
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 1009–1015

April 30, 2025 ©2025 Association for Computational Linguistics

Schema and Natural Language Aware In-Context Learning for Improved
GraphQL Query Generation

Nitin Gupta
IBM Research, India

ngupta47@in.ibm.com

Manish Kesarwani
IBM Research, India

manishkesarwani@in.ibm.com

Sambit Ghosh
IBM Research, India

sambit.ghosh@ibm.com

Sameep Mehta
IBM Research, India

sameepmehta@in.ibm.com

Carlos Eberhardt
IBM StepZen

carlose@ibm.com

Dan Debrunner
IBM StepZen

Dan.Debrunner@ibm.com

Abstract

GraphQL offers a flexible alternative to REST
APIs, allowing precise data retrieval across mul-
tiple sources in a single query. However, gen-
erating complex GraphQL queries remains a
significant challenge. Large Language Mod-
els (LLMs), while powerful, often produce
suboptimal queries due to limited exposure to
GraphQL schemas and their structural intri-
cacies. Custom prompt engineering with in-
context examples is a common approach to
guide LLMs, but existing methods, like ran-
domly selecting examples, often yield unsat-
isfactory results. While semantic similarity-
based selection is effective in other domains, it
falls short for GraphQL, where understanding
schema-specific nuances is crucial for accurate
query formulation.

To address this, we propose a Schema and
NL-Aware In-context Learning (SNAIL) frame-
work that integrates both structural and se-
mantic information from GraphQL schemas
with natural language inputs, enabling schema-
aware in-context learning. Unlike existing
methods, our approach captures the complexi-
ties of GraphQL schemas to improve query gen-
eration accuracy. We validate this framework
on a publicly available complex GraphQL test
dataset, demonstrating notable performance im-
provements, with specific query classes show-
ing up to a 20% performance improvement for
certain LLMs. As GraphQL adoption grows,
with Gartner predicting over 60% of enterprises
will use it in production by 2027, this work ad-
dresses a critical need, paving the way for more
efficient and reliable GraphQL query genera-
tion in enterprise applications.

1 Introduction

GraphQL is a powerful query language and runtime
for APIs, offering a flexible alternative to REST
by allowing clients to request precise data from
interconnected sources in a single query. At its core,
GraphQL relies on a schema that defines object

types, their relationships, and supported operations
(queries and mutations). While this schema-driven
approach enhances flexibility and efficiency, its
complexity in larger systems can make generating
accurate queries challenging.

According to a Gartner report (gra, 2024), by
2027, over 60% of enterprises are expected to use
GraphQL in production, up from less than 30% in
2024. This rapid adoption underscores GraphQL’s
growing significance and the need for researchers
and developers to address challenges in scalability,
and usability. These advancements are essential for
GraphQL to meet the evolving demands of modern
enterprises.

Large language models (LLMs) can assist by
generating GraphQL queries from natural language
(NL) inputs, leveraging the schema to fulfill user
requests. However, as noted in (Kesarwani et al.,
2024), the scarcity of publicly available GraphQL
datasets limits LLM exposure to schema-specific
patterns, reducing their effectiveness in producing
valid queries. Incorporating in-context examples in
prompts has been shown to improve performance,
but selecting these examples effectively is critical.
Existing methods for few-shot selection typically
rely on semantic similarity between the input query
and NL representations of the few-shot examples.
However, in the context of GraphQL, the schema’s
structure and relationships play a pivotal role in
query formulation. This raises a key research ques-
tion: Can the GraphQL schema be leveraged to
refine few-shot selection and enhance contextual
relevance? In this paper, we investigate this pivotal
question and propose a novel framework that signif-
icantly enhances LLM performance for GraphQL
query generation.

Contribution
We propose a Schema and NL-Aware In-context
Learning (SNAIL) framework (shown in Figure 1)
to enhance LLM performance in GraphQL query

1009



Figure 1: Proposed SNAIL Framework for GraphQL Generation.

generation by refining in-context example selection.
Unlike traditional semantic similarity-based meth-
ods, SNAIL dynamically selects examples by incor-
porating both structural and semantic similarities
tailored to each NL query. Structural similarity is
evaluated using two components: (1) subgraph iso-
morphism to align the input schema with schemas
in the few-shot pool, capturing hierarchical and en-
tity relationships, and (2) a category-based similar-
ity metric that incorporates schema nesting and fil-
ter relationships, ensuring comprehensive schema
representation.

