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Abstract
Large Language Models (LLMs) face limita-
tions in AI legal and policy applications due
to outdated knowledge, hallucinations, and
poor reasoning in complex contexts. Retrieval-
Augmented Generation (RAG) systems address
these issues by incorporating external knowl-
edge, but suffer from retrieval errors, ineffec-
tive context integration, and high operational
costs. This paper presents the Hybrid Parameter-
Adaptive RAG (HyPA-RAG) system, designed
for the AI legal domain, with NYC Local Law
144 (LL144) as the test case. HyPA-RAG in-
tegrates a query complexity classifier for adap-
tive parameter tuning, a hybrid retrieval ap-
proach combining dense, sparse, and knowledge
graph methods, and a comprehensive evalua-
tion framework with tailored question types
and metrics. Testing on LL144 demonstrates
that HyPA-RAG enhances retrieval accuracy,
response fidelity, and contextual precision, of-
fering a robust and adaptable solution for high-
stakes legal and policy applications.

1 Introduction
Large Language Models (LLMs) like GPT (Brown
et al., 2020; OpenAI, 2023), Gemini (Team et al.,
2023), and Llama (Touvron et al., 2023a,b; Meta,
2024) have advanced question answering across
domains (Brown et al., 2020; Singhal et al., 2023;
Wu et al., 2023). However, they face challenges
in domains like law and policy due to outdated
knowledge limited to pre-training data (Yang et al.,
2023) and hallucinations, where outputs appear
plausible but are factually incorrect (Ji et al., 2022;
Huang et al., 2023). Empirical evidence indicates
that many AI tools for legal applications overstate
their ability to prevent hallucinations (Magesh et al.,
2024). Cases of lawyers penalized for using hallu-
cinated court documents (Fortune, 2023; Business
Insider, 2023) highlight the need for reliable AI
systems in legal and policy contexts.
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Retrieval-Augmented Generation (RAG) inte-
grates external knowledge into LLMs to address
their limitations but faces challenges. These include
missing content, where relevant documents are not
retrieved; context limitations, where retrieved doc-
uments are poorly integrated into responses; and
extraction failures due to noise or conflicting data
(Barnett et al., 2024). Advanced techniques like
query rewriters and LLM-based quality checks im-
prove quality but increase token usage and costs.

This research presents the Hybrid Parameter-
Adaptive RAG (HyPA-RAG) system to address
RAG challenges in AI policy, using NYC Local
Law 144 as a test corpus. HyPA-RAG includes
adaptive parameter selection with a query complex-
ity classifier to reduce token usage, a hybrid retrieval
system combining dense, sparse, and knowledge
graph methods to improve accuracy, and an evalua-
tion framework with a gold dataset, custom question
types, and RAG-specific metrics. These compo-
nents address common RAG failures and enhance
AI applications in legal and policy domains.

2 Background and Related Work

Recent LLM advancements have influenced law
and policy, where complex language and large text
volumes are common (Blair-Stanek et al., 2023;
Choi et al., 2023; Hargreaves, 2023). LLMs have
been applied to legal judgment prediction, docu-
ment drafting, and contract analysis, improving
efficiency and accuracy (Shui et al., 2023; Sun,
2023; Šavelka and Ashley, 2023). Techniques like
fine-tuning, retrieval augmentation, prompt engi-
neering, and agentic methods have further enhanced
performance in summarization, drafting, and in-
terpretation (Trautmann et al., 2022; Cui et al.,
2023).

RAG enhances language models by integrating
external knowledge through indexing, retrieval,
and generation, using sparse (e.g., BM25) and

1036



Figure 1: Hybrid Parameter Adaptive RAG (HyPA-RAG) System Diagram

dense (e.g., vector) techniques with neural embed-
dings to improve response specificity, accuracy, and
grounding (Lewis et al., 2020; Gao et al., 2023;
Jones, 2021; Robertson and Zaragoza, 2009; De-
vlin et al., 2019; Liu et al., 2019). To overcome
naive RAG’s limitations, such as poor context and
retrieval errors, advanced methods like hybrid re-
trieval, query rewriters, and rerankers have been
developed (Muennighoff et al., 2022; Ding et al.,
2024; Xiao et al., 2023). Hybrid retrieval com-
bines BM25 with semantic embeddings for better
keyword matching and contextual understanding
(Luo et al., 2023; Ram et al., 2022; Arivazhagan
et al., 2023), while knowledge graph retrieval and
composed retrievers improve accuracy and compre-
hensiveness (Rackauckas, 2024; Sanmartin, 2024;
Edge et al., 2024). Recently, RAG systems have
advanced from basic retrieval to dynamic methods
involving multi-source integration and domain adap-
tation (Gao et al., 2023; Ji et al., 2022). Innovations
like Self-RAG and KG-RAG improve response qual-
ity and minimize hallucinations through adaptive
retrieval and knowledge graphs (Asai et al., 2023;
Sanmartin, 2024). Frameworks for evaluating RAG
systems include Ragas, which uses reference-free
metrics like faithfulness and relevancy (Shahul
et al., 2023b), Giskard, which leverages synthetic
QA datasets (Giskard, 2023), and ARES, which
employs prediction-powered inference with LLM
judges for precise evaluation (Giskard, 2023; Saad-

Falcon et al., 2023).

