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Abstract

Proteins play critical roles in biological
systems, yet 99.7% of over 227 million
known protein sequences remain uncharac-
terized due to the limitations of experimen-
tal methods. To assist experimentalists in
narrowing down hypotheses and accelerat-
ing protein characterization, we present Pro-
tein2Text, a multimodal large language model
that interprets protein sequences and gener-
ates informative text to address open-ended
questions about protein functions and at-
tributes. By integrating a resampling mech-
anism within an adapted LLaVA framework,
our model effectively maps protein sequences
into a language-compatible space, enhanc-
ing its capability to handle diverse and com-
plex queries. Trained on a newly curated
dataset derived from PubMed articles and
rigorously evaluated using four comprehen-
sive benchmarks—including in-domain and
cross-domain evaluations—Protein2Text out-
performs several existing models in open-
ended question-answering tasks. Our work
also highlights the limitations of current eval-
uation metrics applied to template-based ap-
proaches, which may lead to misleading re-
sults, emphasizing the need for unbiased as-
sessment methods. Our model weights, eval-
uation datasets, and evaluation scripts are
publicly available at https://github.com/
alaaj27/Protein2Text.git.

1 Introduction

Proteins are essential to nearly all biological pro-
cesses. Understanding protein functions is cru-
cial for unraveling disease mechanisms, predict-
ing the effects of genetic mutations in conditions
like cancer, and discovering targeted and person-
alized therapeutics (Liu et al., 2020; Quazi, 2022;
Wu et al., 2023b). Despite the characterization of
460,000 proteins in UniProt (Consortium, 2022),
a staggering 99.7% of the 227 million protein se-
quences remain poorly characterized (Consortium,

2022; Coudert et al., 2022). This vast number of
uncharacterized proteins poses a significant bottle-
neck in biomedical research, impeding the full re-
alization of the potential envisioned with the se-
quencing of the human genome. Experimental
methods for protein characterization are inherently
time-consuming and costly, making it impractical
to scale to millions of proteins. Therefore, there
is an urgent need for computational methods to
complement and accelerate traditional experimen-
tal approaches.

For the first time, Large Language Models
(LLMs) are offering an alternative to these chal-
lenges. For example, encoder-based models like
ESM-2 and OntoProtein leverage masked lan-
guage modeling on protein sequences to generate
embeddings that capture structural and functional
information (Lin et al., 2022b,a; Zhang et al.,
2023, 2022). Similarly, to predict gene/protein
structural and functional information, several ap-
proaches use other modalities such as text (Jarar-
weh et al., 2024) and expression (Du et al., 2019;
Cui et al., 2024). Decoder-based models such
as AlphaFold predict 3D structures from amino
acid sequences (John Jumper and Hassabis, 2021).
Moreover, multimodal LLMs have been developed
to bridge the gap between biological sequences
and natural language, translating complex pro-
tein data into accessible human language (Luo
et al., 2023; Fang et al., 2024). Bimodal Pro-
tein Language Models (PLMs), including Protein-
Chat and ProtChatGPT (Guo et al., 2023; Wang
et al., 2024), attempt to co-embed protein se-
quences with natural language using projection
mechanisms.

However, existing PLMs face limitations. A
critical gap is the lack of rigorous quantita-
tive evaluation on question-answering (QA) tasks,
which are vital for practical utility. Many PLMs
depend on template-based QA datasets, transform-
ing structured data into unstructured text using
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fixed templates (Guo et al., 2023; Xiao et al.,
2024a; Luo et al., 2023). This methodology lim-
its the models’ ability to generalize to new, unseen
queries and diminishes their adaptability to diverse
instructions. Consequently, template-based QA
datasets hinder model expressiveness, and often
–as we also demonstrate – overfit to specific pat-
terns and lack the conversational flexibility nec-
essary for addressing complex research questions
(see Table 14) (Liu et al., 2024).

Therefore, we present a novel multimodal rea-
soning model that modifies the LLaVA (Liu et al.,
2023a) framework to adopt for the protein domain.
Our model provides real-time, interactive anal-
ysis of protein properties and handles complex,
open-ended questions, empowering researchers to
gain actionable insights for laboratory research.
Trained on a newly curated dataset derived from
published literature on proteins in PubMed ar-
ticles, our model benefits from a rich and di-
verse corpus surpassing template-based methods’
limitations. We also compiled four comprehen-
sive evaluation datasets to benchmark our model
against existing PLMs rigorously. By releasing
these evaluation datasets and model weights, we
aim to promote a thorough assessment of protein
LLMs across a wide range of tasks and specialized
datasets.

2 Related Work

The sequential nature of protein primary structure
lends itself to language modeling for protein char-
acterization. For example, encoder-based LLMs
trained on protein amino acid sequences have been
adopted to generate a representation space that
captures sequence structures (Lin et al., 2022b,a;
Elnaggar et al., 2021; Zhang et al., 2022). Gener-
ative LLMs have also been proposed for a variety
of protein generation tasks such as generating 3D
structure (John Jumper and Hassabis, 2021), and
novel protein sequences (Madani et al., 2020; Ni-
jkamp et al., 2022; Lv et al., 2024). LLMs that
incorporate natural language and protein as one
modality (i.e. considering protein as text modal-
ity) have been proposed. For example, Galac-
tica models are general-purpose LLMs that are
trained on scientific corpora to perform different
reasoning tasks including protein captioning. Sev-
eral studies attempt to integrate text with protein
modalities such as DNA/RNA sequences (Richard
et al., 2024), 3D structure (Guo et al., 2023;

Wang et al., 2024), and amino acid sequences
(Xiao et al., 2024b; Luo et al., 2023). Simi-
larly, multi-modality projection similar to vision-
language alignment (Alayrac et al., 2022; Liu
et al., 2023a), has been applied to align between
protein and natural text where protein is consid-
ered as single modality (Guo et al., 2023; Wang
et al., 2024; Liu et al., 2024; Luo et al., 2023; Fang
et al., 2024). See Appendix D for detailed discus-
sion on related work.

3 Protein2Text

Protein Encoder. Our approach is based on
LLaVA (Liu et al., 2023a) which integrates images
and text via instruction tuning. We adopt LLaVA
to protein amino acid sequences by replacing the
image encoder with a protein encoder (Figure 1b).
We use ESM-2 (Lin et al., 2022b) a transformer-
based encoder that has 33 transformer layers and
a total of 652 million parameters. Every sequence
(P) is encoded to a multidimensional token em-
bedding using ESM2 (ϕesm) where every charac-
ter is considered a token. Formally:

Zv = ϕesm(P)

where Zv ∈ Rd×T1 represents the embedding of
the protein tokens where d is the dimension size
and T1 is the number of tokens.