We implemented both the semantic similar-
ity method and the SNAIL framework for in-
context example selection and evaluated GraphQL
query generation performance across 9 open-source
LLMs using the test set from the only available
GraphQL benchmark (Kesarwani et al., 2024). Ex-
perimental results show that SNAIL consistently
improves accuracy over the semantic similarity ap-
proach across models and scenarios.

2 Related Work

GraphQL has gained significant attention in
academia and industry for its flexibility and effi-
ciency in managing data interactions. While stud-
ies have explored the advantages of GraphQL over
REST APIs—such as reduced client-server interac-
tions (Brito et al., 2019), improved maintainability
(Brito and Valente, 2020), and optimized data fetch-
ing (Seabra et al., 2019; Mikuła and Dzieńkowski,
2020)—technical challenges remain. For example,
(Belhadi et al., 2024) investigates testing method-

ologies for query validation, while (Quiña Mera
et al., 2023) examines its capacity to represent com-
plex data structures. GraphQL’s role in real-world
applications, including data integration across het-
erogeneous sources, is highlighted in (Li et al.,
2024).

Recent efforts to leverage large language mod-
els (LLMs) for GraphQL query generation in-
clude several notable approaches (Levin, 2023; gql,
2023b,a; gor, 2023). However, the introduction of
a GraphQL-specific dataset in (Kesarwani et al.,
2024) marks the first attempt to systematically ad-
dress training and evaluation for such tasks. De-
spite this, the study does not fully address the need
for adaptive few-shot learning techniques that in-
corporate both semantic and structural schema char-
acteristics.

Existing query generation systems typically rely
on semantic similarity between natural language
(NL) queries and examples, overlooking the critical
role of schema structure. In summary, while prior
research highlights GraphQL’s strengths and chal-
lenges in API management, our work improves
the GraphQL query generation performance of
the state of the art LLMs by introducing an adap-
tive few-shot learning framework. This approach
bridges gaps in existing methodologies, enabling
LLMs to better handle the complexity and diversity
of real-world GraphQL schemas.

3 Proposed SNAIL Framework

We propose the Schema and NL-Aware In-context
Learning (SNAIL) framework (Figure 1) for gen-

1010



Figure 2: Illustration of Schema Structure Extraction.

Figure 3: Illustration of Schema Categories Extraction.

erating GraphQL queries from Natural Language
(NL) utterances. Unlike traditional methods relying
on semantic similarity, our framework dynamically
selects few-shot examples based on both structural
and semantic similarities, tailored to each query.

As shown in Figure 1, the process starts by sam-
pling and storing k few-shot examples (schemas,
GraphQL queries, and corresponding utterances)
from the dataset (Kesarwani et al., 2024). Upon re-
ceiving test samples, the framework assesses struc-
tural similarity between the test schema and few-
shot examples, while also evaluating semantic sim-
ilarity with the test utterance. These similarity met-

rics rank and group the examples for in-context
learning, which, along with instructions and the
input query, is passed to large language models
(LLMs) for final GraphQL query generation. By
incorporating both structural and semantic similari-
ties, SNAIL framework improves the precision and
adaptability of query generation.

3.1 Structural Similarity

We assess structural similarity through two com-
ponents. First, we use subgraph isomorphism to
compare the alignment between the query schema
and the samples, capturing relationships like hier-

1011



archies and entity connections. Second, we define
a category-based similarity metric to account for
attributes such as the number of hops (depth of
nested relationships) and filter conditions, which
determine data inclusion. This approach allows us
to consider both high-level schema properties and
operational characteristics relevant to the query.

3.1.1 Schema Structure Analysis
The Schema Structure Level focuses on assessing
the structural similarity between the query sample
schema and the schemas of the few-shot exam-
ples. This step is crucial for identifying samples
that exhibit similar structural characteristics. To
achieve this, we convert the schemas into graph rep-
resentations, allowing us to analyze their structural
properties more effectively.