3 System Design

The Hybrid Parameter-Adaptive RAG (HyPA-RAG)
system, shown in Figure 1, integrates vector-based
text chunks and a knowledge graph of entities and
relationships to improve retrieval accuracy. It em-
ploys a hybrid retrieval process that combines sparse
(BM25) and dense (vector) methods to retrieve an
initial top-𝑘 set of results, refined using reciprocal
rank fusion based on predefined parameter map-
pings. A knowledge graph (KG) retriever dynam-
ically adjusts retrieval depth and keyword selec-
tion based on query complexity, retrieving relevant
triplets. Results are combined with the KG results
appending it to the retrieved chunks to generate
an final set of 𝑘 chunks. Optional components
include a query rewriter to enhance retrieval with
reformulated queries and a reranker for further refin-
ing chunk ranking. De-duplicated rewritten query
results are integrated into the final set, which, along
with knowledge graph triplets, is processed within
the LLM’s context window for precise, contextu-
ally relevant responses. The framework has two
variations: Parameter-Adaptive (PA) RAG, which
excludes knowledge graph retrieval, and Hybrid
Parameter-Adaptive (HyPA) RAG, which incorpo-
rates it.
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4 AI Legal and Policy Corpus
Local Law 144 (LL144) of 2021, enacted by New
York City’s Department of Consumer and Worker
Protection (DCWP), regulates automated employ-
ment decision tools (AEDTs). This study uses a
15-page version of LL144, combining the original
law with DCWP enforcement rules. As an early
AI-specific law, LL144 is included in GPT-4 and
GPT-4o training data, verified via manual prompt-
ing, and serves as a baseline in this research. The
complexity of LL144 motivates our system’s design
for several reasons: (1) it requires multi-step reason-
ing and concept linking due to its mix of qualitative
and quantitative requirements—definitions, proce-
dural guidelines, and compliance metrics—that
semantic similarity alone cannot capture, addressed
through our knowledge graph; (2) seemingly sim-
ple queries can be ambiguous or require multiple
information chunks, making a query rewriter and
classifier necessary; and (3) while not specific to
our adaptive classifier, the evolving nature of AI
laws limits the effectiveness of static pre-training,
making retrieval-augmented systems better suited
to handle frequent updates. These factors go be-
yond what standard LLMs and basic RAG systems
can manage, justifying the need for our approach.

5 Performance Evaluation
The evaluation process starts by generating custom
questions tailored to AI policy and legal question-
answering, then introduces and verifies evaluation
metrics (see evaluation section of Figure 5 in Ap-
pendix A.2). For reproducibility, the LLM tem-
perature is set to zero for consistent responses
and all other parameters are set to defaults.

5.1 Dataset Generation
We created a "gold standard" evaluation set to
assess system performance, leveraging GPT-3.5-
Turbo and Giskard (Giskard, 2023) for efficient
question generation. The dataset includes vari-
ous question types, such as ’simple’, ’complex’,
’situational’, and novel types like ’comparative’,
’complex situational’, ’vague’, and ’rule-conclusion’
(inspired by LegalBench (Guha et al., 2023)). These
questions test multi-context retrieval, user-specific
contexts, query interpretation, and legal reasoning.
Generated questions were deduplicated and refined
through expert review to ensure accuracy and com-
pleteness, using the criteria outlined in Table 4 in
Appendix A.5.

5.2 Evaluation Metrics
To evaluate our RAG system, we utilise RAGAS
metrics (Shahul et al., 2023a) based on the LLM-
as-a-judge approach (Zheng et al., 2023), including
Faithfulness, Answer Relevancy, Context Precision,
Context Recall, and an adapted Correctness metric.

Faithfulness evaluates the factual consistency be-
tween the generated answer and the context, defined
as Faithfulness Score = |𝐶inferred |

|𝐶total | , where 𝐶inferred is
the number of claims inferred from the context, and
𝐶total is the total claims in the answer.