LLM Encoder. Simultaneously, the instruc-
tion/question Xq, given as natural language in-
put, is tokenized and embedded using LLaMA-3,
ϕLLM :

Hq = ϕLLM (Xq)

where Hq ∈ Rk×T2 represents the token embed-
dings of the instruction, with k being the embed-
ding dimension and T2 the number of tokens.

Perceiver Resampler. In LLaVA, images are di-
vided into a fixed number of patches, yielding a
fixed number of image tokens without losing in-
formation. However, protein sequences have dif-
ferent sizes, and truncating them to a fixed size
might remove potentially critical information. To
this end, we extend their architecture by adding a
protein resampler (Jaegle et al., 2021; Carion et al.,
2020; Alayrac et al., 2022). The resampler finds
a fixed number of latent tokens from varying-size
protein sequences (Figure 1b). This reduces the
computational complexity of the cross-attention in
the LLM and prevents long protein tokens from
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Figure 1: Protein2Text Architecture Overview. a) Protein2Text generates descriptive text from amino acid
sequences by combining pre-trained protein encoder and language models. b) The protein tokens are compressed
into latent tokens using the resampler and projected to the language space using the projector.

exhausting the model’s maximum length. Given
the protein token embeddings (Zv), the resampler
generates Hv ∈ Rd×S , where S is the number of
latent tokens that compress the information in the
original tokens:

Hv = ϕResampler(Zv)

Protein2Text Projector. To align the protein
and the text modalities (Figure 1a), we project the
dimensions of protein latent tokens (d) into the
language embedding space (k) via the projector:

H′
v = W ·Hv

where W is the set of trainable parameters and
H′

v ∈ Rk×S . The projected tokens are then
concatenated to the text tokens, producing H ∈
Rk×(S+T2). H is then fed to the LLM decoder (fϕ)
to generate the response.

Dataset Collection We collect four different
datasets tailored to distinct requirements. First, the
pretraining dataset spans 394,000 protein amino
acid sequences and function descriptions collected
from UniProt (Consortium, 2022). This dataset is
entirely used to train the resampler and the projec-
tor during the pretraining stage.

Next, we generate a comprehensive question
and answering dataset (i.e. Protein2Text-QA) to
fine-tune the model parameters. The dataset spans
approximately 210,000 pairs of QA. We utilize re-
search carried out on proteins from published arti-
cles in the PubMed Central (PMC) database (Con-
sortium, 2015) to create questions and answers.
Articles mentioning the protein names are located

and fed to the LLaMA3.1 model to generate a se-
ries of QA pairs, such that they focus only on the
protein name given.

The test set and zero-shot set are then sam-
pled from the Protein2Text-QA dataset. The pro-
teins in the test set can be found in the pre-
training dataset but not in the fine-tuning dataset.
On the other hand, the zero-shot set is sampled
such that the protein sequences and their vari-
ants are not mentioned in both pre-training and
fine-tuning sets. The variants were also filtered
out to eliminate data leakage (Bushuiev et al.,
2024) since some protein variants might have dif-
ferent sequences but similar/same function (Brett
et al., 2002; Schlüter et al., 2009). Finally, we
generate two cross-domain datasets to evaluate
the model on questions not mentioned in the ab-
stracts. First, the DiscussionQA which spans QAs
extracted from discussion sections, and the In-
troductionQA which spans QAs extracted from
introduction sections. The collection process
of training and evaluation datasets, and detailed
statistics, generation pipelines, preprocessing, and
sample QAs are further discussed in Appendix A.

Training. The model training process consists
of two stages: pretraining and fine-tuning. Dur-
ing pretraining, we freeze the protein encoder
and the LLM while the parameters for the re-
sampler and projector are trained. Next, we per-
form fine-tuning, where we train the entire model
except the protein encoder parameters. In this
stage, the LLM is trained using Low-Rank Adap-
tation (LoRA) (Hu et al., 2021). Finally, we as-
sess the performance by designing four evalua-
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tion datasets tailored to distinct requirements such
as baseline benchmarking, zero-shot ability, and
cross-domain evaluations. Further details about
training details, hyperparameters, baselines, and
benchmarks are discussed in Appendices C.1, C.2,
E, and F respectively.

4 Experiments

4.1 Protein2Text-QA Evaluation
Experiment. We evaluated the performance of
Protein2Text against two categories of large lan-
guage models (LLMs): general-purpose LLMs
and protein-specific LLMs. For general-purpose
LLMs, such as GPT4o-mini (OpenAI et al., 2023)
and LLaMA3.1 (Dubey et al., 2024), the eval-
uation focused on assessing the degree of po-
tential data leakage within the question prompts.
We hypothesized that if the answers were em-
bedded in the question prompts, general-purpose
LLMs would likely respond correctly (Cadene
et al., 2020). In the second category, we bench-
marked Protein2Text against multimodal LLMs
tailored for protein-related tasks, including Mol-
Instruction (Fang et al., 2024), BioMedGPT (Luo
et al., 2023), and ProtT3 (Liu et al., 2024), all of
which are open-source tools. We evaluated the
performance using lexical metrics such as BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005), and se-
mantic similarity metrics such as BERT similarity
(Devlin et al., 2019), and BiomedBERT similarity
(Gu et al., 2021). Further details on baseline mod-
els and scores can be found in Appendices E and
G.

Findings. Table 1 summarizes the performance
of models on the Protein2Text QA test set.
General-purpose LLMs exhibited poor perfor-
mance due to their inability to interpret pro-
tein sequences (see Table 6), indicating mini-
mal data leakage from the prompts. In con-
trast, protein-specific LLMs like BioMedGPT and
Mol-Instruction showed competitive performance
likely because they are also trained on PubMed
data. BioMedGPT achieved higher semantic sim-
ilarity scores but lower lexical scores compared
to Mol-Instruction, suggesting its answers were
semantically relevant but not necessarily accu-
rate (Table 6). ProtT3, trained on template-
based benchmarks or short QA (1–3 words), strug-
gled with out-of-domain instructions, unlike Pro-
tein2Text, Mol-Instruction, and BioMedGPT.

Protein2Text consistently outperformed base-
lines across both semantic and lexical metrics. To
explore potential enhancements, we implemented
a Gated cross-attention (GCA) mechanism (Jia
et al., 2024; Das et al., 2022; Alayrac et al., 2022)
at the top of the resampler architecture. Surpris-
ingly, adding GCA resulted in reduced perfor-
mance; therefore, was excluded in the final Pro-
tien2Text. Further investigation is needed to deter-
mine whether this decrease is due to the increased
number of parameters requiring larger training
data or if GCA is ill-suited for this problem. De-
tails on parameter counts and the GCA ablation
study are provided in Table 9 and Table 8, respec-
tively.

