agent builds a global information graph and two
personalized graphs with dedicated graph encoders
to extract the representation of the conversational
states, and synergizes a policy network and a Q-
network to decide specific actions based on the
learned state representations. S-planner leverages
MCTS (Kocsis and Szepesvári, 2006; Coulom,
2007) to simulate future conversations with looka-
head explorations. This non-myopic conversational
planning process ensures S-planner can strategi-
cally plan conversations that maximize the cumula-
tive reward (a numerical signal measuring whether
the action taken by S-agent is good or not), in-
stead of greedily selecting actions based on imme-
diate reward. The best conversation plans with the
highest cumulative rewards found by S-planner are
used to guide the training of S-agent. In this way,
S-agent can engage in a self-training loop (Silver
et al., 2017)—collecting trajectories from multiple
conversation simulations and training on selected,
high-rewarded trajectories—to iteratively improve
its planning capability without additional labeled
data. After S-agent is well-trained, it can directly
make well-informed decisions without S-planner
during inference, since it inherits the S-planner’s
expertise in strategic, non-myopic planning.

To make MCTS scalable w.r.t. the size of items
and attributes, we introduce a hierarchical action
selection process (Nachum et al., 2018), and two
action types: ask and rec. At each turn, instead
of searching over all the items and attribute val-

ues, S-planner builds a conversational search tree
(Figure 1) that only searches over the two action
types and uses the Q-network to decide the specific
action, thus greatly reducing the search space.

We evaluate SAPIENT against 9 state-of-the-art
CRS baselines, and show SAPIENT significantly
outperforms baselines on 4 benchmark datasets.
Our case study also shows that the action strategies
of SAPIENT are beneficial for information seeking
and recommendation success in the conversations.

Furthermore, we develop an efficient variant
of SAPIENT, denoted as SAPIENT-e. Different
from SAPIENT, which is trained on selected, high-
rewarded trajectories, SAPIENT-e consumes all tra-
jectories found by S-planner for training via a list-
wise ranking loss. As a result, SAPIENT-e requires
less cost of collecting training trajectories com-
pared to SAPIENT, and enables superior efficiency.
Our contributions are summarized as follows:
• We present SAPIENT, a novel MCR framework

synergizing an MCTS-based S-planner and an
S-agent with a self-training loop to iteratively
improve S-agent’s planning capability. To the
best of our knowledge, SAPIENT is the first to
leverage an MCTS-based planning algorithm to
achieve strategic, non-myopic planning for MCR.

• We further develop SAPIENT-e, an efficient vari-
ant trained on all trajectories from S-planner via
a listwise ranking loss. SAPIENT-e addresses the
efficiency issue with MCTS while maintaining
similar performance with SAPIENT.

• Our extensive experiments show both SAPIENT

and SAPIENT-e outperform the state-of-the-art
baselines. Our case study shows SAPIENT can
strategically take actions that enhance informa-
tion seeking and recommendation success.
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2 Related Work

Conversational Recommender System CRS un-
derstands user preferences through interactive nat-
ural language conversations to provide personal-
ized recommendations (Fu et al., 2020; Jannach
et al., 2021). Early methods (Christakopoulou et al.,
2016; Sun and Zhang, 2018) ask users about their
desired attribute values to narrow down the list
of candidate items to recommend, but are limited
under the single-turn setting, as they can only rec-
ommend once in a conversation. To address this,
multi-turn CRSs allow for multiple turns of ques-
tion inquiries and item recommendations. For ex-
ample, EAR (Lei et al., 2020b) adjusts the conver-
sation strategy based on the user’s feedbacks with
a three-staged process. SCPR (Lei et al., 2020c)
models MCR as a path reasoning problem over
the knowledge graph of users, items, and attribute
values. UNICORN (Deng et al., 2021) introduces
a graph-based RL framework for MCR. MCMIPL
(Zhang et al., 2022) develops a multi-interest policy
learning framework to understand user’s interests
over multiple attribute values. HutCRS (Qian et al.,
2023) introduces a user interest tracing module to
track user preferences. CORE (Jin et al., 2023) de-
signs a CRS framework powered by large language
models with user-friendly prompts and interactive
feedback mechanisms. Chen et al. (2019) and Mon-
tazeralghaem et al. (2021) build a tree-structured
index with clustering algorithms to handle the large
scale of items and attribute values in MCR. Differ-
ent from these methods, SAPIENT can iteratively
improve its planning ability through self-training
on demonstrations from MCTS, allowing for more
informed and non-myopic conversation strategies.

Reinforcement Learning for CRS Reinforce-
ment Learning (RL) has achieved great success
in tasks requiring strategic planning in complex
and interactive environments, such as computer
Go (Silver et al., 2016, 2017) and dialogue plan-
ning (Yu et al., 2023; He et al., 2024). RL is also
employed to train CRS agents to make strategic
actions, and current RL-based CRSs can be mainly
categorized into two types of methods: (1) policy-
based methods, which train a policy network that
directly outputs the probability of taking each ac-
tion (Sun and Zhang, 2018; Lei et al., 2020a), and
(2) value-based methods, which train a Q-network
(van Hasselt et al., 2016) to estimate the Q-value
of actions (Deng et al., 2021; Zhang et al., 2022).
Despite promising, these CRS methods may suffer

from myopic conversational planning and subopti-
mal decisions due to their greedy action selection
and sampling strategy. In contrast to these methods,
our new SAPIENT is able to achieve strategic and
non-myopic conversational planning through an
MCTS-based planning and self-training algorithm.

3 Notations and Definitions

We denote U as the set of users, V as the set of
items, Y as the set of attribute types (e.g., price
range, star rating), and P as the set of attribute
values (e.g., medium price range, five-star rating).
Each user u ∈ U has an interaction history (e.g.,
view, purchase) with a set of items V(u). Each item
v ∈ V is associated with a set of attribute types
Y(v) and the corresponding set of attribute values
P(v). Each conversation is initialized by a user
specifying preference on an attribute type y0 ∈ Y
and its corresponding attribute value p0 ∈ P (e.g.,
the user says “I am looking for a place with medium
price range.”). At the t-th conversational turn,
S-agent can either ask for preferences over attribute
values from a set of candidate attribute values Pc

t ,
or recommend items from a set of candidate items
Vct . Based on the user’s reply (accept or reject
attribute values/items), S-agent repeatedly commu-
nicates with users until the user accepts at least one
recommended item at turn T (success), or the con-
versation reaches the maximum number of turns
and terminates at T=Tmax (fail). The goal of MCR
is to recommend at least one item that the user
accepts, and complete the conversation in as few
turns as possible to prevent the user from becoming
impatient after too many turns.

4 Method

We introduce SAPIENT, an MCTS-based MCR
framework that achieves strategic and non-myopic
conversational planning. SAPIENT formulates
MCR as an MDP with a hierarchical action selec-
tion process (Section 4.1). A conversational agent
(S-agent) observes the current state and decides the
actions in each conversational turn (Section 4.2),
a conversational planner (S-planner) leverages an
MCTS-based algorithm to plan conversations (Sec-
tion 4.3), and S-agent engages in a self-training
loop with guidance from S-planner (Section 4.4).
Once S-agent is well-trained, it can directly make
well-informed decisions without S-planner during
inference, since it inherits the S-planner’s expertise
in strategic and non-myopic planning. A frame-
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work overview of SAPIENT is in Figure 2 and the
training algorithm is in Algorithm 1. We summa-
rize all the notations in Appendix A.