Answer Relevancy measures the alignment
between the generated answer and the original
question, calculated as the mean cosine similar-
ity between the original question and generated
questions from the answer: Answer Relevancy =
1
𝑁

∑𝑁
𝑖=1

𝐸𝑔𝑖 ·𝐸𝑜
∥𝐸𝑔𝑖 ∥ ∥𝐸𝑜 ∥ , where 𝐸𝑔𝑖 and 𝐸𝑜 are embed-

dings of the generated and original questions.
Context Recall measures the proportion of

ground truth claims covered by the retrieved con-
text, defined as Context Recall = |𝐶attr |

|𝐶GT | , where 𝐶attr
is the number of ground truth claims attributed to
the context, and 𝐶GT is the total number of ground
truth claims.

Context Precision evaluates whether relevant
items are ranked higher within the context, de-
fined as Context Precision =

∑𝐾
𝑘=1 (𝑃𝑘×𝑣𝑘 )

|𝑅𝑘 | . Here,
𝑃𝑘 = 𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘
is the precision at rank 𝑘 , 𝑣𝑘 is the

relevance indicator, |𝑅𝑘 | is the total relevant items
in the top 𝐾, 𝑇𝑃𝑘 represents true positives, and
𝐹𝑃𝑘 false positives.

5.3 Correctness Evaluation
We assess correctness using a refined metric to
address the limitations of Giskard’s binary classifi-
cation, which fails to account for partially correct
answers or minor variations. Our adapted met-
ric, Absolute Correctness, based on LLamaIn-
dex (LlamaIndex, 2024), uses a 1 to 5 scale: 1
indicates an incorrect answer, 3 denotes partial
correctness, and 5 signifies full correctness. For
binary evaluation, we use a high threshold of 4,
reflecting our low tolerance for inaccuracies. The
Correctness Score is computed as the average
of these binary outcomes across all responses:
Correctness Score = 1

𝑁

∑𝑁
𝑖=1 1(𝑆𝑖 ≥ 4), where 𝑆𝑖

represents the absolute correctness score of the 𝑖th
response, 1(𝑆𝑖 ≥ 4) is an indicator function that
is 1 if 𝑆𝑖 ≥ 4 and 0 otherwise, and 𝑁 is the total
number of responses.

The Spearman coefficient (Figure 2) shows how
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Figure 2: Spearman Coefficient Comparison, showing
the correlation between model performance and human
evaluation.

our prompted LLM correctness judge aligns with
human judgment. Prompts 1 and 2 (Appendix A.7)
employ different methods: the baseline prompt
provides general scoring guidelines, Prompt 1 offers
detailed refinements, and Prompt 2 includes one-
shot examples and edge cases.

Additional metrics, including macro precision,
recall, F1 score, and percentage agreement with
human labels, are shown in Figure 7 (Appendix A.8).
A detailed breakdown of the Spearman coefficient
metrics is provided in Figure 8 (Appendix A.8).

6 Chunking Method

We evaluate three chunking techniques: sentence-
level, semantic, and pattern-based chunking.

Sentence-level chunking splits text at sentence
boundaries, adhering to token limits and overlap
constraints. Semantic chunking uses cosine simi-
larity to set a dissimilarity threshold for splitting
and includes a buffer size to define the minimum
number of sentences before a split. Pattern-based
chunking employs a custom delimiter based on text
structure; for LL144, this is "\n§".

Figure 3 shows that pattern-based chunking
achieves the highest context recall (0.9046), faith-
fulness (0.8430), answer similarity (0.8621), and
correctness (0.7918) scores. Sentence-level chunk-
ing, however, yields the highest context precision
and F1 scores. Semantic chunking performs reason-
ably well with increased buffer size but generally

Figure 3: RAG Evaluation Metrics for Sentence-Level,
Semantic, and Pattern-Based Chunking Methods

underperforms compared to the simpler methods.
Further hyperparameter tuning may improve its
effectiveness. These findings suggest that a corpus-
specific delimiter can enhance performance over
standard chunking methods.

For subsequent experiments, we adopt sentence-
level chunking with a default chunk size of 512
tokens and an overlap of 200 tokens.

7 Query Complexity Classifier

We developed a domain-specific query complexity
classifier for adaptive parameter selection, map-
ping queries to specific hyper-parameters. Unlike
Adaptive RAG (Jeong et al., 2024), our classifier
influences not only the top-𝑘 but also knowledge
graph and query rewriter parameters. Our analysis
of top-𝑘 selection indicated different optimal top-
𝑘 values for various question types, as shown in
Figure 6 (Appendix A.4).

