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Abstract

Flow matching offers a robust and stable ap-
proach to training diffusion models. How-
ever, directly applying flow matching to neural
vocoders can result in subpar audio quality. In
this work, we present WaveFM, a reparameter-
ized flow matching model for mel-spectrogram
conditioned speech synthesis, designed to en-
hance both sample quality and generation speed
for diffusion vocoders. Since mel-spectrograms
represent the energy distribution of waveforms,
WaveFM adopts a mel-conditioned prior dis-
tribution instead of a standard Gaussian prior
to minimize unnecessary transportation costs
during synthesis. Moreover, while most dif-
fusion vocoders rely on a single loss function,
we argue that incorporating auxiliary losses, in-
cluding a refined multi-resolution STFT loss,
can further improve audio quality. To speed
up inference without degrading sample qual-
ity significantly, we introduce a tailored con-
sistency distillation method for WaveFM. Ex-
periment results demonstrate that our model
achieves superior performance in both quality
and efficiency compared to previous diffusion
vocoders, while enabling waveform generation
in a single inference step. 1

1 Introduction

Recent advancements in network architectures and
training algorithms have greatly enhanced the abil-
ity of deep generative models to produce high-
fidelity audio in speech synthesis (Lee et al., 2021,
2022; Siuzdak, 2023; Huang et al., 2023; Wang
et al., 2023; Nguyen et al., 2024; Ju et al., 2024;
Kumar et al., 2024). The initial breakthrough came
with the autoregressive generation of waveforms
from mel-spectrograms (Oord et al., 2016; Kalch-
brenner et al., 2018), which provided high audio
fidelity but suffered from slow inference speeds.

1Our codes are available at https://github.com/
luotianze666/WaveFM.

To enable real-time high-fidelity speech synthe-
sis, a variety of non-autoregressive models have
been introduced, classified broadly into three cate-
gories: flow-based models, generative adversarial
networks (GANs), and diffusion models.

Flow-based models utilize invertible neural net-
works to generate waveforms from a selected prior
distribution, such as a Gaussian distribution, esti-
mating log-likelihoods during training (Ping et al.,
2020; Prenger et al., 2019). While these intricately
designed models maintain invertibility and evaluate
determinants, this complexity limits their flexibility,
and consequently the quality of the audio output.

Generative Adversarial Networks (GANs) pro-
vide greater flexibility than flow-based models and
can generate waveforms with high fidelity more
efficiently (Kumar et al., 2019; Kong et al., 2020a;
Kim et al., 2021; Jang et al., 2021; Lee et al., 2022;
Siuzdak, 2023). Their success stems from the gen-
erators’ large receptive fields and the discrimina-
tors’ ability to detect noise across various scales
and periods. For instance, Kumar et al. (2019) intro-
duced multi-scale discriminators, while Kong et al.
(2020a) developed a multi-receptive field (MRF)
generator alongside multiple multi-period discrimi-
nators, leading to substantial improvements. More-
over, Lee et al. (2022) further enhanced sample
quality by utilizing the snake activation function
and integrating the anti-aliased multi-periodicity
(AMP) composition module.

Denoising diffusion probabilistic models
(DDPMs) have recently gained significant pop-
ularity for their ability to transform a simple
prior distribution into a complex ground truth
distribution through a Markov chain process (Kong
et al., 2020b; Lam et al., 2022; Huang et al., 2023;
Nguyen et al., 2024). These models rely on a
parameter-free noise-adding diffusion process to
generate training data for the denoising generator,
eliminating the need for auxiliary networks like
discriminators or autodecoders during training.
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However, the inference phase of diffusion models
tends to be time-consuming. To mitigate this issue,
Kong et al. (2020b), Lam et al. (2022), and Huang
et al. (2023) introduced several fast-sampling
algorithms that speed up waveform generation,
though with a minor compromise in sample quality.
Consistency models (Song et al., 2023; Song and
Dhariwal, 2023) have been proposed to enhance
the efficiency of diffusion models by directly
predicting the endpoint of the probability flow
ordinary differential equation (PF-ODE) at each
step, enabling single-step inference. These models
surpass previous distillation approaches in image
synthesis tasks and achieve higher distillation
efficiency by aligning along ODE trajectories,
thereby avoiding the need to numerically solve the
entire ODE.

In this study, we propose WaveFM for the mel-
spectrogram conditioned speech synthesis task.
Firstly, since the mel-spectrogram records the en-
ergy information in waveforms, an appropriately
conditioned distribution can significantly improve
sample quality. Additionally, we adopt a reparame-
terized flow matching method that directly predicts
the waveform, allowing us to apply several aux-
iliary losses to the original flow-matching loss to
further enhance the model’s performance.

To better supervise the model’s output wave-
forms regarding phase angles, we also incorporate a
multi-resolution phase loss into our model. Further-
more, gradient and Laplacian operators are utilized
on the real and generated spectrograms. Minimiz-
ing the mean square losses associated with these
operations enables the model to better learn edge
details and structural patterns in the spectrograms.