4.1 MDP Formulation for MCR

We formulate MCR as an MDP where S-agent can
be trained in an RL environment to learn to plan
conversations strategically. For each user u, the
MDP environmentM(u) is defined as a quintuple
M(u) = {S,A, T ,R, γ}u (index u is dropped
when no ambiguity arises), where S denotes the
state space, which summarizes all the information
about the conversation and the user; A denotes
the action space, which includes asking (ask) for
specific attribute types and their respective values,
or recommending (rec) specific items; T : S ×
A → S denotes the transition to the next state
after taking an action from the current state; R :
S×A → R denotes the immediate reward function
after taking an action at the current state; and γ ∈
(0, 1) denotes the discount factor. For hierarchical
action selection (Nachum et al., 2018), S-agent first
chooses an action type ot ∈ {ask, rec} at each
conversational turn, indexed by t, then chooses
the objective of that action type. In summary, the
MDP environment provides information about the
current state for S-agent, and trains it to maximize
the reward by optimizing its action strategy.

State For the t-th turn, we define the state st ∈ S
as a triplet st = (P+

t ,P−
t ,V−t ), where P+

t denotes
all the attribute values that the user has accepted
until the t-th turn, P−

t and V−t denote all the at-
tribute values and items that the user has rejected
until the t-th turn. As the conversation continues
until the user accepts a recommended item, or the
conversation terminates at Tmax turns when none of
the recommended items are accepted by the user,
the accepted item set V+t is always empty during
the conversation, and hence we do not need V+t
in the state. Besides, S-agent also has access to
all the information about the user u and the global
information graph G (a tripartite graph that repre-
sents all the interactions between users and items
and all the associations between items and attribute
values). The state is initialized as s0 when the user
specifies preference on an attribute type y0 ∈ Y
and its corresponding attribute value p0 ∈ P , and
transitions to the next states as the conversation
continues. The candidate attribute value set Pc

t and
candidate item set Vct are updated according to P+

t ,
P−
t and V−t , which we will elaborate later in the

Transition subparagraph. We present an illustra-
tion on how to calculate the state st in Appendix B.

Action The action at refers to asking for a spe-
cific attribute value (ask) or recommending a spe-
cific item (rec) at the t-th turn. Here, we adopt a
hierarchical action selection process: we first use
a new policy network πϕ(ot|st) to decide the ac-
tion type ot ∈ {ask, rec} from the current state
st, and then use a new Q-network Qθ(at|st, ot) to
decide the specific action at according to the ac-
tion type ot. The action space (at the current state
st) Ast={Pc

t ,Vct } contains all the candidate items
and attribute values. The Q-network Qθ(at|st, ot)
only selects an action from a sub action space
Ast,ot : when ot=ask, Ast,ot=Pc

t ; when ot=rec,
Ast,ot=Vct . Details on the policy network and the
Q-network are available in Section 4.2.

Transition Transition occurs from the current
state st to the next state st+1 when the user
responds to the action at (accepts or rejects
items/attribute values). Candidate item set are nar-
rowed down to the remaining items that still satisfy
the user’s preference requirement, and attribute val-
ues asked at turn t are excluded from the candidate
attribute value set. More details are in Appendix D.

Reward We denote the immediate reward at the
t-th conversational turn as rt, and the cumula-
tive reward for each conversation is calculated as∑T

t=1 γ
trt. Intuitively, a positive reward is as-

signed when the user accepts the items or attribute
values, and a negative reward is assigned when the
user rejects the items or attribute values. Details on
the reward function are available in Appendix E.

4.2 S-agent
S-agent comprises three components: the state en-
coder, the policy network, and the Q-network. The
state encoder adopts graph neural networks to gen-
erate the state representation. This state represen-
tation is then utilized by both the policy network
and the Q-network to decide the action type and
the specific actions in each conversational turn.

State Encoder To include essential information
about the conversation and the user, S-agent first
uses a graph attention network (Brody et al., 2022)
to learn the representations of users, items, and at-
tribute values out of the global information graph G.
Next, S-agent introduces two personalized graphs—
positive feedback graph (denoted as G+t ) and nega-
tive feedback graph (denoted as G−t )—to represent
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Figure 2: SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner
leverages MCTS to perform non-myopic conversational planning based on the heuristics from S-agent. The best
conversation plans found by S-planner are used to guide the training of S-agent, enabling S-agent to engage in a
self-training loop that iteratively improves its capability for conversational planning.

each user’s acceptance/rejection on attribute values
until the t-th turn, and uses two dedicated graph
convolutional networks to learn the representations
of users, items, and attribute values (Zhang et al.,
2022) from the graphs. Finally, S-agent aggregates
the representations of items and attribute values
from G, G+t and G−t with a Transformer (Vaswani
et al., 2017)-based aggregator to model the action
sequence in the conversation, and obtain the repre-
sentation st of the current state st. Details on the
state encoder are available in Appendix C.

Policy Network & Q-Network Based on the
state representation st, S-agent adopts a policy net-
work πϕ(ot|st) to decide action type ot and a Q-
network Qθ(at|st, ot) to decide the specific action
at according to the action type ot:

πϕ(ot|st) = softmax(MLPπ(st))

Qθ(at|st, ot) = MLPA(st||at) + MLPV (st),
(1)

where MLP denotes a two-layer perceptron, at =
ep or at = ev denotes the embedding of actions
(attribute value or item) at the t-th turn, A and
V denote the advantage and value function of the
dueling Q-network (Wang et al., 2016) respectively.

4.3 S-planner

S-planner adopts an MCTS-based planning algo-
rithm to simulate conversations and finds the best
conversation plan for each user, strategically bal-
ancing exploration and exploitation to efficiently
expand a search tree (Kocsis and Szepesvári, 2006;
Coulom, 2007). Specifically, each node in the tree
represents a state st, the root node s0 represents
the initial state where the user specifies preference
on an attribute type and its corresponding value,
and the leaf node represents the end of the conver-
sation (success or fail). Each edge between nodes
st and st+1 represents an action type ot ∈ {ask,

rec} and the transition from the current state st to
the next state st+1 after choosing an action type ot
and a specific action at. For each action type ot,
S-planner maintains a function q(st, ot) of st and
ot as the expected future reward of selecting action
type ot at the state st. For each user u, S-planner
simulates N different conversation plans (also re-
ferred to as trajectories), and the trajectory for the
i-th simulation is denoted as τ (u)i , which contains
a sequence of state st, action type ot, action at and
immediate reward rt at each conversational turn t.
The search tree is built in four stages:
• Trajectory selection: S-planner traverses from

the root to leaves over the current tree to select
the most promising trajectory that is likely to
obtain a high cumulative reward.

• Node expansion: S-planner initializes two chil-
dren nodes (ask and rec) to the leaf node on the
selected trajectory to expand the tree.

• Conversation simulation: S-planner simulates fu-
ture conversations between S-agent and the user,
starting from the expanded node and foresees
how the future conversation will unfold.

• Reward back-propagation: S-planner updates the
expected future reward q(st, ot) of action type ot
along the trajectory using the cumulative reward
of the current conversation.

Trajectory Selection S-planner selects the most
promising trajectory from the root node to a leaf
node that is likely to obtain a high future reward
q(st, ot), and the selected trajectory will be further
expanded for conversation simulation later. This
selection process trades off between exploitation,
measured by q(st, ot), against exploration, mea-
sured by how often the nodes are visited. Par-
ticularly, S-planner adapts the Upper Confidence
bounds applied to Trees (UCT) approach (Kocsis
and Szepesvári, 2006) to achieve the trade-off be-
tween exploitation and exploration, and at each
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node st, select action type o∗t into the trajectory
that maximizes the UCT value as follows:

o∗t ← argmax
ot∈{ask,rec}

[
q(st, ot) + w

√
log V (st)

V (f(st, ot))

]
,

(2)
where w > 0 is the exploration factor, V (st) quan-
tifies the visits on node st during conversation sim-
ulations, and f(st, ot) represents the child node of
st after choosing the action type ot. Intuitively, the
second term in Equation 2 is larger if the child node
is less visited, encouraging more exploration. After
selecting the action type o∗t , S-planner chooses the
optimal action a∗t with the Q-network as follows:

a∗t ← argmax
at∈Ast,o

∗
t

Qθ(at|st, o∗t ). (3)

Node Expansion When a leaf node is reached,
S-planner expands the leaf node by attaching two
children nodes (corresponding to two action types
ask and rec) to it. The expected future reward
q(st+1, ot+1) of choosing ot+1 at the newly at-
tached node st+1 is initialized as the highest value
estimated by the Q-network Qθ(at+1|st+1, ot+1)
among all the candidate actions in the sub action
space Ast+1,ot+1 , serving as a heuristic guidance
for the future tree search.