7.1 Training Data
To train a domain-specific query complexity classi-
fier, we generated a dataset using a GPT-4o model
on legal documents. Queries were categorised into
three classes based on the number of contexts re-
quired: one context (0), two contexts (1), and three
or more contexts (2). This classification resulted in
varying token counts, keywords, and clauses across
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Model Precision Recall F1 Score
Random Labels 0.34 0.34 0.34
BART Large ZS 0.31 0.32 0.29
DeBERTa-v3 ZS 0.39 0.39 0.38
LR TF-IDF 0.84 0.84 0.84
SVM TF-IDF 0.86 0.86 0.86
distilBERT Finetuned 0.90 0.90 0.90

Table 1: 3-Class Classification Results

classes, which could bias models toward associ-
ating these features with complexity. To mitigate
this, we applied data augmentation techniques to
diversify the dataset. To enhance robustness, 67%
of the queries were modified. We increased vague-
ness in 10% of the questions while preserving their
informational content, added random noise words
or punctuation to another 10%, and applied both
word and punctuation noise to a further 10%. Ad-
ditionally, 5% of questions had phrases reordered,
and another 5% contained random spelling errors.
For label-specific augmentation, 25% of label 0
queries were made more verbose, and 25% of label
2 queries were shortened, ensuring they retained the
necessary informational content. The augmentation
prompts are in Appendix A.9.

7.2 Model Training
We employed multiple models as baselines for
classification tasks: Random labels, Logistic Re-
gression (LR), Support Vector Machine (SVM),
zero-shot classifiers, and a fine-tuned DistilBERT
model. The Logistic Regression model used TF-
IDF features, with a random state of 5 and 1000
iterations. The SVM model also used TF-IDF
features with a linear kernel. Both models were
evaluated on binary (2-class) and multi-class (3-
class) tasks. Zero-shot classifiers (BART Large ZS
and DeBERTa-v3 ZS) were included as additional
baselines, mapping "simple question," "complex
question," and "overview question" to labels 0, 1,
and 2, respectively; for binary classification, only
"simple question" (0) and "complex question" (1)
were used. The DistilBERT model was fine-tuned
with a learning rate of 2e-5, batch size of 32, 10
epochs, and a weight decay of 0.01 to optimize
performance and generalization to the validation
set.

7.3 Classifier Results
Tables 1 and 7 in Appendix A.10 summarise the
classification results. We compare performance
using macro precision, recall and F1 score. The

fine-tuned DistilBERT model achieved the highest
F1 scores, 0.90 for the 3-class task and 0.92 for the
2-class task, highlighting the benefits of transfer
learning and fine-tuning. The SVM (TF-IDF) and
Logistic Regression models also performed well,
particularly in binary classification, indicating their
effectiveness in handling sparse data. Zero-shot
classifiers performed lower.

8 RAG System Architecture

8.1 Parameter-Adaptive RAG (PA-RAG)
The Parameter-Adaptive RAG system integrates
our fine-tuned DistilBERT model to classify query
complexity and dynamically adjusts retrieval pa-
rameters accordingly, as illustrated in Figure 1, but
excluding the knowledge graph component. The
PA-RAG system adaptively selects the number of
query rewrites (𝑄) and the top-𝑘 value based on
the complexity classification, with specific param-
eter mappings provided in Table 5 in Appendix
A.6.1. In the 2-class model, simpler queries (label
0) use a top-𝑘 of 5 and 3 query rewrites, while more
complex queries (label 1) use a top-𝑘 of 10 and 5
rewrites. The 3-class model uses a top-𝑘 of 7 and 7
rewrites for the most complex queries (label 2).

8.2 Hybrid Parameter-Adaptive RAG
Building on the PA-RAG system, the Hybrid
Parameter-Adaptive RAG (HyPA-RAG) approach
enhances the retrieval stage by addressing issues
such as missing content, incomplete answers, and
failures of the language model to extract correct
answers from retrieved contexts. These challenges
often arise from unclear relationships within le-
gal documents, where repeated terms lead to frag-
mented retrieval results (Barnett et al., 2024). Tra-
ditional (e.g. dense) retrieval methods may retrieve
only partial context, causing missing critical infor-
mation. To overcome these limitations, this system
incorporates a knowledge graph (KG) representa-
tion of LL144. Knowledge graphs, structured with
entities, relationships, and semantic descriptions,
integrate information from multiple data sources
(Hogan et al., 2020; Ji et al., 2020), and recent
advancements suggest that combining KGs with
LLMs can produce more informed outputs using
KG triplets as added context.