4.2 Cross-domain Evaluations

Experiment. We assess Protein2Text’s gener-
alizability to new domains. Here, we evalu-
ate the performance on the zero-shot QA where
proteins and their variants in this set are hid-
den during the entire training pipeline. Simi-
larly, we assess the performance where the do-
main of the extracted QA is different such as
the introduction (IntroductionQA) and discus-
sion (IntroductionQA) sections. We focus on the
PLM baselines throughout this experiment due to
their superior performance compared to general-
purpose LLMs.

Findings. First, the baselines showed similar
performance in the Zero-shotQA (Table 2) com-
pared to their performance in the test set (Table 1).
Even though our model matches and often out-
performs the baselines, the performance expect-
edly dropped compared to the test set. Since pro-
teins and their variants were hidden during the
alignment stage, novel sequence domains might
have been introduced, hindering the resampler
compression. The baselines showing similar per-
formance could also indicate that these proteins
might have been seen by these models during their
training. Next, we evaluate the performance on
the IntroductionQA as demonstrated in Table 3.
Our model outperforms the baselines across lexi-
cal and semantic metrics; however, we see a slight
decrease in metrics performance compared to the
test set. This is likely because introduction sec-
tions usually present new information that was not
necessarily mentioned in the abstract (Cohen et al.,
2010). For the DiscussionQA, however, we found
the performance of QAs from abstracts is similar
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Model BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

BiomedBERT
Score

General-purpose LLMs
GPT4o-mini 0.0202 0.0088 0.0698 0.0279 0.0589 0.156 0.67 0.88
LLaMA3.1 0.0137 0.0067 0.0422 0.0186 0.0387 0.1100 0.613 0.8014
Protein-specific LLMs
BioMedGPT 0.074 0.035 0.160 0.056 0.144 0.140 0.750 0.905
Mol-Instructions 0.065 0.036 0.187 0.092 0.168 0.273 0.743 0.878
ProtT3 6× 10−6 1× 10−6 0.062 0.001 0.061 0.0174 0.768 0.843
Protein2Text 0.144 0.083 0.322 0.18 0.288 0.377 0.891 0.943

Table 1: Baseline comparison on our Protein2TextQA test set. Bold and underline denote best and second best
performing models respectively. For all metrics, higher values indicate better performance.

Model BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

BiomedBERT
Score

BioMedGPT * 0.075 0.0347 0.159 0.0536 0.1429 0.139 0.750 0.905
Mol-Instructions* 0.067 0.038 0.193 0.0953 0.172 0.282 0.744 0.880
ProtT3 * 7× 10−6 9× 10−7 0.062 0.001 0.061 0.017 0.769 0.843
Protein2Text 0.043 0.0248 0.265 0.148 0.239 0.326 0.815 0.897

Table 2: Zero-shot analysis on unseen proteins. Proteins and their variants, in this analysis, were held out during
the two stages of Protein2Text training. However, it is not guaranteed that these proteins were also hidden during
the training of the baselines (i.e. denoted by *).

to the performance of those extracted from the dis-
cussion sections as shown in Table 4, suggesting
that discussion and abstract sections are more se-
mantically aligned.

4.3 ProteinKG25 Benchmark Evaluation
The ProteinKG25 dataset, originally designed as a
knowledge base for protein attributes, was adapted
into a question-answering (QA) format using tem-
plated questions by the authors of ProtT3 (Liu
et al., 2024) (see Appendix F). ProtT3 was fine-
tuned specifically on this templated dataset. We
evaluated our Protein2Text model on this bench-
mark in a zero-shot manner, without any addi-
tional fine-tuning.

As anticipated, ProtT3 achieved high-
performance metrics on lexical evaluation
scores (Table 13). However, we observed that
in template-based scenarios, these metrics might
not fully capture a model’s ability to predict
embedded protein attributes in the template.
Models trained on templates can replicate the
template structure, leading to high lexical simi-
larity scores, even if the critical details within the
responses are incorrect. Using the empty template
as the prediction and ignoring attributes in the
blanks achieved high lexical scores (Table 13).
In contrast, models like Protein2Text, which are
not trained on these templates, may generate
responses that deviate from the template format,
resulting in lower performance despite potentially

providing accurate and informative answers.

To investigate this further, we focused on the
task of predicting protein subcellular localiza-
tion, a classification problem present in the Pro-
teinKG25 dataset. We specifically prompted the
models to predict protein localization among three
classes and assessed their outputs using standard
classification accuracy.

Our results indicated that while the template-
trained models achieved high lexical similarity
metrics (Table 13), they exhibited lower classi-
fication accuracy on the protein localization task
(Figure 2a). This suggests that these models, de-
spite effectively reproducing the template struc-
ture, may not reliably predict the correct protein
attributes. In contrast, Protein2Text demonstrated
higher classification accuracy in this task, indicat-
ing a better ability to generalize and accurately
predict protein localization in a zero-shot setting.
Furthermore, we observed that the LitGene-based
encoder predictor, which was specifically fine-
tuned for protein localization, achieved the high-
est accuracy among the models evaluated. It sug-
gests that decoder-based models like Protein2Text
would benefit from further enhancements, such as
larger or more diverse training datasets or archi-
tectural improvements, to close the performance
gap, as GPT-4 and other general-purpose LLMs
have matched supervised models for general NLP
tasks.
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Model BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

BiomedBERT
Score

BioMedGPT 0.068 0.032 0.172 0.059 0.152 0.133 0.754 0.907
ProtT3 5× 10−6 6× 10−159 0.054 0.001 0.052 0.0167 0.748 0.840
Mol-Instructions 0.072 0.042 0.196 0.099 0.17079 0.287 0.733 0.877
Protein2Text 0.130 0.078 0.318 0.181 0.279 0.366 0.882 0.939

Table 3: Model evaluation on the IntroductioQA set. The QA dataset is constructed from article introductions.

Model BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

BiomedBERT
Score

BioMedGPT 0.0577 0.0272 0.1724 0.0601 0.1506 0.1316 0.7344 0.9057
Mol-Instructions 0.0795 0.0475 0.2135 0.1159 0.1892 0.0475 0.743 0.8771
ProtT3 2× 10−6 3× 10−7 0.05407 0.00166 0.05276 0.015878 0.7465 0.8387
Protein2Text 0.143 0.089 0.346 0.212 0.311 0.392 0.895 0.943

Table 4: Evaluating Protein2Text on the DiscussionQA set. The DiscussionQA set is constructed from discus-
sion sections of PubMed articles.
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Figure 2: Evaluation on protein attribute prediction
tasks: a) Subcellular localization and b) Protein solu-
bility.

We extended our evaluation to protein solubility
prediction tasks and observed similar trends. The
template-trained models again showed high lexi-
cal similarity scores but lower classification accu-
racy compared to Protein2Text and the fine-tuned
encoder-based model (Figure 2b). These find-
ings reinforce the notion that while template-based
models excel in reproducing specific formats, they
may not always capture the underlying protein at-
tributes accurately.