Finally, we propose a tailored consistency distil-
lation method for WaveFM to further accelerate the
model’s inference speed while maintaining audio
quality. The subjective and objective experiment
results indicate that WaveFM outperforms previous
diffusion models in terms of sample quality and effi-
ciency, and generalizes better on out-of-distribution
musical mel-spectrograms.

2 Related Works

2.1 Flow Matching and Rectified Flow Models

Flow matching (Lipman et al., 2022) and rectified
flow (Liu et al., 2022) models share a similar train-
ing objective, and diffusion models can also be
interpreted within this framework. Here, we briefly
introduce their mathematical principles using sim-

pler, self-contained notation.

Theorem 1 Let xt be a continuously differen-
tiable random process on t ∈ [0, 1] and p(x, t)
be its probability density function. We denote
the prior distribution as x0 and the ground truth
distribution as x1. If the conditional expectation
E
[
dxt
dt

∣∣∣xt = x
]

is locally Lipschitz, we let

v(x, t) = E
[
dxt

dt

∣∣∣∣xt = x

]
. (1)

Then samples from the data distribution x1 can be
obtained by sampling from the prior distribution
x0 and solving the following ODE with an initial
value x0 at time t = 0:

dx

dt
= v(x, t). (2)

The detailed proof is available in Appendix A.
The conditional expectation can be expressed as a
simple mean square training objective:

min
v

E
∥∥∥∥
dxt

dt
− v(xt, t)

∥∥∥∥
2

. (3)

In practice, straight trajectories generally imply
lower transportation costs. Thus, we take

xt = tx1 + (1− t)x0, t ∈ [0, 1], (4)

which leads to the following objective for the neural
network v(x, t). After the training process, data
samples can be generated by numerically solving
the ODE according to Theorem 1.

min
v

E ∥x1 − x0 − v(xt, t)∥2 . (5)

2.2 Consistency Distillation

Consistency Distillation (CD) (Song et al., 2023) is
an efficient method for distilling diffusion models
to enable one-step generation. In the original paper,
the authors adopt the following forward Stochastic
Differential Equation (SDE) to diffuse data:

dx =
√
2t dw, t ∈ [ϵ, T ], (6)

where ϵ = 0.002 and T = 80. The corresponding
backward SDE and PF-ODE are given by:

dx = −2t∇x log p(x, t) dt+
√
2t dw, (7)

dx = −t∇x log p(x, t) dt. (8)
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In CD, the time steps are discretized by

ti = ϵ1/ρ +
i− 1

N − 1
(T 1/ρ − ϵ1/ρ), (9)

where N is the total number of discretization steps,
ρ = 7, and i ∈ {1, · · · , N}. According to the for-
ward SDE, CD samples n ∼ U{1, 2, . . . , N − 1},
xtn+1 ∼ N

(
xclean, t

2
n+1I

)
, and then the pretrained

teacher score network is used to compute x̂tn by
numerically solving the PF-ODE, where any type
of ODE solver can be chosen for this purpose. The
student network in CD aims to predict the endpoint
at time t = ϵ of the PF-ODE trajectory at any posi-
tion and time, parameterized as follows:

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t), (10)

where cskip(t) =
σ2

data
(t−ϵ)2+σ2

data
, cout(t) = σdata(t−ϵ)√

σ2
data+t2

,

σdata = 0.5 and Fθ(x, t) is the neural network.
The loss function of CD is given by

λ(tn)d
(
fθ(xtn+1 , tn+1),fθ−(x̂tn , tn)

)
, (11)

where λ(tn) is a scale function, and d(·, ·) is a dis-
tance function such as L2 distance. The parameters
θ− are updated using Exponential Moving Average
(EMA), where µ is the EMA decay rate.

θ− ← stopgrad(µθ− + (1− µ)θ). (12)

3 Methodology

3.1 Mel-Conditioned Prior Distribution

Mel-conditioned prior distributions have been ap-
plied to diffusion models (Lee et al., 2021; Koizumi
et al., 2022), but they do not closely approximate
the audio distribution due to the necessity of stabi-
lizing diffusion training objectives. For instance,
Lee et al. (2021) utilize N (µ,Σ) as the diffusion
prior distribution, with their training objective de-
fined as

xt =
√
ᾱt(x0 − µ) +

√
1− ᾱ2

t ϵ, (13)

min
ϵ

(ϵ− ϵθ(xt, t))
⊤Σ−1(ϵ− ϵθ(xt, t)), (14)

where x0 ∼ pdata and ϵ ∼ N (0,Σ). They set µ =
0 and Σ as a diagonal matrix derived from the mel-
spectrogram. Nonetheless, to stabilize the training
process, they need to clamp the standard deviations
between 0.1 and 1, which increases the distance
between the prior and the audio distribution.