Lets G denotes the query graph, and let S =[S1, S2, ..., Sn] denotes the graphs corresponding
to n few shot samples. The process involves find-
ing the maximum size query schema subgraph i.e
G
′

that is isomorphic to the subgraphs of the few-
shot examples as shown in Figure 2. This isomor-
phism check enables us to determine which few-
shot samples share similar structural patterns with
the query schema. We have designed specific simi-
larity metric that quantify this relationship, facili-
tating a more refined selection of relevant few-shot
examples based on their structural alignment with
the query. By leveraging these metrics, we ensure
that the selected samples are not only relevant in
content but also in their underlying structural orga-
nization. Schema structure similarity, ST can be
calculated as:

ST (G,Sk) = ∣E(G′)∣∣E(G)∣ (1)

Where ∣E(G′)∣ and ∣E(G)∣ denote the number of
edges in the isomorphic subgraph G′ and the query
graph G, respectively.

3.1.2 Schema Categories Analysis
The Schema Category module predicts potential
scenarios from the test schema, such as filter types
(Figure 3 (b)) and multi-hop relationships (Figure
3 (a)). This categorization helps select few-shot
examples that match the structural complexity of
the schema being queried. By analyzing the test
schema, we identify key attributes and select few-
shot examples from the pool that align with these
categories, ensuring consistency in schema com-
plexity. Let Q(S) denote the query schema, and

F (S) = F (S)1, F (S)2, . . . , F (S)n represent the
n schema samples in the few-shot pool. The hop
category similarity (HC) is:

HC(Q(S), F (S)k) = ∣Overlap(Q(S)h, F (S)hk)∣∣Q(S)h∣
Where, Q(S)h and ∣F (S)hk denote the set of hops
detected in Q(S) and F (S)k respectively, and
Overlap(Q(S)h, F (S)hk) denotes the overlap be-
tween these two sets.

Similarly, the filter category similarity (FC) can
be calculated as:

FC(Q(S), F (S)k) = ∣Overlap(Q(S)f , F (S)fk)∣∣Q(S)f ∣
Where, Q(S)f and F (S)fk denote the set of
filters in Q(S) and F (S)k respectively, and
Overlap(Q(S)f , F (S)fk) denotes the overlap be-
tween these two sets.

3.2 Semantic Similarity
Semantic similarity (SS) is calculated using tradi-
tional similarity measures on embeddings, where
NL queries are mapped to a high-dimensional vec-
tor space. A pre-trained LM generates these em-
beddings, capturing the contextual meaning and
nuances of the query.

SS(Q(NL), F (NL)k) = CD(Emb(Q(NL)),
Emb(F (NL)k))

Where, Emb(Q(NL)) and Emb(F (NL)k) de-
note the embedding of test query Q(NL) and the
kth few-shot sample Fk respectively, and CD(, )
denotes the cosine similarity between these two
embedding vectors.

3.3 Ranking Mechanism
To achieve effective sample selection, we propose a
systematic approach utilizing three similarity met-
rics: schema structure, schema category, and se-
mantic similarity. A circular selection strategy
ranks samples by each metric, iteratively select-
ing the highest-ranked sample from schema struc-
ture, schema category, and semantic similarity in
sequence. This process continues until the user-
defined few-shot sample limit is met, ensuring bal-
anced consideration of all metrics.

In cases of identical similarity scores, diversity
is prioritized to ensure a comprehensive represen-
tation of structural patterns and semantic nuances.

1012



This approach enhances the model’s capacity for
robust in-context learning, leading to improved ac-
curacy in generating GraphQL queries from natural
language inputs.

3.4 Grouping and Selection based on LLM
Context Length

Once the samples are selected, we regroup them to
fit more few-shot examples into the context. For in-
stance, if selected samples 1 and 2 share the same
schema, we combine them into a single schema
with multiple queries. This approach makes more
efficient use of the available context space and en-
sures that the model has a richer set of examples to
learn from.