4.4 Ablation Study

Since wide-range ablation studies are prohibitive
and time-consuming in LLMs due to their train-
ing time, we focus on more targeted ablation such
as the extension of our model beyond LLaVA, the
resampler. To assess the effect of the resampler,
we remove it from the model. In this case, the
<CLS> token from the protein encoder is used as
the sole token representing the protein sequence,
resulting in a single token projection. We compare
this to the proposed model, in which the resam-

pler creates 128 tokens, distilled from the embed-
dings of the entire protein sequence including the
<CLS> token. The resampler uses roughly two-
fold the number of trainable parameters compared
to the projector-only model (Table 9). We find a
significant increase in performance across all met-
rics when moving from a single token projection
to the latent 128 tokens generated by the resam-
pler (Table 5).

4.5 Qualitative Analysis

The results in Table 6 and 15 show substantial dif-
ferences in the ability of various baseline models
to answer questions related to proteins accurately
and contextually. Protein2Text outputs precise
and detailed responses that align closely with the
truth of the ground in most questions. For exam-
ple, it effectively identifies the primary function of
P29474 and correctly notes the mitochondrial lo-
calization of A0A1W2PPH1. In contrast, models like
ProtT3 and Mol-Instructions often produce incom-
plete or speculative answers, demonstrating lim-
ited generalization. Also, Protein2Text performed
well in handling nuanced queries, such as the im-
pact of nitrosylation on protein activity or changes
in protein abundance at high altitudes. Nonethe-
less, despite its overall accuracy, Protein2Text oc-
casionally fails and confidently generates incorrect
answers (Table 15).

5 Conclusion

We introduced Protein2Text, a multimodal large
language model designed to interpret protein
sequences and generate descriptive text, facil-
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Protein2Text BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

Biomed-
BERT Score

-w/o resampler 0.054 0.029 0.249 0.134 0.224 0.301 0.818 0.917
-w/ resampler 0.144 0.083 0.322 0.180 0.288 0.378 0.891 0.942

Table 5: Resampler ablation study. The model highlighted in bold denotes the best-performing model.

Protein ID/
Question

Ground
Truth

Model Outputs

ID: P29474
Q1: What is
the primary
function of
this protein in
the body?

This protein
is involved
in the syn-
thesis of
nitric oxide.

Protein2text: The primary function of this protein is related to the metabolism of nitric oxide. It is involved in the
regulation of nitric oxide levels in the body, which is essential for various physiological processes.
LLaMA3: Based on the provided sequence, it appears to be a protein sequence. However, without further information
or context, it is challenging to determine the exact function of this protein in the body.
ProtT3: IMMUNE SYSTEM
BioMedGPT: May be involved in the regulation of cell proliferation. May be involved in the regulation of cell cycle
progression. May be involved in the regulation.
Mol-Instructions: The primary function of the protein MGNLKSV. . . LK

ID:
A0A1W2PPH1
Q2: Where
is this protein
located in the
cell?

It is located
in the mito-
chondria.

Protein2Text: This protein is located in the mitochondria.
LLaMA3: Upon analyzing the sequence, I notice that it contains a transmembrane domain, which is a characteristic
of integral membrane proteins.
ProtT3: This protein is involved in the following processs: signal transduction, detection of chemical stimulus in-
volved in sensory perception of smell, G protein-coupled receptor signaling pathway, sensory perception of smell,
and response to stimulus. This protein is located in the following components: cytoplasm, membrane, and nucleus.
BioMedGPT: Mitochondrion
Mol-Instructions: The protein MLSRLRVVSTALT. . . VM

ID: Q5T7M4
Q3: What
happens to
the levels
of this pro-
tein in obese
and insulin-
resistant
individuals?

The levels of
this protein
are reduced
in obese
and insulin-
resistant
individuals.

Protein2Text: The levels of this protein are lower in obese and insulin-resistant individuals.
LLaMA3: In obese and insulin-resistant individuals, the levels are typically decreased.
ProtT3: NO
BioMedGPT: May be involved in the regulation of insulin sensitivity.
Mol-Instructions: The levels of this protein are known to be altered in obese and insulin-resistant individuals. Specif-
ically, studies have shown that obese individuals tend to have lower levels of this protein compared to non-obese
individuals.

Table 6: Qualitative analysis. Comparing responses of baseline models on different protein-related questions.
More examples can be found in Table 15.

itating complex and open-ended question-and-
answer tasks related to protein functions and at-
tributes. By employing a resampling mecha-
nism to embed protein sequences into a human-
interpretable space compatible with language
models, Protein2Text demonstrated strong per-
formance on various benchmarks, outperforming
general-purpose and several protein-specific mul-
timodal LLMs, particularly in open-ended QA
tasks. The model showed robustness across differ-
ent types of textual inputs derived from scientific
literature in both fine-tuned and zero-shot settings.
To enable rigorous benchmarking, we compiled
four new datasets to evaluate in-domain and cross-
domain capabilities. Our analyses also revealed
limitations of current metrics when dealing with
template-based datasets like ProteinKG25, indi-
cating that standard lexical similarity metrics may
not fully capture a model’s ability to predict spe-
cific protein attributes and highlighting the need
for cautious interpretation of these metrics. In-
corporating task-specific fine-tuning or architec-
tural adjustments may help bridge the gap between

decoder-based models like Protein2Text and spe-
cialized encoder-based models in certain applica-
tions.

By providing a framework capable of interpret-
ing protein sequences and generating informative
text, our work demonstrates the potential to use
multimodal language models for protein analysis,
which may assist researchers in exploring protein
functions and attributes. We hope that releasing
our evaluation datasets and model weights will en-
courage further research and development in this
area, ultimately contributing to advancements in
computational biology and bioinformatics. Pro-
tien2text is not immune to occasional hallucina-
tions of incorrect answers, which represents an im-
portant avenue for future work.
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7 Ethical Considerations

AI has a major impact on the scientific, health,
and social fields. We encourage responsible eval-
uation of LLMs to eliminate potential biases that
could affect future applications. We also encour-
age the responsible usage of resource and utiliz-
ing Low-Rank fine-tuning mechanisms when ap-
plicable, aiming to alleviate environmental risk.
Protein2Text is an AI agent that is meant to posi-
tively contribute to the current progress by advanc-
ing state-of-the-art results and providing new eval-
uation benchmarks. However, our evaluation in-
dicates that the model occasionally outputs incor-
rect answers confidently when uncertainty is war-
ranted. As such, Protein2Text should be used as
a complementary tool, with its outputs critically
assessed by experts who understand the model’s
limitations.
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Protein2Text-QA
Q1: What is the primary function of this protein in brain development?
A1: It promotes neural progenitor cell survival and neurogenesis.