Conversation Simulation To predict how the fu-
ture conversation unfolds, S-planner continues to
simulate conversations between S-agent and the
user until the conversation succeeds or fails. Start-
ing from the last expanded node, at each turn, the
policy network decides the action type, while the
Q-network decides the specific action.

Reward Back-Propagation Once the simulated
conversation succeeds or fails, S-planner back-
propagates from the leaf node of the current tra-
jectory τ

(u)
i to the root to increase the visit count

of each node along τ
(u)
i , and update the expected

future reward q(st, ot) along τ
(u)
i as follows:

q(st, ot)←q(st, ot)+
(
Rt(τ

(u)
i )− q(st, ot)

)
/V (st),

(4)
where Rt(τ

(u)
i ) =

∑T
t̂=t γ

t̂−trt̂ is the cumulative
reward from turn t to the final turn T . Intuitively,
this update rule is similar to stochastic gradient
ascent: at each iteration the value of q(st, ot) is
adjusted by step 1/V (st) in the direction of the
error Rt(τ

(u)
i )− q(st, ot).

Algorithm 1 Training algorithm of SAPIENT

Require: conversational MDPs for all users {M(u)}Uu=1,
training steps E, # of simulations N , exploration factor w
for step← 1, · · · , E do

Sample a user u from U , initialize the state as s0
for n← 1, · · · , N do

Initialize the trajectory as τ (u)
i ← {}, t← 0

while st has children do ▷ Trajectory Selection
Select an action type ot (Eq. 2)
Select an action at (Eq. 3)
Save st, ot, at, rt to τ

(u)
i

st+1 ← T (st, at), t← t+ 1
end while
while st is not end of conversation do

▷ Node Expansion
Attach two children (ask and rec) to st

▷ Conversation Simulation
Select ot with πϕ(ot|st), at with Qθ(at|st, ot)
Save st, ot, at, rt to τ

(u)
i

st+1 ← T (st, at), t← t+ 1
end while
Initialize Rt(τ

(u)
i )← 0

while t ≥ 0 do ▷ Reward Back-Propagation
Rt(τ

(u)
i )←γRt(τ

(u)
i )+rt, V (st)←V (st)+1

Update q(st, ot) with Eq. 4, t← t− 1
end while

end for ▷ Training
Save the highest-rewarded trajectory to the memory D
Sample et ∼ D, update πϕ(ot|st), Qθ(at|st, ot)

end for

4.4 Guiding S-agent with S-planner
To empower S-agent with advanced planning ca-
pability, we use the best conversation plan (the
plan with the maximum cumulative reward) found
by S-planner to guide the training of its policy
network and the Q-network. This process cre-
ates a self-training loop (Silver et al., 2017) that
enables S-agent to iteratively improve its plan-
ning capability. To avoid biased estimation from
training on consecutive, temporally correlated ac-
tions (Mnih et al., 2015), we store the experiences
et = (st, ot, at, rt, st+1, ot+1) at each turn t (st+1

and ot+1 are required for the target Q-network to
estimate the Q value from the next state) from the
best plans to the memory D, and use Prioritized
Experience Replay (PER) (Schaul et al., 2016) to
sample a batch of experiences from the memory D
to update the policy network and the Q-network.

Policy Network Update The policy network is
updated with the following supervised loss function
to align its decision with guidance from S-planner:

Lϕ = Eet∼D [− log πϕ(ot|st)] . (5)

Q-Network Update The Q-network is updated
with double Q-learning (van Hasselt et al., 2016),
which maintains a target network Qθ̃(at|st, ot) as
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a periodic copy of the online network Qθ(at|st, ot)
and trains Qθ(at|st, ot) to minimize the temporal
difference error (Sutton, 1988):

Lθ = Eet∼D
[(
Qθ(at|st, ot)− rt

− γ max
at+1∈Ast+1,ot+1

Qθ̃(at+1|st+1, ot+1)
)2]

,
(6)

where γ is the discount factor in MDP.

Improving Training Efficiency The aforemen-
tioned training process guarantees the quality of
training data by selecting only the high-rewarded
trajectories, but may be inefficient because it re-
quires a large number of simulations to collect
enough high-rewarded trajectories. To improve
efficiency, we further propose a variant SAPIENT-e.
Instead of using only the highest-rewarded trajec-
tories, SAPIENT-e makes full use of all the trajec-
tories found by S-planner. As S-agent usually re-
quires fixed number of training trajectories to con-
verge, utilizing all the trajectories—rather than just
a selected few—greatly reduces the cost of collect-
ing trajectories and improves training efficiency.

Since some trajectories are good while others
are suboptimal (e.g., user quits the conversation
after Tmax turns), we would like to encourage
πϕ(ot|st) to increase the likelihood for good tra-
jectories and decrease the likelihood for the subop-
timal ones. To this end, we employ the Plackett-
Luce model (Luce, 1959; Plackett, 1975) to train
πϕ(ot|st) with listwise likelihood estimations. For
each user u, assuming all the N trajectories are
ranked by their cumulative rewards in the order of
τ
(u)
1 , τ

(u)
2 , · · · , τ (u)N , the policy network is updated

with the following loss function:

Lϕ = Eu∼U
[
− logP (τ

(u)
1 ≻ τ

(u)
2 ≻ · · · ≻ τ

(u)
N )

]

= Eu∼U

[
− log

N∏

n=1

exp
(∑

st,ot∈τ (u)n

log πϕ(ot|st)
)

N∑
j=n

exp
(∑

st,ot∈τ (u)j

log πϕ(ot|st)
)

]
,

(7)

where τ
(u)
1 ≻ τ

(u)
2 indicates τ (u)1 has higher cumu-

lative reward than τ
(u)
2 , and the denominator sums

the likelihood of all the trajectories with higher
cumulative reward than the j-th trajectory. The
Q-network is still updated as in Equation 6 except
that the sampled experiences come from all the
trajectories instead of only the highest-rewarded

trajectories. In this way, all the trajectories found
by S-planner can be utilized, thus saving the search
cost. SAPIENT-e only performs slightly worse
than SAPIENT and much better than baselines (Sec-
tion 6.1), and can be viewed as a good trade-off
between efficiency and performance.

5 Experimental Settings

Datasets We evaluate SAPIENT on 4 benchmark
datasets: Yelp (Lei et al., 2020b), LastFM (Lei
et al., 2020b), Amazon-Book (McAuley et al.,
2015) and MovieLens (Harper and Konstan, 2015).
Dataset details are available in Appendix F.1.

User Simulator Training and evaluating CRS
with real-world user interactions can be imprac-
tically expensive at scale. To address this issue,
we adopt the user simulator approach (Lei et al.,
2020b) and simulate a conversation for each user as
detailed in Appendix F.2. Note that this user simu-
lator is widely adopted in the literature (Lei et al.,
2020b; Deng et al., 2021; Zhang et al., 2022; Zhao
et al., 2023; Qian et al., 2023) and studies show
the simulations are of high quality and suitable
for evaluation purposes (Lei et al., 2020a; Zhang
and Balog, 2020; Zhang et al., 2022), allowing for
large-scale evaluations at a relatively low cost.