4 Experiments

4.1 Datasets

We use the GraphQL test set from (Kesarwani et al.,
2024), which consists of 986 test triplets (GraphQL
Schema, NL Query, GraphQL Query) and consider
test samples from seven categories: (a) Zero Hop,
(b) One Hop, (c) Two Hop, (d) Zero Hop + Filter,
(e) One Hop + Filter, (f) Two Hop + Filter, and
(g) Filter. The distribution of these categories is
presented in Table 1. For few-shot learning, we
curated 23 few-shot samples that capture different
complexities of data, ensuring no schema overlap
between the test and few-shot samples.

4.2 Models

We test our proposed system on 9 widely known
LLMs: codellama-34b-instruct (Rozière et al.,
2023), deepseek-coder-33b-instruct (Guo et al.,
2024), ibm-granite-8b-code-instruct (Mishra et al.,
2024), llama-3-8b-instruct (Facebook), llama-3-
70b-instruct (Facebook), mixtral-8x7b-instruct-
v01 (Jiang et al., 2023), llama-3-1-70b-instruct
(Facebook), qwen2-72b-instruct (qwe, 2024), and
prometheus-8x7b-v2 (Kim et al., 2024). GPT-4 was
not included in the evaluation due to the cost associ-
ated with its API. Greedy decoding was employed
to obtain outputs from the LLMs for reproducibility.
The all-distilroberta-v1 1 BERT model was used
to extract embeddings for the semantic similarity
module. The number of few-shot examples was set
to 5. We evaluated the accuracy of the generated
GraphQL queries based on their correctness.

1https://huggingface.co/sentence-transformers/
all-distilroberta-v1

4.3 Baselines

We compared our approach against the following
two baselines:

Base Model without Few-shot: This baseline
uses only the instruction and test sample as input
to the LLMs, without incorporating any few-shot
examples.

Semantic Few-shot: This baseline uses seman-
tic similarity to select few-shot examples. While
no existing work in GraphQL explicitly applies
this, we include it as a variation of our approach.
Few-shot samples are retrieved based on semantic
similarity for in-context learning.

4.4 Results and Discussions

The results across various complexity sub-datasets
are presented in Tables 2-8, with Table 9 summariz-
ing the overall system performance. The proposed
framework shows a 10-50% improvement over the
base model without few-shot examples, indicating
that base models lack sufficient GraphQL expo-
sure during training. This suggests two research
directions: (a) leveraging in-context learning to
provide relevant information, or (b) fine-tuning on
a GraphQL-specific dataset. Given the scarcity of
GraphQL training data, in-context learning with
dynamic sample selection, as implemented in the
SNAIL framework, emerges as the more practical
approach. We also compared our approach with the
standard semantic-based few-shot selection, which
had not been benchmarked previously. Our method
improved performance by 3-5% on average by in-
corporating structural and categorical similarity.

Among the evaluated models, the llama-3-70b-
instruct model consistently outperformed others,
with a maximum margin of 21% and a minimum
of 4%. Compared to the base model, it showed
a 45% overall improvement. The mixtral-8x7b-
instruct-v01 model outperformed smaller models
(<8B parameters) by 2-8%. Some LLMs showed
improvements exceeding 10% in specific dataset
complexities, demonstrating the effectiveness of
our framework over the semantic-based approach.
In some cases, semantic similarity performed well,
likely due to the limited size of our few-shot pool.
Future work will expand the pool with more com-
plex categories to further enhance performance.

5 Conclusion

We introduce a novel few-shot learning approach
for generating GraphQL queries from natural lan-

1013

https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-distilroberta-v1


Zero Hop One Hop Two Hop Filter + Zero Hop Filter + One Hop Filter + Two Hop Filter
490 320 176 195 97 72 364

Table 1: Overlapping Category-wise Composition in Test Dataset.