Q2: What happens to the brain when this protein is depleted?
A2: The brain exhibits dysplasia with robust induction of caspase 9-dependent apoptosis.

Q3: How does this protein influence cell survival and death in the developing brain?
A3: It regulates target genes that promote cell survival and neurogenesis.

Q4: What signaling pathways affect the activities of this protein?
A4: TGF3b2 and NF3baB signaling pathways influence its activities.

Q5: What complex does this protein facilitate the genomic occupancy of?
A5: It facilitates the genomic occupancy of Polycomb complex PRC2.

Q6: What is the general function of this protein?
A6: This protein is involved in inhibiting transforming growth factor-3b2 (TGF-3b2) signaling,
which is a process that helps regulate cell growth and division.

Table 7: Sample of our Protein2Text-QA Data. The data is extracted for the protein "Smad nuclear-interacting
protein 1" with ID: "Q8TAD8".

You are an assistant that could processes abstracts of research 
articles and generates a question and answer conversation 
regarding a protein discussed in the abstract. the questions will be 
based on the the protein's general functions and attributes 
mentioned in the abstract. If a detail is not mentioned in the abstract, 
do not generate a question about it. The conversation should be 
focused on  + {protein} +, with a maximum of 10 questions. If no 
valid questions arise, return None. The questions should be generic 
and applicable to any context, such that no one would know the 
questions came from a study or an abstract i.e no mention of the 
word abstract or study. Here is the abstract: {abstract}.

Q1: What is the role of this protein in the regulation of collagen synthesis?
A1: This protein is part of the TGF-βSmads pathway that regulates collagen synthesis.
Q2: How does this protein interact with Smad proteins?
A2: It is a Smad nuclear-interacting protein.
Q3: What is the function of the TGF-βSmads pathway in collagen synthesis?
A3: It is involved in increasing collagen synthesis and inhibiting collagen degradation.
Q4: What is the primary function of this protein in brain development?
A4: It promotes neural progenitor cell survival and neurogenesis.
Q5: What happens to the brain when this protein is depleted?
A5: The brain exhibits dysplasia with robust induction of caspase 9-dependent apoptosis.

"PMC9968603", "PMC10464235", 
"PMC9023492", "PMC11394202", 
"PMC10589284", "PMC8225811", 
"PMC8496849", "PMC9937887", 
"PMC10409800", "PMC10166177"

SNIP1:Smad Nuclear-Interacting 
Protein 1

Prompt

Inputs

Protein

Abstract

LLaMA 3.1

Output
Protein2TextQA: Conversation about the protein based on the info found in the abstract.

Figure 3: The pipeline to collect Protein2Text-QA.
The prompt used to query the LLaMA3.1-Instruct
model is comprised of three components: the role, the
abstract extracted from PubMed (for Biotechnology In-
formation, 2024), and the protein name to extract QA
for.

performed any truncation to eliminate introduc-
ing noise to the model. We consider one specific
prompt and its variant paraphrases such as "Dis-
cuss the molecular function of this protein", "De-
termine the function of this protein sequence", or
"Summarize the functional role of this protein se-
quence". The question, the function description
(as the answer), and the protein sequence are used

to create the dataset. Similar to image, instruction,
and response in LLaVA (Liu et al., 2023a). This
dataset is entirely used to train the resampler and
the projector during the pretraining stage.

An example of the dataset is presented in Ta-
ble 11, illustrating the structure and content of the
data entries. Table 10 provides statistical details
about the dataset, including the number of unique
proteins, their variants, and the average lengths
of sequences and descriptions. Variants—proteins
derived from the same gene family—were care-
fully managed to ensure no data leakage, as all
splits were performed based on unique proteins.

A.2 Finetuning Dataset: Protein2TextQA

The finetuning dataset (Protein2Text-QA) collec-
tion process involved two major steps: retrieving
relevant abstracts from the literature and generat-
ing corresponding question-answer (QA) pairs us-
ing LLAMA3.

A.2.1 Abstract Retrieval
To collect protein-related abstracts, we used a sys-
tematic query approach with the PubMed Central
(PMC) database (for Biotechnology Information,
2024). The queries targeted abstracts containing
specific protein-related keywords. For each key-
word, we performed a search using the Entrez li-
brary (Schuler et al., 1996), which interfaced with
the PMC API. The search results returned lists of
relevant PMC IDs, which were then used to fetch
the abstracts. To ensure relevance, only abstracts
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explicitly mentioning the queried proteins were in-
cluded.

Once retrieved, the abstracts were processed to
remove redundant text (e.g., headings such as Ab-
stract, Methods, and Conclusion) and cleaned of
formatting inconsistencies. This preprocessing en-
sured that the text was suitable for input into the
question generation pipeline.

A.2.2 Generating the QAs using LLaMA3
Figure 3 demonstrates the QA collection pro-
cess pipeline. The cleaned abstracts, protein
names, and the role were fed into LLaMA3.1-
8B-Instruct (Dubey et al., 2024) to generate a
conversation-style output. The model is prompted
to generate a conversation between a chatbot and
a human where the questions and answers are con-
ditioned on the protein name mentioned in the
prompt. The prompt instructed the LLaMA model
to focus only on general protein functions and at-
tributes explicitly mentioned while processing the
abstract, ignoring other proteins. We limit the
number of retrieved QA to up to 10 QA pairs per
abstract.

The QA data are further preprocessed and tok-
enized to remove unnecessary questions that men-
tion phrases such as "no information found", "an-
swer not in the abstract", and "not mentioned in
the study". We attempt to make the questions gen-
eral and related to the proteins instead of being
related to the abstract. Table 7 shows a sample
question and answers generated by LLaMA for the
protein with ID "Q8TAD8".

An example of the finetuning dataset is pre-
sented in Table 7, which highlights the struc-
ture of the QA pairs. The data extraction
and question-generation pipeline, as implemented
with LLaMA3 (Dubey et al., 2024), is demon-
strated in Figure 3. The overall statistics of the
finetuning dataset, including the number of QA
pairs, unique proteins, and sequence lengths, are
summarized in Table 10.

A.3 Evaluation Datasets

The evaluation datasets comprised four distinct
subsets: Protein2Text QA test set, Zero-shot QA,
DiscussionQA, and IntroductionQA. Each subset
was curated to assess the model’s performance.

First, the Protein2TextQA test set was randomly
chosen from the entire Protein2TextQA without
consideration of family or variant relationships.
The protein sequences in the test set can be found

in the pretraining dataset but not in the fine-tuning
dataset.

Second, to generate the Zero-shot QA set, pro-
teins and all their variants—defined as those from
the same gene family—were entirely excluded
from the training set. These proteins were in-
cluded only in the test set, ensuring the model had
no prior exposure to them during training. This
dataset evaluates the model’s ability to generalize
to entirely unseen sequences.