According to Theorem 1, however, to train a
flow matching model, we only need to sample
from two marginal distributions without requiring
their analytical forms. This means that WaveFM
could utilize a prior distribution with much smaller
variance without compromising training stability.
We choose N (0,Σ) as the prior distribution with
a diagonal Σ. We utilize the logarithmic mel-
spectrograms as inputs to the neural network, as the
raw values span a wide range of [0, 32768]. Since
the mel-spectrogram captures the energy of the au-
dio signal, the square root of the sum across the
frequency dimension is a suitable choice for the
standard deviation of the prior distribution. We nor-
malize it by dividing it by

√
mel-bands× 32768

to ensure that it falls within [0, 1], apply linear in-
terpolation to align its shape with the audio, and
clamp the values with a minimum of 10−3. Given
that the values in a mel-spectrogram are typically
much smaller than the potential maximum value,
the standard deviation can indeed approach 10−3

in nearly silent regions. This suggests that our prior
distribution is aligned with the audio distribution
more closely. Our ablation study indicates that
the adopted prior distribution enhances the sample
quality of WaveFM.

3.2 Training Objective

We follow the notation in subsection 2.1. The orig-
inal objective in Equation 5 aims to estimate a
random derivative, which not only prevents the
incorporation of auxiliary losses, such as the mel-
spectrogram loss, but also complicates the design
of a neural network with periodic inductive bias, as
the random noise can disrupt periodic patterns. Ex-
periment results demonstrate that this original ob-
jective can result in inferior sample quality for our
network. Therefore, we hope the neural network
to directly generate audio from noise, rather than
predicting random derivatives. To achieve this, we
choose to reparameterize the original mean square
objective as follows:

x1 − x0 =
x0 − xt

1− t
, t ∈ [0, 1). (15)

v(x, t) = E[x1 − x0|xt] =
E[x1|xt]− x

1− t
. (16)

⇔ min
v′

E
∥∥x1 − v′(xt, t)

∥∥2 , t ∈ [0, 1). (17)

We can now directly utilize a neural network to
predict clean audio from mel-spectrograms, similar
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to GANs, allowing for the straightforward addition
of auxiliary losses to the mean square loss:

min
v′

( 1

1− t
E
∥∥x1 − v′(xt, t)

∥∥2

+λ0E
[
STFTLoss(x1,v

′(xt, t))
]

+λ1E
∥∥mel(x1)−mel(v′(xt, t))

∥∥
1

)
.

(18)

The total loss function employed by WaveFM
is defined as above, with λ0 = 0.02, λ1 = 0.02.
To prevent factor 1

1−t from approaching infinity
and stabilize training, we set the coefficient to
10 for t ∈ [0.9, 1). The first auxiliary loss func-
tion is a multi-resolution STFT loss, initially in-
troduced by Parallel WaveGAN (Yamamoto et al.,
2019). They apply the short-time Fourier transform
(STFT) at three resolutions to both the clean audio
and the generated audio, with FFT, hop, and win-
dow sizes set to (1024, 2048, 512), (120, 240, 50),
and (600, 1200, 240), respectively. The spectral
convergence loss Lsc and log STFT magnitude loss
Lmag are computed as follows:

Lsc(x, x̂) =
∥|STFT(x)| − |STFT(x̂)|∥F

∥|STFT(x)|∥F
,

(19)

Lmag(x, x̂) =
1

N

∥∥∥∥log
|STFT(x)|
|STFT(x̂)|

∥∥∥∥
1

, (20)

where x, x̂ denote the clean and generated audios,
respectively; N is the number of elements in the
STFT spectrogram; ∥·∥F , ∥·∥1 denote the Frobe-
nius and L1 norms; operators to the STFT-shaped
matrices inside the norms are element-wise. Thus,
the total loss function equals

STFTLoss(x, x̂) =
1

3

3∑

m=1

(L
(m)
sc + L

(m)
mag)(x, x̂)

(21)
Notably, the original multi-resolution STFT loss

leverages only the magnitude information in STFT
spectrograms. So we replace Lsc with a phase angle
loss Lpha, defined as

∆P = Phase(STFT(x))− Phase(STFT(x̂)),
(22)

Lpha(x, x̂) =
∥atan2(sin∆P, cos∆P )∥1

N
, (23)

where atan2 is used to wrap the phase difference
into (−π, π]. We do not compute the phase angle
loss where the squared magnitude is less than 1×
10−6, as the phase angles there are insignificant and

can produce excessively large gradients that desta-
bilize the model. In our implementation, we add a
small constant of 1× 10−6 to the squared magni-
tude for the computation of L(m)

mag , and we adjust the
FFT, hop, and window sizes to (1024, 2048, 512),
(128, 256, 64), and (512, 1024, 256), respectively.

Finally, to further enhance the detection capa-
bility of our multi-resolution STFT loss, we apply
temporal gradient, frequency gradient, and Lapla-
cian operators to the magnitude of both the clean
and generated spectrograms. These operators are
defined respectively as follows:

1

4



−1 1
−2 2
−1 1


 ,

1

4

[
−1 −2 −1
1 2 1

]
,
1

8



−1 −1 −1
−1 8 −1
−1 −1 −1


 .

(24)

We then compute their mean square errors, scaled
by 4, 4 and 2, respectively, to help the model learn
the regular patterns within the spectrograms. These
operators enhance the visibility of edge information
in the spectrograms, enabling the model to capture
finer details more effectively.