Evaluation Metrics Following the literature
(Deng et al., 2021; Zhang et al., 2022), the Suc-
cess Rate (SR) is adopted to measure the ratio of
successful recommendations within Tmax turns; Av-
erage Turn (AT) to evaluate the average number of
conversational turns; and hDCG (Deng et al., 2021)
to evaluate the ranking order of the ground-truth
item among the list of all the recommended items.
For SR and hDCG, a higher value indicates better
performance, while for AT, a lower value indicates
better performance. Details for hDCG calculation
are available in Appendix F.3.

Baselines and Implementation Details We
choose 9 state-of-the-art baselines for a comprehen-
sive evaluation, including: (1) Max Entropy (Lei
et al., 2020b); (2) Abs Greedy (Christakopoulou
et al., 2016); (3) CRM (Sun and Zhang, 2018);
(4) EAR (Lei et al., 2020b); (5) SCPR (Lei et al.,
2020c); (6) UNICORN (Deng et al., 2021); (7)
MCMIPL (Zhang et al., 2022); (8) HutCRS (Qian
et al., 2023); and a Large Language Model (LLM)
baseline CORE (Jin et al., 2023). Baseline details
are available in Appendix F.4. Implementation de-
tails of SAPIENT are available in Appendix F.5.
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Models
Yelp LastFM Amazon-Book MovieLens

SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑
Abs Greedy 0.195 14.08 0.069 0.539 10.92 0.251 0.214 13.50 0.092 0.752 4.94 0.481
Max Entropy 0.375 12.57 0.139 0.640 9.62 0.288 0.343 12.21 0.125 0.704 6.93 0.448
CRM 0.223 13.83 0.073 0.597 10.60 0.269 0.309 12.47 0.117 0.654 7.86 0.413
EAR 0.263 13.79 0.098 0.612 9.66 0.276 0.354 12.07 0.132 0.714 6.53 0.457
SCPR 0.413 12.45 0.149 0.751 8.52 0.339 0.428 11.50 0.159 0.812 4.03 0.547
UNICORN 0.438 12.28 0.151 0.843 7.25 0.363 0.466 11.24 0.170 0.836 3.82 0.576
MCMIPL 0.482 11.87 0.160 0.874 6.35 0.396 0.545 10.83 0.223 0.882 3.61 0.599
HutCRS 0.528 11.33 0.175 0.900 6.52 0.348 0.638 9.84 0.227 0.902 4.16 0.475
CORE 0.210 12.82 0.166 0.862 7.05 0.356 0.462 11.49 0.182 0.810 6.51 0.429

SAPIENT-e 0.612∗ 10.41∗ 0.208∗ 0.922∗ 6.32 0.358 0.682∗ 9.51∗ 0.239∗ 0.928∗ 3.76 0.607∗

SAPIENT 0.622∗ 10.02∗ 0.229∗ 0.928∗ 6.15∗ 0.398 0.718∗ 9.28∗ 0.252∗ 0.930∗ 3.48∗ 0.610∗

Table 1: Performances on four benchmark datasets. The best performance of our method and the best baseline
in each column is in bold and underlined respectively. ∗ indicates that the improvement over the best baseline is
statistically significant (p < 0.01).

6 Experimental Results

6.1 Overall Performance Comparison
We compare SAPIENT with 9 state-of-the-art base-
lines and report the experimental results in Table 1.
We have the following observations:

(1) SAPIENT achieves consistent improvement
over baselines in terms of all metrics on all the
datasets, with an average improvement of 9.1%
(SR), 6.0% (AT) and 11.1% (hDCG) compared
with the best baseline. Different from baselines,
which base their planning solely on the observation
of current state without looking ahead, SAPIENT
foresees how the future conversation unfolds with
an MCTS-based planning algorithm. This enables
SAPIENT to take actions that maximize the cumu-
lative rewards instead of settling for the immediate
reward, enabling strategic, non-myopic conversa-
tional planning and superior performances.

(2) SAPIENT substantially outperforms base-
lines in datasets demanding strong strategic plan-
ning capability from the CRS. The performance
gain of SAPIENT is higher on datasets with a larger
AT (Yelp and Amazon-Book) compared to datasets
with a smaller AT (LastFM and MovieLens), and
higher AT in these datasets indicates the need
for more strategic planning over long conversa-
tional turns. Compared with baselines, SAPIENT
is equipped with S-planner and excels in conver-
sational planning, hence showing remarkable im-
provements on these two datasets.

(3) SAPIENT-e outperforms all baselines on rec-
ommendation success rate. Although the training
data for SAPIENT-e still contain a portion of low-
quality trajectories, SAPIENT-e still significantly
outperforms the best baselines across most met-

rics, indicating that SAPIENT-e is a good trade-off
between efficiency and performance.

6.2 Efficiency Analysis

Training efficiency of SAPIENT and SAPIENT-e is
highly comparable to the baselines. As shown in
Table 3 (all experiments are conducted on a single
Tesla V100 GPU), SAPIENT-e takes similar train-
ing time with baselines because it collects all the
trajectories from MCTS and do not incur additional
search cost. Even with SAPIENT, the training time
is only about 2 times longer than baselines. This
is because conversation simulation only requires
forward propagation without gradient backward, so
even conducting 20 rollouts per user will not sig-
nificantly reduce efficiency. Also note that during
inference, the efficiency of SAPIENT is comparable
with baselines, because tree search is not required
during inference.

6.3 Ablation Study

To validate the effectiveness of the key components
in SAPIENT, we conduct ablation studies and re-
port the results in Table 2. From the experimental
results, we have the following observations:

(1) Each graph—G,G+,G− is vital for S-agent
to encode the state information. Removing each
graph from S-agent degrades performance, verify-
ing the necessity of each graph in state encoding:
global information graph G is crucial for mining
user-item relations and item-attribute value asso-
ciations, while positive (G+) and negative (G−)
feedback graphs are vital for capturing users’ pref-
erences (likes/dislikes on items and attribute values)
expressed in the conversation.
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Models
Yelp LastFM Amazon-Book MovieLens

SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑
SAPIENT 0.622 10.02 0.229 0.928 6.15 0.398 0.718 9.28 0.252 0.930 3.48 0.610

w/o Global G 0.520 11.39 0.171 0.906 6.56 0.345 0.626 10.15 0.217 0.878 5.30 0.397
w/o Positive G+ 0.482 11.56 0.163 0.862 7.53 0.313 0.560 11.15 0.184 0.886 4.17 0.496
w/o Negative G− 0.532 10.80 0.185 0.905 6.92 0.336 0.656 10.01 0.227 0.860 5.42 0.389

w/o Pol. net. 0.519 11.08 0.186 0.894 6.37 0.361 0.628 9.61 0.240 0.896 4.59 0.516
w/o Q-net. 0.582 10.69 0.190 0.808 7.92 0.332 0.594 10.62 0.198 0.866 5.47 0.386

w/o S-planner 0.520 11.06 0.193 0.902 6.80 0.335 0.650 10.20 0.218 0.860 5.53 0.396

Table 2: Ablation studies on benchmark datasets. The best performance in each column is in bold.

Model Yelp LastFM Amazon-Book MovieLens

UNICORN 16.15 4.30 6.03 7.96
MCMIPL 15.57 5.08 6.40 7.93
HutCRS 14.05 4.66 5.83 8.40
SAPIENT-e 16.40 5.57 6.88 8.45
SAPIENT 38.15 11.07 13.21 20.97

Table 3: Training GPU hours on four datasets.