The Discussion QA subset was derived using
the same list of proteins from the test set sub-
set. However, the QA pairs were generated from
the Discussion sections of the corresponding re-
search articles instead of the Abstracts. This sub-
set tests the model’s ability to handle context-
specific questions derived from a different section
of scientific texts. Similarly, the Introduction QA
subset utilized the same list of proteins as the test
set subset, but the QA pairs were generated from
the Introduction sections of the articles. We were
not able to extract introductions and abstracts for
all of the articles, and we only considered proteins
where we could find an introduction or discussion
section that mentions them.

B Gated Cross Attention (GCA)

Gated-Cross Attention (GCA) (Alayrac et al.,
2022; Jia et al., 2024; Das et al., 2022) attempts to
find sampled media tokens that are influenced by
the text tokens. For example, Alayrac et al. (2022)
used GCA to allow the text modality to attend to
the vision modality through a gating mechanism
that controls the influence of the vision modality
on text features. Here, we attempt to do the same
approach but we allow the protein embeddings to
attend to the text embeddings, aiming to create re-
fined protein embeddings.

In our setup, the GCA operates after the pro-
jector. That is, it takes as input the projected pro-
tein embeddings (H′

v) and the instruction embed-
dings (Hq) and outputs text-informed protein em-
beddings (H′′

v).
The final text-informed protein embeddings

(H′
v′) are then concatenated to the original instruc-

tion embeddings and fed to the LLM decoder to
generate the response.

H′′
v = ϕGCA(H

′
v,Hq)

H = [H′′
v ;Hq]
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Protein2Text BLEU
2

BLEU
4

ROUGE
1

ROUGE
2

ROUGE
L

METEOR BERT
Score

Biomed-
BERT Score

-w/ resampler 0.144 0.083 0.322 0.180 0.288 0.378 0.891 0.942
-w/ GCA 0.1017 0.0596 0.3054 0.170 0.278 0.358 0.863 0.929

Table 8: Adding Gated-Cross Attention (GCA) on top of the resampler shows no performance improvement.

Stage Number of Trainable Parameters

Protein2Text Pretraining 22M
w/o resampler Fine-tuning 190M

Protein2Text Pretraining 42M
w/ Resampler Fine-tuning 232M

Protein2Text Pretraining 76M
w/ Resampler + GCA Fine-tuning 307M

Table 9: Number of parameters in various model architectures. Protein2Text w/o resampler refers to using only
the projector (i.e. pure LLaVA model with changing the encoder).

The final set of tokens (H) is fed to the LLM
decoder to obtain the language response.

response = fϕ(H).

C Training

C.1 Training Procedure
The training consists of two main stages:
pre-training and fine-tuning. Throughout
the experiments in the manuscript, we use
LLaMA3.1-Instruct model as the language
decoder and facebook/esm2_t33_650M_UR50D
as the protein encoder, unless otherwise specified.
Every training stage is tailored to specific input,
output, and training procedures. We now provide
an overview of training details for every stage.

Pretraining. During pretraining, the model is
expected to align the protein and the text modal-
ities. Thus, we utilize protein sequences and their
descriptions. During this stage only, the resam-
pler and the projector are trained, aiming to learn
the alignment between protein sequences and text.
The dataset collected for this stage spans para-
phrases on the question "Describe the function of
the protein?". A sample of the dataset is shown in
Table 11. We pre-train the model for one epoch
following the LLaVA (Liu et al., 2023a) approach.
The number of trainable parameters for the stage
is 42 million (Table 9).

Finetuning. We next train the model to predict
answers to a wide range of prompts where the

prompt and the sequence are fed as input, and the
response as the output. During this stage, the re-
sampler, the projector, and the LLM are trained.
We utilize LoRA (Low-Rank Adaptation) to train
the model (Hu et al., 2021). LoRA freezes the
pre-trained linear layers of the LLM architecture
and learns a decomposition of two matrices of the
frozen weights. The number of trainable parame-
ters for this stage is 232 million parameters (190
million for LoRA adapters). The dataset used to
train the model is a QA dataset. Refer to Ap-
pendix A and Table 7 for the dataset collection and
an example conversation from the dataset respec-
tively.

C.2 Hyperparameters

Since performing a parameter search to find the
best-performing parameters is computationally in-
tensive and exhaustive for LLMs (Benington et al.,
2023), we rely on different factors to identify pa-
rameters. First, we inspect model parameters men-
tioned in previous studies in the same domain (Gu
et al., 2021; Liu et al., 2024; Fang et al., 2024; Lin
et al., 2022b) or similar domains (Liu et al., 2023a;
Alayrac et al., 2022). Second, we track our train-
ing logs using Wandb to ensure the loss decreases
for any respective ablation study.

Third, we also focus on targeted ablation stud-
ies to find the main parameters such as model
sizes (i.e. ESM2-650 vs ESM2-3B). For exam-
ple, Table 5 demonstrates reported ablation stud-
ies. We found that increasing model parameter
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Number of Avg. Length

Split QA Pairs Sequences Proteins PMC IDs Queries Answers Sequences

Pretraining 393,849 393,849 70,854 0 8.8 42.1 378.4
Fine-tuning 209,847 5,556 5,574 29,198 12.3 12.9 511.0
Test QA 38,585 1044 1044 5,880 12.3 12.9 499.1
Zero-shot 14,107 348 348 2,164 12.2 13.0 433.9
DiscussionQA 2,629 180 180 263 12.9 17.3 385.6
IntroductionQA 1269 51 51 111 13.3 16.4 401.6

Table 10: Main statistics of the datasets used for the experiments in the study. Unique proteins can have different
variants, and every variant has its sequence. These variants usually share a function similar to that of the dominant
protein. We split based on unique proteins to eliminate data leakage. For the average length section, questions and
answers are measured with words while sequences are measured in characters.

Protein ID/Name Description

Q8TAD8:
Smad nuclear-
interacting protein 1

Required for pre-mRNA splicing as a component of the spliceosome. As a
component of the minor spliceosome, involved in the splicing of U12-type in-
trons in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by
competing with RELA for CREBBP/EP300 binding. Involved in the mi-
croRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA
stability through the SNARP complex which associates with both the 3’end of
the CCND1 gene and its mRNA.

Q8KAW9:
ATP synthase
gamma chain

Produces ATP from ADP in the presence of a proton gradient across the mem-
brane. The gamma chain is believed to be important in regulating ATPase
activity and the flow of protons through the CF(0) complex.

Table 11: High overview of our pretraining data. The data is comprised of protein sequences and their descriptions
from UniProt (Consortium, 2022).

size reduces the model performance and suggests
the need for more data samples. Table 9 indicates
the number of parameters for the main ablations
performed. We found that increasing the num-
ber of latent tokens generated by the resampler
from 128 to 256 worsened the performance of the
model. Also, we saw adding gated cross-attention
(Alayrac et al., 2022; Das et al., 2022; Jia et al.,
2024) increases the number of parameters but de-
creases the performance. Refer to Section B for
description about adding GCA, Table 9 for num-
ber number of parameters, and Table 8 for GCA
results.