The HyPA-RAG system uses the architecture
outlined in Figure 1. The knowledge graph is
constructed by extracting triplets (subject, predicate,
object) from raw text using GPT-4o. Parameter

1040



Method Faithfulness Answer
Relevancy

Absolute
Correctness (1-5)

Correctness
(Threshold=4.0)

LLM Only
GPT-3.5-Turbo 0.2856 0.4350 2.6952 0.1973
GPT-4o-Mini 0.3463 0.6319 3.3494 0.4572

Fixed 𝑘
𝑘 = 3 0.7748 0.7859 4.0372 0.7546
𝑘 = 5 0.8113 0.7836 4.0520 0.7584
𝑘 = 7 0.8215 0.7851 4.0520 0.7621
𝑘 = 10 0.8480 0.7917 4.0595 0.7658

Adaptive
PA: 𝑘, 𝑄 (2 class) 0.9044 0.7910 4.2491 0.8104
PA: 𝑘, 𝑄 (3 class) 0.8971 0.7778 4.2528 0.8141
HyPA: 𝑘, 𝑄, 𝐾, 𝑆 (2 class) 0.8328 0.7800 4.0558 0.7770
HyPA: 𝑘, 𝑄, 𝐾, 𝑆 (3 class) 0.8465 0.7734 4.1338 0.7918

Table 2: Performance metrics for LLM Only, Fixed 𝑘 , Parameter-Adaptive (PA), and Hybrid Parameter Adaptive
(HyPA) RAG implementations for the 2 and 3-class classifier configurations. 𝑘 is the top-𝑘 value, 𝑄 the number
of query rewrites, 𝑆 the maximum knowledge graph depth, and 𝐾 the maximum keywords for knowledge graph
retrieval.

mappings specific to this implementation, such as
the maximum number of keywords per query (𝐾)
and maximum knowledge sequence length (𝑆), are
detailed in Table 6, extending those provided in
Table 5.

8.3 RAG Results

Adaptive methods consistently outperform fixed
𝑘 baselines. PA-RAG 𝑘, 𝑄 (2 class) achieves the
highest faithfulness score of 0.9044, a 0.0564 im-
provement over the best fixed method (𝑘 = 10,
0.8480). Similarly, PA 𝑘, 𝑄 (3 class) achieves
0.8971, surpassing all fixed 𝑘 methods. For answer
relevancy, PA 𝑘, 𝑄 (2 class) scores 0.7910, nearly
matching the best fixed method (0.7917), while PA
𝑘, 𝑄 (3 class) scores slightly lower at 0.7778. In
absolute correctness, PA 𝑘, 𝑄 (2 class) and 𝑘, 𝑄
(3 class) achieve 4.2491 and 4.2528, respectively,
improving by 0.1896 and 0.1933 over the best fixed
method (𝑘 = 10, 4.0595). Correctness scores fur-
ther highlight the advantage, with PA 𝑘, 𝑄 (3 class)
scoring 0.8141, 0.0483 higher than the fixed base-
line (0.7658). HyPA results are more variable.
HyPA 𝑘, 𝑄, 𝐾, 𝑆 (2 class) achieves a correctness
score of 0.7770, a modest 0.0112 improvement
over fixed 𝑘 = 7, indicating potential for further
optimization.

8.4 System Ablation Study
We evaluate the impact of adaptive parameters, a
reranker (bge-reranker-large), and a query rewriter
on model performance using PA and HyPA RAG
methods with 2-class (Table 9 in Appendix A.12)
and 3-class classifiers (Table 8 in Appendix A.11).

Adaptive parameters, query rewriting, and rerank-
ing significantly influence RAG performance. Vary-
ing the top-𝑘 chunks alone achieves the highest
Answer Relevancy (0.7940), while adapting the
top-𝑘 and number of query rewrites with a reranker
(𝑘 , 𝑄 + reranker) delivers the highest Faithfulness
(0.9098) and improves Correctness Score from
0.8141 to 0.8178. Adding a knowledge graph (𝑘 , 𝐾 ,
𝑆) maintains the same Correctness Score (0.8141)
but lowers Absolute Correctness. The HyPA (𝑘 , 𝐾 ,
𝑆, 𝑄 + reranker) setup achieves the highest Correct-
ness Score (0.8402), showing the value of adaptive
parameters and reranking in improving correctness.

9 Overall Results and Discussion
Our analysis demonstrates that adaptive methods
outperform fixed baselines, particularly in faith-
fulness and answer quality. Adaptive parameters,
such as query rewrites and reranking, enhance re-
sponse accuracy and relevance, though reranking
may slightly reduce overall correctness scores, in-
dicating a trade-off between precision and quality.
Adding a knowledge graph maintains correctness
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but introduces complexity, potentially lowering
response quality. However, combining adaptive
parameters with reranking maximizes correct re-
sponses, even if it doesn’t achieve the highest scores
across all metrics. These findings demonstrate the
effect of adaptivity and parameter tuning to bal-
ance performance, enabling effective handling of
diverse and complex queries. This suggests our
system could also apply to other domains where
queries demand complex, multi-step reasoning and
non-obvious concept relationships. Limitations
and future work are detailed in Appendix A.13.