(2) Both the policy network and the Q-network
are critical to conversational planning. We design
two variants: replacing the policy network with ran-
dom action type selection (w/o Pol. net.); replacing
the Q-network with entropy-based action selection
(w/o Q-net.). Performance drops in both variants
suggest both networks are crucial for hierarchical
action selection, and the absence of an informed de-
cision maker, either at the action type or the action
level, leads to suboptimal conversational planning.

(3) Guidance from S-planner is crucial for
S-agent to achieve strategic conversational plan-
ning. Removing S-planner and training S-agent
on sampled on-policy trajectories as in Deng et al.
(2021) degrades the performance, because sampled
trajectories may bring cumulative errors and biased
estimations (Kumar et al., 2019; Lan et al., 2020),
resulting in suboptimal conversational planning.
By contrast, the high-rewarded conversation plans
from S-planner offers robust guidance for S-agent
and boosts its capability for strategic planning.

6.4 Hyperparameter Sensitivity

We study SAPIENT’s performance sensitivity to
the exploration factor w and the rollout number
N , as detailed in Appendix F.6. Our major con-
clusions are: the performance remains robust to
large w but drops with small w. This suggests that
SAPIENT favours exploration over exploitation
during conversational tree search. Additionally,
the performance notably improves when increas-

ing from N=1 to N=20, and remains stable and
satisfactory after N>20. This suggests that set-
ting N=20 can strike a good balance between
efficiency (small N ) and performance (large N ).

6.5 Case Study

To gain an insight into the conversational planning
capability of SAPIENT, we provide an analysis on
the action strategies of SAPIENT (Appendix F.7)
and a case study (Appendix F.8) to show SAPIENT

can strategically take actions that are helpful for
information seeking and recommendation success.

7 Conclusion

We present SAPIENT, a novel MCR framework
with strategic and non-myopic conversational plan-
ning tactics. SAPIENT adopts a hierarchical action
selection process, builds a conversational search
tree with MCTS, and selects the high-rewarded con-
versation plans to train S-agent. During inference,
S-agent can make well-informed decisions with-
out S-planner, as it inherits S-planner’s expertise
in strategic planning. Furthermore, we develop a
variant SAPIENT-e to address the efficiency issue
with MCTS. Extensive experiments on benchmark
datasets verify the effectiveness of our framework.

8 Limitations

Limited Action Types Our framework only sup-
ports searching over two types of actions (ask and
rec) so far, which cannot search at a more fine-
grained level (e.g., defining action types as “rec-
ommending items with a five-star rating”, “rec-
ommending items with a three-star rating”, rather
than just “recommending items”). For future work,
we plan to adopt advanced action abstraction tech-
niques (Bai et al., 2016) to divide the search space
at more fine-grained levels.
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Training Cost Conducting multiple simulated
rollouts for each user with MCTS ensures the qual-
ity of the conversation plan, but also brings ad-
ditional computational cost and reduces training
efficiency. In the future, we plan to further improve
the training efficiency of SAPIENT through tech-
niques such as parallel acceleration (Chaslot et al.,
2008) for MCTS.

User Simulator The training and evaluation of
SAPIENT are carried out through conversations
with a user simulator. Although this approach can
provide high quality simulations for the conversa-
tion (Lei et al., 2020a; Zhang and Balog, 2020;
Zhang et al., 2022), the user simulator may not
fully represent the dynamics and complexities of
user behaviors in the real-world situations. This
issue may be partially addressed by developing an
LLM-based user simulator that fully utilizes the
human-likeliness of LLMs to better simulate di-
verse and complex user behaviors.

Template-Based Conversation The template-
based conversation simulation assumes that users
can clearly express their preferences and choose
specific options in multiple-choice questions. How-
ever, real-world conversations often involve more
ambiguity and a wider range of responses than what
is considered in our framework. To address this, we
plan to integrate S-planner with an LLM-based pol-
icy learning framework, such that LLM possesses
more flexibility in handling diverse user responses,
such as vague or out-of-vocabulary responses.

Cold-Start Issue Although our main focus is on
typical recommendation settings where users have
historical interactions with items, and items are as-
sociated with attributes, we also acknowledge that
there are cold-start settings where users do not have
historical interaction with items. To adapt SAPIENT
to the cold-start settings, we can disable the global
information graph in S-agent, and SAPIENT can
still perform effective conversation planning ac-
cording to performance of the variant w/o Global G
in Section 6.3. To adapt SAPIENT to settings with-
out predefined attributes, we can perform clustering
over the items’ meta data (e.g., textual descriptions,
item titles) to identify the attribute types and values.

Potential Risk While we hope that CRS can pro-
vide personalized and user-friendly recommenda-
tions if correctly deployed, we also acknowledge
that unintended uses of CRS may pose concerns on
fairness and bias issues (Shen et al., 2023), which

may be a potential risk for CRS but can be mit-
igated with debiasing algorithms as in the litera-
ture (Fu et al., 2021; Lin et al., 2022).

9 Ethics Statement

All datasets used in this research are from pub-
lic benchmark open-access datasets, which are
anonymized and do not pose privacy concerns.
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Notation Description

U ,V,Y,P the set of users, items, attribute types and attribute values
u, v, y, p the index of user, item, attribute type and attribute value
t, T the index of the current turn and the final turn of the conversation
G the global information graph
G+t ,G−t the user’s positive feedback graph and negative feedback graph at the t-th turn
M(u) the MDP environment for user u
S,A, T ,R, γ the state, action, transition, reward and discount factor in MDP
st, ot, at, rt the state, action type, action and reward at the t-th turn
st,at the representation of the state st, the embedding of the action at

Ast The action space at the state st
Ast,ot The sub action space at the state st after choosing the action type ot
P+

t ,P−
t ,V−

t the accepted attribute values, the rejected attribute values and the rejected items at the t-th turn
Pc

t ,Vc
t the candidate attribute values and the candidate items at the t-th turn

πϕ(ot|st) the policy network that decides the action type ot ∈ {ask, rec} from the current state st
Qθ(at|st, ot) the Q-network that decides the specific action at according to the action type ot
q(st, ot) the expected future reward of selecting action type ot at the state st
τ
(u)
i the trajectory from the i-th simulation for the user u
Rt(τ

(u)
i ) the cumulative reward of trajectory τ

(u)
i from turn t to the final turn T

V (st) the visit count of node st during MCTS simulations
f(st, ot) the child node of st after choosing the action type ot
E training steps
N the number of simulations in MCTS
w the exploration factor in UCT

Table A1: Table of notations.

A Table of Notations

Table A1 summarizes the notations in this paper.

B Illustration of the State

An illustration on how to calculate the state st is
presented in Figure A1.

C Details of the State Encoder

Global information graph encoder captures the
global relationships between similar users and
items, as well as the correlations between items
and attribute values from the global information
graph G. We build G with the following rules: an
edge eu,v ∈ EU ,V exists between a user u and an
item v iff. the user u has interacted with item v,
and an edge ep,v ∈ EP,V exists between an attribute
value p and an item v iff. item v is associated with
attribute value v. Next, let h(0)

u = eu, h(0)
v = ev

and h
(0)
p = ep denote the embeddings of user, item

and attribute value, we adopt a multi-head Graph
Attention Network (GAT) (Veličković et al., 2018;
Brody et al., 2022) to iteratively refine the node
embeddings with neighborhood information:

z
(l+1)
i =

K∣∣∣
∣∣∣

k=1

∑

j∈Ni

αk
ijW

(l)
2,khj

αk
ij =

exp(a
(l)
k

⊤
σ(W

(l)
1,khi +W

(l)
2,khj))

∑
j′∈Ni

exp(a
(l)
k

⊤
σ(W

(l)
1,khi +W

(l)
2,khj′ ))