Model training and inferencing were mainly
performed on 2 NVIDIA H100 PCIe GPUs of
80GB VRAM. The estimated training time is
roughly dependent on the number of parameters,
the batch sizes, and other configurations such as
gradient checkpointing, LoRA parameters, and re-

sampler configurations. However, the estimated
training time for the pretraining stage varies from
8 to 13 hours while the fine-tuning stage varies
from 12-20 hours. The time estimations are based
on the parameters found in Table 9. The table also
highlights the best-performing model parameters
of the experiments in this manuscript.

D Expanded Discussion on Related Work

Instruction Tuning. Large Language Models
(LLMs) have demonstrated significant capabilities
in human understanding tasks, such as GPT mod-
els (Radford et al., 2019; Brown et al., 2020; Ope-
nAI et al., 2023) and LLaMA models (Touvron
et al., 2023a,b; Dubey et al., 2024). When LLMs
were first introduced, they were mainly trained on
next token prediction (Touvron et al., 2023a; Rad-
ford et al., 2019; Lewis et al., 2020; Liu et al.,
2019; Yang et al., 2020). Instruction tuning has
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Hyperparameter Pre-training Fine-tuning

Training
Number of Epochs 1 5
Per-device Batch Size 10 5
Learning Rate 2× 10−3 8× 10−6

Max Sequence Length 2048 tokens
Precision bf16 (Mixed Precision)
Optimizer AdamW
Gradient Accumulation Steps 1 step
Warmup Ratio 0.03

Protein Encoder
Model ESM2-650M
Output Tokens All (i.e. no truncation)
Feature Layer -2 (i.e. second to last)

Language Model
Model LLaMA-3.1-8B-Instruct
LoRA Rank 64
LoRA Alpha 16
Context Length 2048

Projector
Number of Layers 2 layers
Activation GELU
Hidden Dimensions 4096

Perceiver Resampler
Number of Attention layers 4096
Attention Heads 8
Dimension of Attention Heads 4
Multiplication Factor of Hidden State 2
Number of Latent Tokens 128

Table 12: An overview of the hyperparameters used to train the two stages of Protein2Text. If one parameter is
mentioned across the two columns, the same value is used in the two training stages.

been proposed to align the training objective with
the user objective by enhancing the model’s ability
to follow instructions (Zhang et al., 2024). Several
models trained via instruction tuning have been
proposed for a variety of tasks such as summa-
rization (Basyal and Sanghvi, 2023), question an-
swering (Ouyang et al., 2022; Muennighoff et al.,
2023; Zheng et al., 2023), and zero-shot capabili-
ties (Zheng et al., 2023; Ouyang et al., 2022; Ope-
nAI et al., 2023; Wei et al., 2022; Dubey et al.,
2024).

Multimodal LLMs. Multimodal LLMs have
also been extensively applied to perform cross-
modal tasks beyond the text modalities. For in-
stance, several studies have been proposed to in-

tegrate vision and language (Liu et al., 2023a;
Alayrac et al., 2022; Li et al., 2023), and integrate
audio and language (Radford et al., 2022; Tjan-
dra et al., 2017). Building on these efforts, LLMs
have also witnessed prosperous adaptation to sci-
entific and biomedical domains such as biomedi-
cal text understanding (Jararweh et al., 2024; Lee
et al., 2019), biomedical QA (Wu et al., 2023a;
Luo et al., 2023), clinical reasoning tasks (Huang
et al., 2020), and molecular structure understand-
ing (Zhao et al., 2024; Fang et al., 2024; Cao et al.,
2023; Liu et al., 2023b).

Protein-related LLMs. The sequential nature
of protein primary structure lends itself to lan-
guage modeling for protein characterization. For
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

ProtT3- Fine-tuned 0.765 0.688 0.783 0.705 0.714 0.768
Template predictor 0.243 0.219 0.667 0.621 0.667 0.498
Protein2Text- Zero-shot 0.277 0.217 0.447 0.345 0.383 0.396

Table 13: Performances on the ProteinKG25 (Zhang et al., 2022; Liu et al., 2024) benchmark. Template predictor
refers to predicting the QA template as the response for all questions in the ProteinKG25 test set.

example, encoder-based LLMs trained on pro-
tein amino acid sequences have been adopted to
generate a representation space that captures se-
quence structures (Lin et al., 2022b,a; Zhang et al.,
2022; Elnaggar et al., 2021). Similarly, genera-
tive LLMs have also been proposed for a variety
of protein generation tasks such as generating 3D
structure (John Jumper and Hassabis, 2021), and
novel protein sequences (Madani et al., 2020; Ni-
jkamp et al., 2022; Lv et al., 2024). LLMs that
incorporate natural language and protein as one
modality (i.e. considering protein as text modal-
ity) have been proposed. For example, Galactica
models are general-purpose LLMs that are trained
on scientific corpora to perform different reason-
ing tasks including protein captioning. Leveraging
advances in multimodal LLMs, several studies at-
tempt to integrate text with protein modalities such
as DNA/RNA sequences (Richard et al., 2024), 3D
structure (Guo et al., 2023; Wang et al., 2024),
and amino acid sequences (Xiao et al., 2024b; Luo
et al., 2023). Similarly, multi-modality projec-
tion similar to vision-language alignment (Alayrac
et al., 2022; Liu et al., 2023a), has been applied to
align between protein and natural text where pro-
tein is considered as single modality (Guo et al.,
2023; Wang et al., 2024; Liu et al., 2024; Luo
et al., 2023; Fang et al., 2024).

E Baselines

We compare our model to different baselines
throughout the manuscript. We mainly focus on
two types of baselines: general-purpose LLMs
and protein-specific LLMs. The general-purpose
LLMs were used as a measure of data leakage,
identifying the amount of information leaked from
the prompt into the generated answer. Second,
we assess protein-specific LLMs that use protein
sequences and a text prompt as input. We now
provide a high overview of the baselines and the
prompting mechanism.

GPT4o-mini (OpenAI et al., 2023). The model
is a variant of the GPT4 family with a reduced

number of parameters. We used the OpenAI API
to generate responses in this manuscript where we
feed the prompt and the sequence as input. We set
the role to "You are an expert assistant for protein-
related inquiries". The average response time is
30 seconds per query. We launched multiple pro-
cesses per day for multiple days until the maxi-
mum number of tokens quota was reached.

LLaMA3.1-8B-Instruct (Dubey et al., 2024).
LLaMA3.1-8B-Instruct 2 is a general multilin-
gual model trained using instruction tuning to per-
form reasoning tasks. We utilize the same prompt
structure used to query GPT4o-mini to extract re-
sponses from the model. We use the released
model checkpoints from HuggingFace to extract
responses. The average request time is 30 seconds
per prompt on an 80GB H100.