10 Ethical Considerations
The deployment of the Hybrid Parameter-Adaptive
RAG (HyPA-RAG) system in AI legal and policy
contexts raises critical ethical and societal con-
cerns, particularly regarding the accuracy, reliabil-
ity, and potential misinterpretation of AI-generated
responses. The high-stakes nature of legal infor-
mation means inaccuracies could have significant
consequences, highlighting the necessity for care-
ful evaluation. We emphasize transparency and
reproducibility, providing detailed documentation
of data generation, retrieval methods, and evalua-
tion metrics to facilitate replication and scrutiny.
The environmental impact of NLP models is also
a concern. Our system employs adaptive retrieval
strategies to optimize computational efficiency, re-
duce energy consumption, and minimize carbon
footprint, promoting sustainable AI development.
Our findings enhance the understanding of RAG
systems in legal contexts but are intended for re-
search purposes only. HyPA-RAG outputs should
not be used for legal advice or decision-making,
emphasizing the need for domain expertise and
oversight in applying AI to sensitive legal domains.
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A Appendix
A.1 RAG Demonstration User Interface

(a) Demo Screenshot: Entering the user query and generating a response.

(b) Demo Screenshot: The generated response.

(c) Demo Screenshot: Information on retrieved node metadata and content.

Figure 4: Demo screenshots showing each key stage of the user experience.
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A.2 Overall Workflow Diagram

Figure 5: Overall RAG Development Workflow Diagram
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A.3 Question Types

Question
Type

Description Example
Question

Target RAG
Components

Simple Requires retrieval of one
concept from the context

What is a bias audit? Generator,
Retriever,
Router

Complex More detailed and requires
more specific retrieval

What is the purpose of a bias audit for
automated employment decision tools?

Generator,
Retriever

Distracting Includes an irrelevant dis-
tracting element

Italy is beautiful but what is a bias audit? Generator,
Retriever,
Rewriter

Situational Includes user context to
produce relevant answers

As an employer, what information do I
need to provide before using an AEDT?

Generator

Double Two distinct parts to evalu-
ate query rewriter

What are the requirements for a bias
audit of an AEDT and what changes
were made in the second version of the
proposed rules?

Generator,
Rewriter

Conversational Part of a conversation with
context provided in a pre-
vious message

(1) I would like to know about bias
audits. (2) What is it?

Rewriter

Complex situa-
tional

Introduces further context
and one or more follow-up
questions within the same
message

In case I need to recover a civil penalty,
what are the specific agencies within
the office of administrative trials and
hearings where the proceeding can be
returned to? Also, are there other courts
where such a proceeding can be initi-
ated?

Generator

Out of scope Non-answerable question
that should be rejected

Who developed the AEDT software? Generator,
Prompt

Vague A vague question that lacks
complete information to
answer fully

What calculations are required? Generator,
Rewriter

Comparative Encourages comparison
and identifying relation-
ships

What are the differences and similarities
between ’selection rate’ and ’scoring
rate’, and how do they relate to each
other?

Generator,
Rewriter

Rule conclusion Provides a scenario, requir-
ing a legal conclusion

An employer uses an AEDT to screen
candidates for a job opening. Is the
selection rate calculated based on the
number of candidates who applied for
the position or the number of candidates
who were screened by the AEDT?

Generator,
Rewriter

Table 3: Question types and their descriptions with targeted RAG components.
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A.4 Evaluation Results for Varied Top-𝑘

Figure 6: RAG Evaluation Metrics for Varied Top-𝑘

A.5 Human Annotation Criteria

No. Criterion Description
1 Faithfulness Are all claims in the answer inferred from the context?
2 Answer Relevancy Is the answer relevant to the question?
3 Context Relevancy Is the context relevant to the question?
4 Correctness Is the answer correct, given the context?
5 Clarity Is the answer clear and free of extensive jargon?
6 Completeness Does the answer fully address all parts and sub-questions?

Table 4: Criteria for evaluating the quality of QA pairs.