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 65.1 90.2 91.84
deepseek-coder-33b-instruct 84.29 88.16 91.63
ibm-granite-8b-code-instruct 40.2 74.08 77.35

prometheus-8x7b-v2 37.14 85.1 86.53
llama-3-8b-instruct 4.29 81.43 84.69
llama-3-70b-instruct 44.08 86.94 91.43

mixtral-8x7b-instruct-v01 52.45 82.04 84.9
qwen2-72b-instruct 54.08 88.16 92.45

llama-3-1-70b-instruct 60.2 82.45 86.53

Table 2: Results for Zero-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 57.81 72.19 73.12
deepseek-coder-33b-instruct 69.38 71.94 72.81
ibm-granite-8b-code-instruct 21.56 56.25 53.44

prometheus-8x7b-v2 23.75 54.69 66.56
llama-3-8b-instruct 2.5 53.75 57.81
llama-3-70b-instruct 29.38 76.25 77.81

mixtral-8x7b-instruct-v01 32.5 61.25 68.44
qwen2-72b-instruct 47.81 75.94 71.25

llama-3-1-70b-instruct 63.75 70.31 74.69

Table 3: Results for One-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 36.36 46.59 52.84
deepseek-coder-33b-instruct 52.27 57.39 64.2
ibm-granite-8b-code-instruct 31.82 34.66 43.18

prometheus-8x7b-v2 9.66 28.98 38.64
llama-3-8b-instruct 0.57 28.41 35.23
llama-3-70b-instruct 31.82 76.14 76.7

mixtral-8x7b-instruct-v01 13.07 40.34 45.45
qwen2-72b-instruct 21.02 57.39 61.36

llama-3-1-70b-instruct 58.52 70.45 73.86

Table 4: Results for Two-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 32.82 79.49 84.1
deepseek-coder-33b-instruct 69.23 71.79 83.59
ibm-granite-8b-code-instruct 27.18 57.44 55.38

prometheus-8x7b-v2 58.46 68.21 74.36
llama-3-8b-instruct 10.77 73.33 76.92
llama-3-70b-instruct 51.79 85.13 89.23

mixtral-8x7b-instruct-v01 57.95 67.69 71.79
qwen2-72b-instruct 30.77 71.79 82.05

llama-3-1-70b-instruct 53.33 82.05 87.69

Table 5: Results for Filter with zero-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 34.02 59.79 63.92
deepseek-coder-33b-instruct 47.42 61.86 57.73
ibm-granite-8b-code-instruct 20.62 39.18 29.9

prometheus-8x7b-v2 26.8 38.14 59.79
llama-3-8b-instruct 7.22 43.3 43.3
llama-3-70b-instruct 52.58 70.1 72.16

mixtral-8x7b-instruct-v01 30.93 48.45 65.98
qwen2-72b-instruct 13.4 61.86 55.67

llama-3-1-70b-instruct 43.3 71.13 70.1

Table 6: Results for Filter with one-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 13.89 15.28 25.0
deepseek-coder-33b-instruct 12.5 20.81 41.67
ibm-granite-8b-code-instruct 2.78 5.56 6.94

prometheus-8x7b-v2 6.94 16.67 29.17
llama-3-8b-instruct 1.39 20.83 18.06
llama-3-70b-instruct 26.39 54.17 58.33

mixtral-8x7b-instruct-v01 6.94 18.06 31.94
qwen2-72b-instruct 4.17 20.83 27.78

llama-3-1-70b-instruct 16.67 58.06 54.17

Table 7: Results for Filter with two-hop queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 29.4 61.54 67.03
deepseek-coder-33b-instruct 52.2 59.17 68.41
ibm-granite-8b-code-instruct 21.43 42.31 38.19

prometheus-8x7b-v2 39.84 50.0 61.54
llama-3-8b-instruct 7.97 54.95 56.32
llama-3-70b-instruct 46.98 75.0 78.57

mixtral-8x7b-instruct-v01 40.66 52.75 62.36
qwen2-72b-instruct 20.88 59.07 64.29

llama-3-1-70b-instruct 43.41 76.37 76.37

Table 8: Results for Filter queries

Models Base Model
w/o Few-shot

Semantic
Few-shot

SNAIL
Few-shot

codellama-34b-instruct 57.61 76.57 78.8
deepseek-coder-33b-instruct 73.73 78.8 80.63
ibm-granite-8b-code-instruct 32.66 61.26 63.49

prometheus-8x7b-v2 27.89 65.21 71.5
llama-3-8b-instruct 3.04 62.98 67.14
llama-3-70b-instruct 37.12 81.54 84.38

mixtral-8x7b-instruct-v01 38.95 67.85 72.52
qwen2-72b-instruct 46.15 78.7 80.02

llama-3-1-70b-instruct 61.05 76.37 80.43

Table 9: Results for Overall queries

1014



guage descriptions. Our method dynamically se-
lects relevant samples based on multi-level sim-
ilarity metrics: schema structure similarity (SS),
category-level similarity (HC), and natural lan-
guage similarity (NL). This dynamic selection en-
sures that the chosen examples align with the input
query’s structural and semantic nuances, enhancing
model performance. Evaluation across 9 widely-
used LLMs shows that our approach outperforms
traditional methods for few-shot selection.