Ni =





{v | ei,v ∈ EU ,V}, if i ∈ U
{v | ei,v ∈ EP,V}, if i ∈ P
{u | eu,i ∈ EU ,V}, if i ∈ V,Ni ⊂ U
{p | ep,i ∈ EP,V}, if i ∈ V,Ni ⊂ P

,

(8)

where a
(l)
k ∈ Rd/K , W(l)

1,k ∈ R(d/K)×d,W(l)
2,k ∈

R(d/K)×d are the trainable parameters for the l-th
layer, K denotes the number of attention heads, σ
denotes the LeakyReLU activation function, || de-
notes the concatenation operation. For the user and
attribute value node, its hidden representation of
the l+1-th layer is obtain from h

(l+1)
u = σ(z

(l+1)
u ),

h
(l+1)
p = σ(z

(l+1)
p ). While for the item node, its

hidden representation of the l+1-th layer is ob-
tained by aggregating the information from both its
neighbourhood users and attribute values: h(l+1)

v =

σ((z
(l+1)
v,Nv⊂U +z

(l+1)
v,Nv⊂P)/2). We stack Lg layers of

GATs and fetch the hidden representations h(Lg)
u ,

h
(Lg)
v , h(Lg)

p at the last layer as the output of the
global information graph encoder.

Positive feedback graph encoder captures the
user’s positive feedback on attribute values and
their relations with candidate attribute values/items
in the conversation history. For each user u, at the t-
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Figure A1: An illustration of the state st = (P+
t ,P−

t ,V−
t ), which include all the attribute values P+

t that the user
has accepted, all the attribute values P−

t that the user has rejected, and all the items V−
t that the user has rejected

until the t-th turn. Note that in this example, “looking for a medium price range” at the start of the conversation
infers that all the other price ranges (low, high and premium) are not acceptable.

th conversational turn, we construct a local positive
graph G+t =< ({u}∪P+

t ∪Pc
t ∪Vct ), E+t >, where

the weight of the edge E+t (i, j) between node i and
j is constructed from the following rules:

E+t (i, j) =





w
(t)
v , if i ∈ U , j ∈ V

1, if i ∈ V, j ∈ P
1, if i ∈ U , j ∈ P+

t

0, otherwise

, (9)

where w
(t)
v = sigmoid(e⊤u ev +

∑
p∈P+

t
e⊤v ep −∑

p∈P−
t
e⊤v ep) denotes the dynamic matching

score of the item v at the current conversational turn
t. Next, let e(0)u = eu, e(0)v = ev and e

(0)
p = ep

denote the embeddings of user, item and attribute
value, we then adopt a Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016) to propagate
the message on the current dynamic graph, and cal-
culate the hidden representation of the node at the
l+1-th layer as follows:

e
(l+1)
i =σ(

∑

{j|E+
t (i,j)>0}

W
(l)
a e

(l)
j√∑

ĵ

E+t (i, ĵ)
∑
ĵ

E+t (j, ĵ)
+e

(l)
i ),

(10)
where W

(l)
a ∈ Rd×d are the trainable parameters

for the l-th layer, σ denotes the LeakyReLU acti-
vation function. We stack La layers of GCNs and
fetch the hidden representation e

(La)
u , e(La)

v ,e(La)
p

at the last layer as the output of the positive feed-
back graph encoder.

Negative feedback graph encoder captures the
user’s negative feedback on attribute values and
their negative correlations with candidate attribute
values/items in the conversation history. Similar to
Eq. 9, for each user u, we construct a local negative
graph G−t =< {u} ∪ P−

t ∪ V−t ∪ Pc
t ∪ Vct , E−t >,

where the weight of the edge E(t)i,j between node i
and node j is constructed from the following rules:

E−t (i, j) =





w
(t)
v , if i ∈ U , j ∈ V

1, if i ∈ V, j ∈ P
1, if i ∈ U , j ∈ P−

t

0, otherwise

. (11)

We then stack Ln layers of GCNs similar to
Eq. 10, and fetch the hidden representation e

(Ln)
u ,

e
(Ln)
v ,e(Ln)

p at the last layer as the output of the
negative feedback graph encoder.

Transformer-based aggregator fuses the in-
formation from the graph encoders, and captures
the sequential relationships among items and at-
tribute values mentioned in the conversation history.
Specifically, for the accepted/rejected attribute val-
ues/items at previous conversational turns, we first
project the accepted ones and rejected ones into
different spaces to distinguish between the positive
and the negative feedbacks:

e
′
p = Wae

(La)
p +ba or e

′
p = Wne

(Ln)
p +bn

e
′
v = Wne

(Ln)
v +bn, (12)

where Wa,Wn ∈ Rd×d and ba,bn ∈ Rd are
trainable parameters. Next, the positive/negative
feedbacks are fused with the representations from
the global graph encoder with a gating mechanisms
to capture the information from both the global
relationships and the local conversation feedbacks:

vp = gate(h
(Lg)
p , e

′
p), vv = gate(h

(Lg)
v , e

′
v)

gate(x,y) = ξ · x+ (1− ξ) · y
ξ = sigmoid(Wga

1 x+Wga
2 y + bga), (13)

where Wga
1 ,Wga

2 ∈ Rd×d, bga ∈ Rd are trainable
parameters. Finally, we adopt a Transformer en-
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coder (Vaswani et al., 2017) to capture the sequen-
tial relationships about the conversation history and
obtain the current state representation st as follows:

st = Meanpooling(Transformer(V)), (14)

where V is built using all the previously mentioned
attribute values and items and in the conversation
history: V = {vp|p ∈ P+

t ∪P−
t } ∪ {vv|v ∈ V−t }.

D Transition Function

Transition occurs from the current state st to the
next state st+1 when the user responds to the ac-
tion at (accepts or rejects items/attribute values).
The candidate items and attribute values are up-
dated according to the user’s response. Specifically,
when the action is to ask a question on attribute val-
ues, we denote P̂+

t and P̂−
t as the attribute values

that the user accepts or rejects at the current turn
t, the candidate attribute value set Pc

t+1 at the next
turn t+1 is updated as Pc

t+1 = Pc
t \ (P̂+

t ∪ P̂−
t ),

the set of all the attribute values that the user
has rejected until the t+1-th turn is updated as
P−
t+1 = P−

t ∪ P̂−
t , and the set of all the attribute

values that the user has accepted until the t+1-
th turn is updated as P+

t+1 = P+
t ∪ P̂+

t . When
the action is to recommend items, if the user re-
jects all the recommended items, we denote V̂−t
as the set of the recommended items at the cur-
rent turn t that are all rejected, and the set of all
items that the user has accepted until the t+1-th
turn is updated as V−t+1 = V−t ∪ V̂−t ; otherwise the
conversation successfully finishes since the user
has accepted at least one recommended item, and
no state information is updated. Finally, we up-
date the candidate item set Vct+1 at the next turn
t+1 to include only those items that are still not
rejected and whose attribute values have an inter-
section with the set of the accepted attribute values:
Vct+1 = {v|(v∈Vp0\V−t+1) ∧ (P(v) ∩ P+

t+1 ̸=∅) ∧
(P(v) ∩ P−

t+1=∅)}, where Vp0 denotes the set of
items that are associated with the attribute value p0
specified by the user at the start of the conversation.

E Reward Function

Following the literature (Lei et al., 2020a; Zhang
et al., 2022), for different conversation scenarios,
we consider five kinds of immediate rewards at
given conversational turn: (1) r+rec = 1: a large pos-
itive value when the user accepts a recommended
item; (2) r+ask = 0.01: a small positive value when
the user accepts an attribute value asked by S-agent;

(3) r−rec = −0.1: a negative value when the user
rejects a recommended item; (4) r−ask = −0.1: a
negative value when the user rejects an attribute
value asked by S-agent and (5) rquit = −0.3: a
large negative value if the conversation reaches the
maximum number of turns Tmax. In addition, since
we follow the multi-choice MCR setting, we sum
up the positive and negative rewards for multiple
attribute values specified in a multiple-choice ques-
tion: rt =

∑
P̂+
t
r+ask +

∑
P̂−
t
r−ask.