A.6 Parameter Mappings
A.6.1 Top-𝑘 (𝑘) and Number of Query Rewrites (𝑄)

Parameter Symbol Description 2-Class
Mappings

3-Class
Mappings

Number of Query
Rewrites

𝑄 Number of sub-queries generated for
the original query

0: 𝑄 = 3 0: 𝑄 = 3

1: 𝑄 = 5 1: 𝑄 = 5
2: 𝑄 = 7

Top-𝑘 Value 𝑘 Number of top documents or con-
texts retrieved for processing

0: 𝑘 = 5 0: 𝑘 = 3

1: 𝑘 = 10 1: 𝑘 = 5
2: 𝑘 = 7

Table 5: Parameter Symbols, Descriptions, and Mappings
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A.6.2 Maximum Keywords (𝐾) and Maximum Sequence Length (𝑆)

Parameter Symbol Description 2-Class
Mappings

3-Class
Mappings

Max Keywords per
Query

𝐾 Maximum number of keywords used
per query for KG retrieval

0: 𝐾 = 4 0: 𝐾 = 3

1: 𝐾 = 5 1: 𝐾 = 4
2: 𝐾 = 5

Max Knowledge Se-
quence

𝑆 Maximum sequence length for
knowledge graph paths

0: 𝑆 = 2 0: 𝑆 = 1

1: 𝑆 = 3 1: 𝑆 = 2
2: 𝑆 = 3

Table 6: Parameter Symbols, Descriptions, and Mappings (Part 2)
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A.7 Correctness Evaluator Prompts
A.7.1 Method 1: LLamaIndex

CorrectnessEvaluator

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the relevance and correctness of the
generated answer. Output a single score that represents a
holistic evaluation. You must return your response in a line
with only the score. Do not return answers in any other format.
On a separate line, provide your reasoning for the score as
well.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• If the generated answer is not relevant to the user query, give
a score of 1.

• If the generated answer is relevant but contains mistakes,
give a score between 2 and 3.

• If the generated answer is relevant and fully correct, give a
score between 4 and 5.

A.7.2 Method 2: Custom Prompt 1

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the correctness of the generated answer.
Output a single score that represents a holistic evaluation. You
must return your response in a line with only the score. Do
not return answers in any other format. On a separate line,
provide your reasoning for the score as well.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• Use the following criteria for scoring correctness:

1. Score of 1:

– The generated answer is completely incorrect.

– Contains major factual errors or misconceptions.
– Does not address any components of the user query

correctly.

2. Score of 2:

– The generated answer has significant mistakes.
– Addresses at least one component of the user query

correctly but has major errors in other parts.

3. Score of 3:

– The generated answer is partially correct.
– Addresses multiple components of the user query correctly

but includes some incorrect information.
– Minor factual errors are present.

4. Score of 4:

– The generated answer is mostly correct.
– Correctly addresses all components of the user query with

minimal errors.
– Errors do not substantially affect the overall correctness.

5. Score of 5:

– The generated answer is completely correct.
– Addresses all components of the user query correctly

without any errors.
– The answer is factually accurate and aligns perfectly with

the reference answer.

A.7.3 Method 3: Custom Prompt 2

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the correctness of the generated answer.
Output a single score that represents a holistic evaluation. You
must return your response in a line with only the score. Do
not return answers in any other format. On a separate line,
provide your reasoning for the score as well. The reasoning
must not exceed one sentence.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• Use the following criteria for scoring correctness:

1. Score of 1:

– The generated answer is completely incorrect.
– Contains major factual errors or misconceptions.
– Does not address any components of the user query

correctly.
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– Example:
Query: "What is the capital of France?"
Generated Answer: "The capital of France is Berlin."

2. Score of 2:

– Significant mistakes are present.
– Addresses at least one component of the user query

correctly but has major errors in other parts.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is 100 million."

3. Score of 3:

– Partially correct with some incorrect information.
– Addresses multiple components of the user query cor-

rectly.
– Minor factual errors are present.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is around 3 million."

4. Score of 4:

– Mostly correct with minimal errors.
– Correctly addresses all components of the user query.
– Errors do not substantially affect the overall correctness.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is approximately 2.1 million."

5. Score of 5:

– Completely correct.
– Addresses all components of the user query correctly

without any errors.
– Providing more information than necessary should not be

penalized as long as all provided information is correct.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and its
population is approximately 2.1 million. Paris is known
for its rich history and iconic landmarks such as the Eiffel
Tower and Notre-Dame Cathedral."

Checklist for Evaluation:

• Component Coverage: Does the answer cover all parts of
the query?

• Factual Accuracy: Are the facts presented in the answer
correct?

• Error Severity: How severe are any errors present in the
answer?

• Comparison to Reference: How closely does the answer
align with the reference answer?

Edge Cases:

• If the answer includes both correct and completely irrelevant
information, focus only on the relevant portions for scoring.

• If the answer is correct but incomplete, score based on the
completeness criteria within the relevant score range.

• If the answer provides more information than necessary, it
should not be penalized as long as all information is correct.
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A.8 Correctness Evaluator Results

Figure 7: Precision, recall, F1 score, and percentage agreement of the prompt-based (1-5 scale) LLM-as-a-judge
correctness evaluation compared to human judgments.