Ablation studies demonstrate that our multi-
resolution STFT loss significantly improves sample
quality in one-step generation for WaveFM. This
is further illustrated in Figure 1, where the spec-
trograms of audio generated using the original loss
exhibit lower accuracy compared to those gener-
ated using our proposed loss.

Figure 1: Spectrograms of a clean audio and audios
generated by WaveFM-6 Steps using the original STFT
loss and our proposed STFT loss, from left to right.

The second auxiliary loss function is the L1 loss
of the mel-spectrograms. Both subjective and ob-
jective experiment results indicate that these two
auxiliary losses significantly improve sample qual-
ity. Besides, we provide the Pytorch implementa-
tion details of our multi-resolution STFT loss in
Appendix C.

It is worth noting that our reparameterization di-
verges at time t = 1. Therefore, during distillation,
we restrict the range of t to [0, 0.99], as a t that
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is too large is ineffective since the waveforms are
already sufficiently clean. The training process is
summarized in Algorithm 1, where prior(m) de-
notes the diagonal covariance matrix derived from
the mel-spectrogram m. For simplicity, we denote
the reparameterized v′ as vθ in the algorithm.

Algorithm 1 Train WaveFM
Input: neural network vθ, mel-spectrogram m,
time step t ∼ U [0, 1], λ0 = 0.02, λ1 = 0.02
repeat
x1 ∼ pdata(x|m),x0 ∼ N (0, prior(m))
xt = tx1 + (1− t)x0,v0 = vθ(xt, t,m)
Loss = 1

min(0.1,1−t) ∥x1 − v0∥2
+λ0 STFTLoss(x1,v0)
+λ1 ∥mel(x1)−mel(v0)∥1

Take gradient descent according to loss.
until WaveFM converges

3.3 Distillation Objective
The conventional inference method using numeri-
cal ODE solvers typically requires numerous steps
to generate waveforms, which contradicts our ef-
ficiency demand. Inspired by consistency distilla-
tion (Song et al., 2023) for SDEs, we propose a
specialized consistency distillation algorithm for
our model, summarized in Algorithm 2.

Algorithm 2 Distill WaveFM

Input: student network vθ, teacher network v′
θ′ ,

EMA decay rate µ = 0.999, mel-spectrogram
m, distance d(·, ·), time duration ∆t = 0.01
Initialize EMA parameters θ− = θ
repeat
x1 ∼ pdata(x|m),x0 ∼ N (0, prior(m))
t ∼ Ñ

(
0, 0.332

)
, where Ñ refers to the trun-

cated Gaussian distribution into [0, 0.99]
xt = tx1 + (1− t)x0

if t+∆t > 0.99 then
target = x1

else
xt+∆t = ODESOLVE(v′

θ′ ,xt, t,∆t)
target = vθ−(xt+∆t, t+∆t,m)

end if
Loss = d(vθ(xt, t,m), target)
Take gradient descent to loss to update θ
θ− = stopgrad(µθ− + (1− µ)θ)

until WaveFM converges

In the algorithm, the student network is initial-
ized with the pretrained model, and we calculate

the exponential moving average (EMA) of the stu-
dent network parameters to produce the consis-
tency training target, which is essential for stabi-
lizing the distillation procedure. During the dis-
tillation process, we sample t from a truncated
N

(
0, 0.332

)
within the range [0, 0.99], rather than

from U(0, 0.99). This choice is made because the
error at time steps near t = 0 is more critical in
one-step generation. The distance function d(·, ·)
in our algorithm serves as shorthand for the train-
ing loss between network outputs and targets, com-
prising four terms as previously mentioned. The
ODESOLVE can utilize any numerical solver, and
we employ the Euler method in our implementa-
tion. Notably, since we reparameterize the original
objective, it is necessary to reconstruct the original
function for the numerical ODE solver. Further-
more, instead of parameterizing the consistency
function in a continuously differentiable manner as
in (Song et al., 2023), we directly set the targets
to be clean audios at time points close to 1 and
use the neural network to predict results at smaller
time points. This represents a significant deviation
from traditional consistency models, as the quality
of generated audio would severely degrade if we
parameterized our model conventionally. Addition-
ally, our method is compatible with our dynamic
prior distribution, requiring only sampling from it,
in contrast to the original consistency models that
rely on a fixed prior distribution determined by the
solutions to their forward SDEs.

3.4 Network Architecture
The function v(x, t) is predicated on a 19.5M-
parameter asymmetric U-Net model, adopting
multi-receptive field modules, which are first intro-
duced in the Hifi-GAN (Kong et al., 2020a) genera-
tor, referred to as ResBlocks and ResLayers in Fig-
ure 2. In ResBlock Conv1d takes “same” padding.
Each ResLayer is defined with a kernel list and a di-
lation list, and their outer product defines both the
ResBlock matrix, and the kernel width and dilation
of convolutional layers in each ResBlock.