References
2023a. Gqlpt.

2023b. Graphql explorer.

2023. Weaviate gorilla part 1 graphql apis.

2024. Gartner report - graphql.

2024. Qwen2 technical report.

Asma Belhadi, Man Zhang, and Andrea Arcuri. 2024.
Random testing and evolutionary testing for fuzzing
graphql apis. ACM Transactions on the Web, 18(1):1–
41.

Gleison Brito, Thais Mombach, and Marco Tulio Va-
lente. 2019. Migrating to graphql: A practical assess-
ment. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 140–150.

Gleison Brito and Marco Tulio Valente. 2020. Rest vs
graphql: A controlled experiment. In 2020 IEEE
International Conference on Software Architecture
(ICSA), pages 81–91.

Facebook. Introducing meta llama 3: The most capa-
ble openly available llm to date. https://ai.meta.
com/blog/meta-llama-3/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Manish Kesarwani, Sambit Ghosh, Nitin Gupta, Shra-
mona Chakraborty, Renuka Sindhgatta, Sameep
Mehta, Carlos Eberhardt, and Dan Debrunner. 2024.
Graphql query generation: A large training and
benchmarking dataset. In Proceedings of the 2024

Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pages 1595–1607.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2024. Prometheus: Inducing fine-
grained evaluation capability in language models.

Yonatan V. Levin. 2023. A developer’s journey to the ai
and graphql galaxy.

Huanyu Li, Olaf Hartig, Rickard Armiento, and Patrick
Lambrix. 2024. Ontology-based graphql server gen-
eration for data access and data integration. Semantic
Web, 15(5):1639–1675.

Mateusz Mikuła and Mariusz Dzieńkowski. 2020. Com-
parison of rest and graphql web technology per-
formance. Journal of Computer Sciences Institute,
16:309–316.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,
Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew
Coleman, Matthew White, Mark Lewis, Raju Pavu-
luri, Yan Koyfman, Boris Lublinsky, Maximilien
de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank
Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal,
Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Lud-
wig, Asim Munawar, Maxwell Crouse, Pavan Ka-
panipathi, Shweta Salaria, Bob Calio, Sophia Wen,
Seetharami Seelam, Brian Belgodere, Carlos Fon-
seca, Amith Singhee, Nirmit Desai, David D. Cox,
Ruchir Puri, and Rameswar Panda. 2024. Granite
code models: A family of open foundation models
for code intelligence.

Antonio Quiña Mera, Pablo Fernandez, José María Gar-
cía, and Antonio Ruiz-Cortés. 2023. Graphql: A sys-
tematic mapping study. ACM Comput. Surv., 55(10).

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Matheus Seabra, Marcos Felipe Nazário, and Gustavo
Pinto. 2019. Rest or graphql? a performance com-
parative study. In Proceedings of the XIII Brazilian
Symposium on Software Components, Architectures,
and Reuse, page 123–132.

1015

https://github.com/rocket-connect/gqlpt
https://github.com/geobde/graphqlexplorer
https://weaviate.io/blog/weaviate-gorilla-part-1
https://www.apollographql.com/resources/gartner-when-to-use-graphql-to-accelerate-api-delivery
http://arxiv.org/abs/2407.10671
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.08491
http://arxiv.org/abs/2310.08491
https://medium.com/@yonatanvlevin/a-developers-journey-to-the-ai-and-graphql-galaxy-3e8e7fd41928
https://medium.com/@yonatanvlevin/a-developers-journey-to-the-ai-and-graphql-galaxy-3e8e7fd41928
http://arxiv.org/abs/2405.04324
http://arxiv.org/abs/2405.04324
http://arxiv.org/abs/2405.04324
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950