F Experimental Details

F.1 Dataset Details and Statistics

Dataset Yelp LastFM Amazon- MovieLens
Book

#Users 27,675 1,801 30,291 20,892
#Items 70,311 7,432 17,739 16,482
#Interactions 1,368,609 76,693 478,099 454,011
#Attribute Values 590 8,438 988 1,498
#Attribute types 29 34 40 21

#Entities 98,576 17,671 49,018 38,872
#Relations 3 4 2 2
#Triplets 2,533,827 228,217 565,069 380,016

Table A2: Statistics of datasets after preprocessing.

We evaluate SAPIENT on four public bench-
mark recommendation datasets: Yelp (Lei et al.,
2020b), LastFM (Lei et al., 2020b), Amazon-Book
(McAuley et al., 2015; He and McAuley, 2016)
and MovieLens (Harper and Konstan, 2015). The
statistics of the datasets after preprocessing are pre-
sented in Table A2 and the details of the datasets
are introduced as follows:
• Yelp1: This dataset contains users’ reviews on

business venues such as restaurants and bars. Lei
et al. (2020b) build a 2-layer taxonomy for the
original attribute values for this dataset, and we
adopt the categories from the first layer as at-
tribute types, the categories from the second layer
as attribute values.

• LastFM2: This dataset contains users’ listen
records for music artists from an online music
platform. Following the literature (Lei et al.,
2020a; Zhang et al., 2022), we adopt a cluster-
ing algorithm to categorize the original attribute
values into 34 attribute types.

• Amazon-Book3: The Amazon review dataset
(McAuley et al., 2015; He and McAuley, 2016)

1https://www.yelp.com/dataset/
2https://grouplens.org/datasets/hetrec-2011/
3https://jmcauley.ucsd.edu/data/amazon/
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is a large-scale collection of online shopping data
featuring users’ product reviews across various
domains. We select the book domain from this
collection. Following the literature (Wang et al.,
2019) we choose relations and entities within the
knowledge graph as attribute types and attribute
values, and only retain entities associated with at
least 10 items to ensure dataset quality.

• MovieLens4(Harper and Konstan, 2015): This
dataset contains users’ activities in an online
movie recommendation platform. We use the
version with about 20M interactions, select en-
tities and relations within the knowledge graph
as attribute values, and only retain the user-item
interactions with the user’s ratings greater than 3
to ensure the quality of the dataset.

F.2 Details of the User Simulator

Training and evaluating CRS with real user inter-
actions can be impractically expensive at scale. To
address this issue, we follow the literature (Lei
et al., 2020b; Deng et al., 2021; Zhang et al., 2022;
Zhao et al., 2023; Qian et al., 2023) and simulate a
conversation session for each observed user-item
set interaction pair (u,V(u)) in the dataset. In
each simulated conversation, we regard an item
vi ∈ V(u) as the ground-truth target item. Each
conversation is initialized with a user specifying
preference on an attribute value p0 that this user
clearly prefers, which is randomly chosen from the
shared attribute values of all items in V(u). As the
conversation continues, in each turn, the simulated
user feedback follows these rules: (1) when the
CRS asks a question, the user will only accept at-
tribute values associated with any item in V(u) and
reject others; (2) when the CRS recommends a list
of items, the user will accept it only if at least one
item in V(u) is in the recommendation list; (3) the
user will become impatient after Tmax = 15 turns
and quit the conversation.

F.3 Details of hDCG Calculation

Normalized Discounted Cumulative Gain (NDCG)
is a common ranking metric to evaluate the rele-
vance of items recommended by a system. Deng
et al. (2021) extend the NDCG metric to a two-level
hierarchical version to evaluate the ranking order of
the ground-truth item among the list of all the items
recommended by the CRS at each conversational
turn. A higher value implies that the ground-truth

4https://grouplens.org/datasets/movielens/

item has a higher ranking, and hence indicates a
better performance for the CRS. The hierarchical
normalized Discounted Cumulative Gain@(T,K)
(hDCG@(T,K)) is calculated as follows:

hDCG@(T,K) =
T∑

t=1

K∑

k=1

r(t, k)

[
1

log2(t+ 2)

+

(
1

log2(t+ 1)
− 1

log2(t+ 2)

)
1

log2(k + 1)

]
,

(15)
where T represents the number of conversational
turns, K represents the number of items recom-
mended at each turn, r(t, k) denotes the relevance
of the result at turn t and position k. Since we have
a maximum of Tmax conversational turns, and the
CRS may recommend a maximum number of Kv

items, we report the metric hDCG(T,K) where
T = Tmax and K = Kv.

F.4 Details of Baseline Methods

For a comprehensive evaluation, we compare
SAPIENT with the following baselines:
• Max Entropy (Lei et al., 2020b). This method

chooses to ask for attribute values with the maxi-
mum entropy among candidate items, or chooses
to recommend the top-ranked items with certain
probability.

• Abs Greedy (Christakopoulou et al., 2016). This
method only recommends items in each turn with-
out asking questions. If the recommended items
are rejected, the model updates by treating them
as negative samples.

• CRM (Sun and Zhang, 2018). This method
adopts a policy network to decide when and what
to ask. As it is originally designed for single-turn
CRS, we follow Lei et al. (2020b) to adapt it to
the MCR setting.

• EAR (Lei et al., 2020b). This method designs a
three-stage strategy to better converse with users.
It first builds predictive models to estimate user
preferences, then learns a policy network to take
action, and finally updates the recommendation
model with reflection mechanism.

• SCPR (Lei et al., 2020c). This method models
CRS as an interactive path reasoning problem
over the knowledge graph of users, items and
attribute values. It leverages the graph structure
to prune irrelevant candidate attribute values and
adopts a policy network to choose actions.

• UNICORN (Deng et al., 2021). This method
designs a unified CRS policy learning framework
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Figure A2: Success rate under different exploration factor w.
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Figure A3: Success rate and training time (per 100 gradient descent steps) under different rollout number N . The
dotted lines represent the success rate, and the bar charts represent the training time.

with graph-based state representation learning
and deep Q-learning.

• MCMIPL (Zhang et al., 2022). This method
develops a multi-choice questions based multi-
interest policy learning framework for CRS,
which enables users to answer multi-choice ques-
tions in attribute combinations.

• HutCRS (Qian et al., 2023). This method pro-
poses a user interest tracking module integrated
with the decision-making process of the CRS to
better understand the preferences of the user.

• CORE (Jin et al., 2023). This method is a Large
Language Model (LLM)-powered CRS chatbot
with user-friendly prompts and interactive feed-
back mechanisms.

F.5 Implementation Details

Following the literature (Zhang et al., 2022) for a
more realistic multi-choice setting, if S-agent de-
cides to ask, top-Kp attribute values with the same
attribute type will be asked from the candidate at-
tribute value set Pc

t to form a multi-choice ques-
tion; and if S-agent decides to recommend, top-Kv

items will be recommended from the candidate
item set Vct . Following the literature (Lei et al.,
2020c; Deng et al., 2021), each dataset is randomly
split into train, validation and test by a 7:1.5:1.5
ratio. We set the embedding dimension d as 64,
batch size as 128. We adopt an Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 1e-4.
We set the discount factor γ as 0.999. The memory
size of experience replay is set as 10000. For the
state encoder, the number of the global informa-

tion graph encoder layers Lg is set as 2, and both
the number of the positive feedback graph encoder
layer La and the number of the negative feedback
graph encoder layer Ln are set as 1, the number of
the Transformer-based aggregator layers are set as
2, and we follow the literature (Deng et al., 2021;
Zhang et al., 2022) to adopt TransE (Bordes et al.,
2013) from OpenKE (Han et al., 2018) to pretrain
the node embeddings with the training set. Fol-
lowing the literature (Lei et al., 2020b; Deng et al.,
2021), we set the size of recommendation list Kv

as 10, the maximum number of turns Tmax = 15.
We set the default exploration factor w as 1.5, the
default number of rollouts N as 20, and variants
with different w and N are explored in Section 6.4.