Given that mel-spectrograms provide detailed
conditions, the neural network’s primary task is
to upsample the mel-spectrogram and refine the
waveform step by step. Consequently, we allocate
most of our parameters and FLOPs to the upsam-
pling process of the U-Net rather than distributing
them equally between both sides. Additionally, we
employ dilated convolutional layers with larger ker-
nel sizes in the upsampling process to reconstruct
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Figure 2: Network architecture. Conv1d and
ConvTranspose1d are set with parameters (output chan-
nel, kernel width, dilation, padding).

audio from mel-spectrograms, while the downsam-
pling process features simpler convolutional layers.
On the left column of Figure 2 are downsampling
ResLayers, each containing a 4× 1 ResBlock ma-
trix, while on the right columns are upsampling
ResLayers, each containing a 3× 3 ResBlock ma-
trix, following the structure from Hifi-GAN. In
each ResBlock the number of channels remains
unchanged from layers to layers.

Inside the multi-receptive field modules, we
adopt the snake-beta activation function from BigV-
GAN, defined with channel-wise log-scale parame-
ters α and β:

snake(x) = x+
1

eβ + ϵ
sin2(eαx), (25)

where ϵ = 10−8 to ensure numerical stability. Note
that this activation function, with its periodic induc-

tive bias, is ineffective for the original flow match-
ing model, as the noise in the random derivatives
disrupts periodic patterns in the audio.

The downsampling and upsampling processes
are implemented using strided and transposed con-
volutions, respectively. This design choice reflects
our goal of generating waveforms directly from
mel-spectrograms, where the additional informa-
tion from downsampling features is less critical and
primarily serves as a controller for the upsampling
process.

For time representation, we follow (Kong et al.,
2020b) by embedding t ∈ [0, 1], scaled by 100 to
align its magnitude with diffusion models, into a
128-dimensional positional encoding vector
[
sin

(
100t · 10 0×4

63

)
, . . . , sin

(
100t · 10 63×4

63

)
,

cos
(
100t · 10 0×4

63

)
, . . . , cos

(
100t · 10 63×4

63

) ]

(26)
These 128-dim time embeddings are first expanded
to 512-dim after two linear-SiLU layers, then re-
shaped to the desired shape of each resolution, and
finally added to the hidden layers during the down-
sampling process.

4 Experiments

4.1 Datasets
To ensure fair and reproducible comparisons with
other competing methods, we employ the LibriTTS
dataset (Zen et al., 2019), a large-scale corpus of
read English speech comprising over 350,000 au-
dio clips at 24,000 Hz, spanning approximately
1,000 hours of recordings from multiple speakers.
All models are trained using the full dataset, in-
cluding train-clean-100, train-clean-360, and train-
other-500. For our mel-spectrograms, we generate
100-band mel-spectrograms with a frequency range
of [0, 12] kHz. The FFT size, Hann window size,
and hop size are set to 1024, 1024, and 256, respec-
tively.

To evaluate the model’s ability to general-
ize in out-of-distribution scenarios, we use the
MUSDB18-HQ music dataset (Rafii et al., 2017).
This multi-track dataset includes original mixture
audio, along with four separated tracks: vocals,
drums, bass, and other instruments.

4.2 Training and Evaluation Metrics
The detailed architectures and configurations of the
models can be found in subsection 3.4. For train-
ing, the model is run on a single NVIDIA RTX
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Model SMOS (↑) M-STFT (↓) PESQ (↑) MCD (↓) Period (↓) V/UV F1 (↑)
Ground Truth 4.41±0.06 0.000 4.644 0.000 0.000 1.000
Hifi-GAN V1 4.09±0.08 0.995 2.943 1.942 0.163 0.928

Diffwave-6 Steps 4.07±0.09 1.279 2.956 2.675 0.154 0.936
PriorGrad-6 Steps 4.12±0.10 1.832 3.161 2.519 0.159 0.937
FreGrad-6 Steps 4.08±0.09 1.893 3.148 2.573 0.165 0.932
FastDiff-6 Steps 4.06±0.08 2.181 2.889 3.264 0.156 0.937
BigVGAN-base 4.17±0.09 0.876 3.503 1.316 0.130 0.945
WaveFM-1 Step 4.11±0.08 0.872 3.514 1.355 0.138 0.943
WaveFM-6 Steps 4.19±0.10 0.841 3.882 1.150 0.116 0.956

Table 1: Subjective results with 95% confidence interval and objective evaluation results on LibriTTS dev set.

Model SMOS (↑) M-STFT (↓) PESQ (↑) MCD (↓) Period (↓) V/UV F1 (↑)
Ground Truth 4.38±0.08 0.000 4.644 0.000 0.000 1.000
Hifi-GAN V1 3.81±0.11 1.288 2.635 2.469 0.182 0.924

Diffwave-6 Steps 3.85±0.10 1.354 2.731 3.875 0.171 0.929
PriorGrad-6 Steps 3.92±0.09 1.925 3.156 3.439 0.168 0.931
FreGrad-6 Steps 3.87±0.10 1.960 2.953 3.325 0.180 0.924
FastDiff-6 Steps 3.79±0.08 2.257 2.659 4.331 0.179 0.923
BigVGAN-base 3.95±0.09 1.262 3.170 1.597 0.151 0.942
WaveFM-1 Step 3.96±0.09 1.034 3.287 1.589 0.148 0.947
WaveFM-6 Steps 4.05±0.08 0.968 3.639 1.342 0.135 0.952

Table 2: Subjective results with 95% confidence interval and objective evaluation results on MUSDB18-HQ.