Figure 8: Spearman Coefficient comparing our custom LLM-as-a-judge (1-5 scale) prompts with Giskard’s binary
correctness evaluator for each question type. The second plot displays the p-values.
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A.9 Classifier Data Augmentation Prompts
A.9.1 Vague Prompt
Rewrite the following question to be more vague, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.9.2 Verbose Prompt
Rewrite the following question to be more verbose, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.9.3 Concise Prompt
Rewrite the following question to be more concise, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.10 2-Class Classifier Results

Model Precision Recall F1 Score
Random Labels 0.49 0.49 0.49
facebook/bart-large-mnli 0.55 0.55 0.53
DeBERTa-v3-base-mnli-fever-anli 0.59 0.57 0.56
Logistic Regression (TF-IDF) 0.88 0.88 0.88
SVM (TF-IDF) 0.92 0.92 0.92
distilbert-base-uncased finetuned 0.92 0.92 0.92

Table 7: 2-Class Classification Results

A.11 3-Class Ablation Results

Method Faithfulness Answer
Relevancy

Absolute
Correctness (1-5)

Correctness
(Threshold=4.0)

𝑘 0.7723 0.7940 4.0409 0.7621
𝑘 , 𝑄 0.8971 0.7778 4.2528 0.8141
𝑘 , 𝑄 + reranker 0.9098 0.7902 4.2342 0.8178
𝑘 , 𝐾∗, 𝑆∗ 0.8733 0.7635 4.1227 0.8141
𝑘 , 𝐾 , 𝑆 0.8660 0.7780 4.1822 0.8030
𝑘 , 𝐾 , 𝑆 + reranker 0.8821 0.7872 4.1858 0.8178
𝑘 , 𝐾 , 𝑆, 𝑄 0.8465 0.7734 4.1338 0.7918
𝑘 , 𝐾 , 𝑆, 𝑄 + reranker 0.8689 0.7853 4.1859 0.8402

Table 8: Ablation study results for different configurations of adaptive 𝑘 in a 3-class setting. For descriptions of
parameters, refer to Table 2. The highest value in each column is highlighted in bold, and the second highest value is
underlined. The * indicates parameters held fixed, rather than adaptive.

A.12 2-Class Ablation Results
A.13 Future Work and Limitations
This study has several limitations that suggest areas for future improvement. Correctness evaluation is limited by reliance
on a single evaluator familiar with the policy corpus. Averaging a larger quantity of human evaluations would improve
reliability. Additionally, our knowledge graph construction process may be improved. For instance, using LLM-based methods
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Method Faithfulness Answer
Relevancy

Absolute
Correctness
(1-5)

Correctness
(Threshold=4.0)

𝑘 0.8111 0.7835 4.0372 0.7546
𝑘 , 𝐾∗, 𝑆∗ 0.8725 0.7830 4.1115 0.8216
𝑘 , 𝐾 , 𝑆 0.8551 0.7810 4.1487 0.7955
𝑘 , 𝐾 , 𝑆 + reranker 0.8792 0.7878 4.1710 0.8141
𝑘 , 𝐾 , 𝑆 + adaptive 𝑄 0.8328 0.7800 4.0558 0.7770
𝑘 , 𝐾 , 𝑆 + 𝑄 + reranker 0.8765 0.7803 4.1636 0.8253

Table 9: Ablation study results for different configurations starting from adaptive 𝑘 . The highest value in each
column is highlighted in bold, and the second highest value is underlined.

for de-duplication and/or custom Cypher query generation to improve context retrieval and precision. Furthermore, our parameter
mappings were not rigourously validated quantitatively. Further evaluation of parameter selections could provide better mappings
as well as upper and lower bounds to performance. The classifier was trained using domain-specific synthetically generated data -
which, though we inject significant noise, may harbour the LLM’s own unconcious biases in terms of structure - possibly limiting
the generalisability of the classifier on unseen user queries. Also, more classification categories e.g. 4 or 5-class, would permit
more granular parameter selections and potentially greater efficiency improvements. Another limitation is that while LL144 is
included in the GPT models’ training data, subsequent minor revisions may affect the accuracy of these baseline methods.

Integrating human feedback into the evaluation loop could better align metrics with user preferences and validate performance
metrics in real-world settings. Future work should also consider fine-tuning the LLM using techniques like RLHF (Bai et al.,
2022), RLAIF (Lee et al., 2023), or other preference optimisation methods (Song et al., 2023). Further, refining the query
rewriter (Ma et al., 2023; Mao et al., 2024) and exploring iterative answer refinement (Asai et al., 2023) could enhance metrics
like relevancy and correctness.
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