F.6 Hyper-Parameter Sensitivity

Exploration and Exploitation The exploration
factor w controls the balance between exploration
and exploitation. To study its impact, we set w
from 0.0 (exploitation only) to 5.0 (mostly favours
exploration) and plot the success rate in Figure A2.
We find that the performance remains stable and sat-
isfactory with high exploration, but drops with only
exploitation. This is probably because our conver-
sational search tree has a very small search space
(ask and rec), so high exploration does not incur
much cost and also ensures thorough evaluation of
different action strategies, while high exploitation
may prevent the conversational search tree from
discovering the optimal action strategy and lead to
myopic conversational planning.
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(1) …AARR… (2) …RAR…
Frequency: 11021/27675 Frequency: 15693/27675

(3) …AAR<End>
Frequency: 10395/27675

(a) Yelp

(1) …AARR… (2) …RAAR… (3) …AAR<End>
Frequency: 196/1801 Frequency: 415/1801 Frequency: 1000/1801

(b) LastFM

(1) …AARR… (2) …RAR… (3) …ARR<End>
Frequency: 9238/30291 Frequency: 16270/30291 Frequency: 3790/30291

(c) Amazon-Book

(1) …AARR…
Frequency: 2028/20892

(2) …RAR…
Frequence: 7564/20892

(3) …AAR<End>
Frequency: 9870/20892

(d) MovieLens

Figure A4: Common action strategies identified on four datasets. A stands for ask while R stands for rec. The
probability of ask or rec at each node and the frequency (measured by # of an action strategy/# of test users in this
dataset) of each action strategy are also shown in the figure. The solid circle denotes the action type that is more
likely to be selected, and the shadowed circle denotes the action type that is less likely to be selected.

Influence of MCTS rollouts To study the influ-
ence of MCTS rollouts, we set N from 1 (equiva-
lent to disabling MCTS, as there is no selection and
reward back-propagation when N = 1) from 50
and plot the success rate and training time (on a sin-
gle Tesla V100 GPU) in Figure A3. Unsurprisingly,
we find that more rollouts increase the chance of
discovering the optimal trajectory and lead to bet-
ter performance, while disabling MCTS shows the
worst performance. Nevertheless, we should also
note that more rollouts bring additional computa-
tional cost, and setting N = 20 can achieve a good
trade-off between efficiency and performance.

F.7 Additional Analysis on Action Strategies

To gain insight into the strategic planning capabil-
ity of SAPIENT, we identify some typical action
strategies of SAPIENT in Figure A4 that are help-
ful for information seeking and recommendation
success in the conversation. We denote A as the
action type ask, R as the action type rec, ... as the
continuation of the conversation, <end> as the suc-
cess of the conversation, and we find the following
common action strategies:
• ...AARR...: This action strategy occurs fre-

quently during the conversation. S-agent first
asks the user two questions consecutively to
gather crucial information on user preference,
and then quickly narrows down the candidate
item list by making two targeted recommenda-

tion attempts. This strategy is highly effective
because it allows the S-agent to tailor its recom-
mendations to the user’s preferences based on
the key information obtained from the two ques-
tions. Furthermore, based on the user’s feedback
from the two recommendation attempts, S-agent
can promptly reflect upon its action strategy and
make necessary adjustments to its assessment of
the user’s interests, thereby improving the recom-
mendation success rate for future turns.

• ...RAAR... and ...RAR...: These are also two fre-
quent action strategies during the conversation.
In cases where an initial recommendation attempt
fails, S-agent will adeptly adjust the action strat-
egy by asking one or two additional questions
to better understand the user’s preference, ensur-
ing that subsequent recommendations are more
aligned with the user’s needs. Interestingly, we
find that on the LastFM dataset, S-agent tends
to ask two additional questions, while on the
other datasets, S-agent typically asks only one
additional question. This is probably because
the LastFM dataset has a very large number of
attribute values, so two additional questions are
required to fully clarify the user’s preference.

• ...ARR<end> and ...AAR<end>: These two
strategies occur frequently at the end of the
conversation. Once S-agent has gathered suf-
ficient information about the user’s preferences,
it is able to reach successful recommendation
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Figure A5: A case study of a user looking for a nightlife venue from the Yelp dataset.

with only one or two attempts. This strategy
enables S-agent to swiftly hit the target item,
thereby shortening the conversation and reducing
repeated recommendations.

F.8 Case Study

We provide a case study of a randomly sampled
user from the Yelp dataset in Figure A5 to demon-
strate how SAPIENT achieves strategic conversa-
tional planning. The user, who has previously
visited some Thai restaurants, is now looking for
a nightlife venue in this conversation. SAPIENT

quickly grasps user preference by asking only three
questions and makes a successful recommenda-
tion on the first attempt. By comparison, HutCRS
can also make successful recommendations but
requires more questions and recommendation at-
tempts, while MCMIPL repeatedly makes failed
recommendations. Owing to the global information
graph encoder, S-agent can infer user preferences
from historical visits (e.g., the user’s preference on
Thai food) without the need for explicitly queries,
thus reducing conversational turns and improving
the comprehension of user preferences. Moreover,
the progression from broad questions (e.g., place
type) to specific questions (e.g., nightlife type)
exemplifies how SAPIENT strategically plans con-

versations and asks information-seeking questions,
with the policy network focusing on conversation
strategy planning and the Q-network specializing
in the precise assessment of the attribute values
and the items. This design helps S-agent to quickly
narrow down candidate items and improve the rec-
ommendation success rate.

F.9 Additional Analysis on Efficiency, Model
Size, and Budget

Although training SAPIENT requires conducting
multiple simulated rollouts for each user, we
find that such design will not significantly com-
promise efficiency compared with the baseline
CRS methods. Under the same training pipeline
with a single Tesla V100 GPU, SAPIENT with
20 rollouts per user takes 698 seconds per 100
gradient descent steps on the LastFM dataset
and 1049 seconds per 100 gradient descent steps
on the Amazon-Book dataset on average, which
is about twice as slow as the two competitive
baselines (HutCRS: 305 seconds/100 steps on
LastFM, 465 seconds/100 steps on Amazon-Book;
MCMIPL: 429 seconds/100 steps on LastFM, 548
seconds/100 steps on Amazon-Book). This is be-
cause the simulation process only requires forward
calculation without the need for gradient back-
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ward update, so even conducting 20 rollouts per
user will only reduce the training speed by half.
Moreover, SAPIENT-e takes 397 seconds per 100
gradient descent steps on the LastFM dataset and
593 seconds per 100 gradient descent steps on the
Amazon-Book dataset on average, which is highly
comparable to baselines. Furthermore, we note
that during inference, the efficiency of SAPIENT is
comparable with baseline methods, because no tree
search is required during inference, and the number
of parameters for S-agent (1.30M on Yelp, 3.30M
on LastFM, 2.65M on Amazon-Book, 6.48M on
MovieLens) is also budget-friendly. For these rea-
sons, we think that it is worthwhile to introduce
conversational tree search for CRS, because such
design only slightly compromises efficiency during
training, and the training efficiency can also be im-
proved by adopting parallel acceleration methods
for MCTS (Chaslot et al., 2008).
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