4090 GPU, starting with an initial learning rate of
7.5×10−5 and a batch size of 16. The learning rate
decays according to a cosine annealing schedule,
with the final learning rate set to 5× 10−6, and the
training process spans 1 million steps. We adopt the
AdamW optimizer, setting the betas to (0.9, 0.99)
and the weight decay rate to 5× 10−4. The distil-
lation stage, however, only requires 25,000 steps,
with the initial learning rate reduced to 2× 10−5.
During distillation, we adjust the weight decay rate
to 1 × 10−2 and set the betas to (0.8, 0.95). The
time duration during distillation is set to 0.01. The
training process requires approximately two days,
while the distillation process is completed in about
two hours. Given the need to evaluate performance
on out-of-distribution data, we conduct a 5-point
Similarity Mean Opinion Score (SMOS) test as
described in BigVGAN (Lee et al., 2022). This
subjective evaluation is carried out by ten volun-
teers, and the reported SMOS scores include a 95%
confidence interval. To ensure evaluation accuracy,
150 audio samples are generated per dataset for
testing, with six different workers rating each sam-
ple.

Additionally, we incorporate objective auto-
matic metrics to assess sample quality, includ-

ing Multi-resolution STFT (M-STFT) loss (Ya-
mamoto et al., 2019), Perceptual Evaluation of
Speech Quality (PESQ) (RIX, 2001), Mel-cepstral
distortion (MCD) with dynamic time warping (Ku-
bichek, 1993), Periodicity error, and the F1 score
for voiced/unvoiced (V/UV) classification (Morri-
son et al., 2021). Details on the implementation of
these metrics are provided in Appendix B .

Moreover, we compute the real-time factor
(RTF) using the same RTX 4090 GPU, defined as
the ratio of total generated audio duration to infer-
ence time. It is important to note that the inference
time excludes data loading and saving times.

4.3 Comparison With Other Models

We conduct a series of experiments on speech syn-
thesis tasks to evaluate our model. Models we have
compared with are listed below:

Hifi-GAN V1 (Kong et al., 2020a), BigVGAN-
base (Lee et al., 2022), two well-known GAN
vocoders; DiffWave (Kong et al., 2020b), Prior-
Grad (Lee et al., 2021), FastDiff (Huang et al.,
2022), FreGrad (Nguyen et al., 2024), four diffu-
sion probabilistic models: all proved to be high-
fidelity. We train these models for 1M steps with a
batch size of 16 on LibriTTS following the setups
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Figure 3: Spectrograms of a music clip (Ground Truth, WaveFM-6 Steps, PriorGrad-6 Steps, BigVGAN-base)

as in the original papers.
The results in Table 1 show that our models

demonstrate superior performance over various pre-
vious models in terms of sample quality. In the ta-
ble, WaveFM-1 Step and WaveFM-6 Steps audios
are generated by our distilled model and undistilled
with 6 steps Euler solver respectively. According to
the data, our 6 steps model achieves the best perfor-
mance on M-STFT, PESQ, MCD, Periodicity error
and V/UV F1 score and our consistency distillation
algorithm doesn’t compromise too much sample
quality in order to achieve one step generation.

Besides, our model has advantages in terms of
synthesis speed. The RTF results in Table 3 have
shown that our distilled model enjoys a inference
speed close to Hifi-GAN V1, which is much higher
than the previous diffusion models since they need
several steps to generate waveforms.

Model RTF (↑)
Hifi-GAN V1 325×

Diffwave-6 Steps 16.7×
PriorGrad-6 Steps 16.7×
FreGrad-6 Steps 35.3×
FastDiff-6 Steps 69.4×
BigVGAN-base 90.3×
WaveFM-1 Step 303×
WaveFM-6 Steps 50.2×

Table 3: Real Time Factor (RTF)

4.4 Out-of-Distribution Situation
We demonstrate the generalizability of WaveFM us-
ing the musical dataset MUSDB18-HQ. The SMOS
test is conducted by uniformly sampling from the
five tracks: drums, bass, vocal, others, and mixture.
Since automatic evaluators are primarily designed
for speech analysis, we use vocal track samples

for automatic evaluation, where audio segments
with high silence ratios are removed. The results in
Table 2 indicate our model exhibits commendable
performance in unseen scenarios, exceeding the
performance of the baseline models. To be specific,
WaveFM-6 Steps model performs significantly bet-
ter than previous diffusion models, and even dis-
tilled WaveFM-1 Step model can generate accept-
able waveforms compared to other methods, which
implies that our models generalize well on out of
distribution data. We can further illustrate this point
by visualizing the spectrograms of the generated au-
dio. Figure 3 shows that our model’s spectrogram
is closer to ground truth spectrogram, and compar-
ing to our model, PriorGrad tends to overestimate
low frequency components and underestimate high
frequency components, while BigVGAN-base fails
to generate the regular components in the clean
spectrogram neatly. Figuratively speaking, Prior-
Grad’s spectrogram is too light at the bottom and a
little dark at the top, and BigVGAN’s spectrogram
fails to keep the regular lines that can be found in
clean spectrogram.

4.5 Ablation Study

Model SMOS (↑)
Ground Truth 4.41± 0.06

WaveFM-1 Step 4.11± 0.08
w/o Snake Activation 4.03± 0.07
w/o Conditioned Prior 3.79± 0.08

with Original STFTLoss 4.05± 0.07
w/o Auxiliary Losses 3.97± 0.09

w/o Reparameterization 3.88± 0.07

Table 4: Ablation study results on LibriTTS Test set.

In order to show that our structural designs are ef-
fective, we have conducted several ablation studies
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on LibriTTS Test set. Here are the observations:

1. After removing the random derivative term,
the snake activation function with periodic in-
ductive bias, as used in BigVGAN, improves
the sample quality of WaveFM;

2. The mel-conditioned prior distribution signifi-
cantly improves the one-step sample quality,
indicating that reducing unnecessary distribu-
tion transportation costs is effective;

3. For our model, replacing the spectral conver-
gence loss Lsc by the phase angle loss Lpha
and incorporating gradient and Laplacian op-
erators can improve sample quality, which is
consistent with the visual results in Figure 1.

4. The auxiliary losses are important to improve
the sample quality, which aligns with the ex-
periment results of GANs. Moreover, the re-
sults suggest that additional losses cannot be
efficiently applied to the original flow match-
ing objective unless it is reparameterized to
directly predict waveforms; thus, the reparam-
eterization is indeed crucial.

5 Conclusion

We propose WaveFM, a high-fidelity vocoder for
speech synthesis conditioned on mel-spectrograms.
First, it utilizes the energy information from mel-
spectrograms to generate a prior distribution with
low variance. Additionally, reparameterizing the
original flow matching objective not only intro-
duces periodic inductive bias into the neural net-
work, but also enables the inclusion of auxiliary
losses. Specifically, we design a multi-resolution
STFT loss function to enhance sample quality for
our model. Finally, our consistency distillation al-
gorithm allows WaveFM to produce audio in one
step without significantly sacrificing sample qual-
ity. Together, these techniques greatly improve
both the quality and efficiency of WaveFM, with
SMOS tests and automatic evaluators confirming
that it performs competitively against previous dif-
fusion models.

6 Limitations and Potential Risks

The main limitation of our work lies in the no-
ticeable gap in sample quality between multi-step
and single-step models. While single-step models
offer faster synthesis, their quality still lags be-
hind, which restricts their usability for generating

high-quality waveforms at scale. This trade-off re-
mains a challenge, as improving the performance of
single-step models without resorting to adversarial
training requires further exploration and insights.

While our proposed model improves the acces-
sibility of high-fidelity speech synthesis, it also in-
troduces potential risks. By lowering the technical
barriers, our approach could inadvertently facilitate
misuse, such as more convincing voice spoofing
or impersonation in media, customer service, or
telephone scams. This raises concerns about the
ethical implications of deploying such technology
without proper safeguards.
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A Proof of Theorem 1

Theorem 1 Let xt be a continuously differen-
tiable random process on t ∈ [0, 1] and p(x, t)
be its probability density function. We denote
the prior distribution as x0 and the ground truth
distribution as x1, if the conditional expectation
E
[
dxt
dt

∣∣∣xt = x
]

is locally Lipschitz, let

v(xt, t) = E
[
dxt

dt

∣∣∣∣xt = x

]
, (27)

then we can draw samples from data distribution
x1 by drawing samples from prior distribution x0

and then solving the following ODE with an initial
value x0 at time t = 0.

dx

dt
= v(x, t) (28)

Proof To generate data by drawing samples from
prior distribution x0 and then solving the following
ODE with an initial value x0 at t = 0:

dx

dt
= v(x, t), (29)

we only need to check that the probability density
function p(x, t) satisfies the probability flow equa-
tion below with given v(x, t) since when solving
an ODE with locally Lipschitz condition from time
t = 0 to t = 1 with initial value x0, the evolution
of probability density is described by the probabil-
ity flow equation.

∂p

∂t
(x, t) +∇x(p(x, t)v(x, t)) = 0 (30)

We can prove this by multiplying any finite sup-
ported continuously differentiable function h(x)
and then apply integral:
∫
h(x)

(
∂p

∂t
(x, t) +∇x(p(x, t)v(x, t))

)
dx = 0

(31)
∂

∂t

∫
h(x)p(x, t) dx

=−
∫

h(x)∇x(p(x, t)v(x, t))) dx

(32)

Integrating by parts to the right hand side, since h
is finite supported, we have

d

dt

∫
h(x)p(x, t) dx

=

∫
(p(x, t)v(x, t))⊤∇xh(x) dx

(33)

d

dt
E[h(xt)] = E

[
v(xt, t)

⊤∇xh(xt)
]

(34)

E

[
dxt

dt

⊤
∇xh(xt)

]
= E

[
v(xt, t)

⊤∇xh(xt)
]

(35)
By the tower property of expectation, we have

E

[
E
[
dxt

dt

∣∣∣∣xt

]⊤
∇xh(xt)

]

=E
[
v(xt, t)

⊤∇xh(xt)
] (36)

since we choose

v(x, t) = E
[
dxt

dt

∣∣∣∣xt = x

]
. (37)

Thus, the equations hold for any finite supported
continuous differentiable function h. We have

∂p

∂t
(x, t) +∇x(p(x, t)v(x, t)) = 0, (38)

since we can arbitrarily choose h. Then Theorem
1 is proved and we can draw samples by solving
the ODE numerically.

B Implementations of Metrics

M-STFT: We use the implementation in Auraloss
(Steinmetz and Reiss, 2020) with codes from
https://github.com/csteinmetz1/auraloss.
PESQ: We resample the audios from 24,000 Hz to
16,000 Hz and pick the wideband version of PESQ
from https://github.com/ludlows/PESQ.
MCD: We use the implementation at
https://github.com/jasminsternkopf/
mel_cepstral_distance with DTW enabled.
Periodicity and V/UV F1: Both are pro-
vided in CARGAN (Morrison et al., 2021) at
https://github.com/descriptinc/cargan.
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C Pytorch Implementation of Our
Multi-resolution STFT Loss

import torch
import torch.nn.functional as F

def filterTime( input ):
input = F .pad ( input ,

pad=(1,0,1,1), mode="constant")
weight = torch.tensor ([

[-1.0 , 1.0],
[-2.0 , 2.0],
[-1.0 , 1.0 ]]).to(
input .device ). reshape(1,1,3,2)/4

deltaT = torch. conv2d (
input .unsqueeze(1),
weight=weight ,

)
return deltaT.squeeze(1)

def filterFreq( input ):
input = F .pad ( input ,

pad=(1,1,1,0),mode="constant")
weight = torch.tensor ([

[-1.0 , -2.0 , -1.0],
[1 .0 , 2.0 , 1.0 ]]).to(
input .device ). reshape(1,1,2,3)/4

deltaF = torch. conv2d (
input .unsqueeze(1),weight=weight)
return deltaF.squeeze(1)

def filterLaplacian( input ):
input = F .pad ( input ,

pad=(1,1,1,1),mode="constant")
weight = torch.tensor ([

[-1.0 , -1.0 , -1.0],
[-1.0 , 8.0 , -1.0],
[-1.0 , -1.0 , -1.0 ]]).to(
input .device ). reshape(1,1,3,3)/8

laplacian = torch. conv2d (
input .unsqueeze(1),weight=weight)
return laplacian.squeeze(1)

def getSTFTLoss(answer , predict ,
fft_sizes =(1024, 2048, 512),
hop_sizes =(128, 256, 64),
win_lengths =(512, 1024, 256),
window=torch.hann_window ,

):
loss = 0
for i in range(len(fft_sizes )):

ansStft = torch.view_as_real(
torch.stft(
answer.squeeze(1),
n_fft=fft_sizes[i],
hop_length=hop_sizes[i],
win_length=win_lengths[i],
window=window(

win_lengths[i],
device=answer.device),

return_complex=True)
)
predStft = torch.view_as_real(

torch.stft(
predict.squeeze(1),
n_fft=fft_sizes[i],
hop_length=hop_sizes[i],
win_length=win_lengths[i],
window=window(

win_lengths[i],
device=predict.device),

return_complex=True)
)
ansStftMag = (ansStft [...,0]**2

+ ansStft [...,1]**2)
predStftMag =( predStft [...,0]**2

+ predStft [...,1]**2)

magMin = 1e-6
mask = (ansStftMag > magMin )&(

predStftMag > magMin)

ansStftMag = torch.sqrt(
ansStftMag + magMin)

predStftMag = torch.sqrt(
predStftMag + magMin)

ansStftPha = torch. atan2 (
ansStft [..., 1][mask],
ansStft [..., 0][mask])

predStftPha = torch. atan2 (
predStft [..., 1][mask],
predStft [..., 0][mask])

deltaPhase = (
ansStftPha - predStftPha)

loss += torch. atan2 (
torch.sin(deltaPhase),
torch.cos(deltaPhase),

).abs (). mean()
loss += (ansStftMag.log()

- predStftMag.log()
).abs (). mean()

ansStftMagDT = filterTime(
ansStftMag)

ansStftMagDF = filterFreq(
ansStftMag)

ansStftMagLap = filterLaplacian(
ansStftMag)

predStftMagDT = filterTime(
predStftMag)

predStftMagDF = filterFreq(
predStftMag)

predStftMagLap=filterLaplacian(
predStftMag)

loss += 4.0 * (ansStftMagDF
- predStftMagDF

).pow(2).mean()
loss += 4.0 * (ansStftMagDT

- predStftMagDT
).pow(2).mean()
loss += 2.0 * (ansStftMagLap

- predStftMagLap
).pow(2).mean()

return loss / len(fft_sizes)
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