BioMedGPT (Luo et al., 2023). BioMedGPT
is a multimodal LLM that integrates molecular
structures, protein sequences, and natural lan-
guage text. The model aligns the three modali-
ties to perform cross-modal tasks about proteins
and molecular compounds. The model utilizes
LLaMA2 (Touvron et al., 2023b) as the LLM base
model. The training data was extracted from dif-
ferent sources such as PubMed Central (PMC),
PubChem (Kim et al., 2022), and UniProt (Con-
sortium, 2022). We utilize the weights and default
parameters released by the authors to perform in-
ferencing. The inference time is 0.09 seconds per
query on an 80GB H100.

Mol-Instruction (Fang et al., 2024). Similarly,
Mol-Instruction is a multimodal LLM that inte-
grates text, molecular compounds, and protein se-
quences. The model utilizes GPT3.5 to generate a
QA dataset about proteins and compounds from
PubMed articles. We utilize the LoRA weights
published by the authors and the LLaMA-2-7b-
chat-hf model from HuggingFace to perform infer-
encing. We utilize the default parameters as found

2https://huggingface.co/blog/llama31?utm_
source=chatgpt.com
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in the released evaluation script. The approximate
inferencing time is 18.17 seconds per query on an
80GB A100.

ProtT3 (Liu et al., 2024). ProtT3 utilizes multi-
modal projection to align between protein amino
acid sequences and natural language text. The
model is trained in two stages: protein-text re-
trieval and protein-text generation. During the first
stage, contrastive learning objectives are utilized
to extract protein features that match the descrip-
tion. Then, the LLM model is trained using LoRA
to perform generative tasks. The authors release
three different checkpoints for different tasks. We
utilize the checkpoint released by the author for
the QA task. The response time is 0.14 seconds
per query on an 80GB H100.

LitGene (Jararweh et al., 2024). LitGene is an
encoder-based model that refines protein/gene em-
beddings by integrating textual descriptions and
Gene Ontology (GO) terms. The model is de-
signed for classification and retrieval tasks based
on protein/gene embeddings. In this study, we
use LitGene as a benchmark to evaluate our model
ability in classification tasks. The results demon-
strated in Figure 2 are based on benchmarks from
the LitGene paper. We use their reported mean
values on these benchmarks as a baseline for our
model predictions.

F Benchmarks

ProteinKG25. The ProteinKG25 benchmark is
a template-based dataset designed for protein cap-
tioning. The dataset is originally a gene on-
tology knowledge graph that consists of pro-
tein sequences, descriptions, and protein attributes
(Zhang et al., 2022; Consortium et al., 2023). The
authors of ProtT3 (Liu et al., 2024) synthesized
a QA dataset based on the knowledge graph and
used it for benchmarking. Table 14 shows a sam-
ple of the dataset, highlighting the template used
to design the QA dataset from gene attributes.

Solubility. The solubility benchmark is a
classification-based dataset that classifies whether
a protein is soluble or insoluble. The dataset was
collected by Jararweh et al. (2024) authors and
used to benchmark their LLM-based model on the
solubility task. The dataset originally consisted of
protein descriptions and their respective classes.
We further process the dataset into a QA format
by extracting the sequences and adding the prompt

"Is this protein Soluble or Membrane?". The
answer to this prompt would be the protein class:
"Soluble" or "Insoluble".

Localization. Similarly, the localization dataset
is another classification benchmark from the Lit-
Gene paper Jararweh et al. (2024). The dataset
is designed to classify the subcellular localiza-
tion of proteins and spans the classes: "Nucleus",
"Cytoplasm", and "Cell Membrane". To design
a QA dataset from this dataset, we extract pro-
tein sequences using the UniProt IDs and add the
prompt: "Is this protein localized in Nucleus, Cy-
toplasm, or Cell Membrane?". The answer to this
prompt would be the protein label from the Lit-
Gene localization benchmark.

G Evaluation Metrics

BLEU Scores (Papineni et al., 2002). BLEU
(Bilingual Evaluation Understudy) score relies on
n-grams matching to calculate the performance of
the generated text. The BLEU score is a precision-
based metric that quantifies the number of n-grams
in the generated text that are also mentioned in
the ground-truth text. BLEU-2 denotes bigrams
matching while BLEU-4 denotes 4-grams match-
ing.

ROUGE Scores (Lin, 2004).Similarly, the
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) score also focuses on sequence
matching. As opposed to BLEU, the ROUGE
score is recall-based which calculates the amount
of n-grams from the ground truth that are captured
by the generated response. ROUGE-1 denotes
unigram matching, ROUGE-2 bigrams match-
ing, and ROUGE-L denotes longest common
subsequence matching.

METEOR Score (Banerjee and Lavie, 2005).
METEOR (Metric for Evaluation of Translation
with Explicit ORdering) weights recall and pre-
cision while performing n-gram matching. ME-
TEOR also captures high-level semantic similarity
by applying stemming and synonym matching.

BERT Similarity Score (Devlin et al., 2019).
We also utilize a similarity score generated using
BERT. We embed the generated and ground truth
sentences using the bert-base-uncased model,
then we extract the embedding for the CLS token.
The cosine similarity between the two sentences is
then computed.
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ProteinKG25

Q: What is the function of the protein?
A: This protein is part of the following components: plasma membrane, membrane, and integral com-
ponent of membrane. This protein is involved in the following processes: response to stimulus, sig-
nal transduction, sensory perception of taste, and G protein-coupled receptor signaling pathway.
This protein is located in the following components: membrane, integral component of membrane,
and plasma membrane. This protein is involved in signal transduction: signal transduction, and G
protein-coupled receptor signaling pathway. This protein is part of membrane: membrane, and plasma
membrane. This protein is part of integral component of membrane: integral component of mem-
brane. This protein enables the following function: G protein-coupled receptor activity.

Table 14: ProteinKG25 QA (Zhang et al., 2022; Liu et al., 2024) is a QA benchmark built from a template of
protein attributes.

BiomedBERT Similarity Score (Gu et al.,
2021). We also utilize BiomedBERT, a variant of
the BERT model but trained on text from the the
biomedical domain. We use the CLS embedding
of the generated and the ground truth texts to cal-
culate the cosine similarity.

H Reproducibility and Availability

We release the model weights, evaluation scripts,
and evaluation datasets at https://github.com/
alaaj27/Protein2Text.git. Our efforts aim to
enable results reproducibility and facilitate more
rigorous evaluations of PLMs’ generative capabil-
ities across various tasks and different domains.
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Protein ID/
Question

Ground
Truth

Model Outputs

ID: P17041
Q1: Where
does the pro-
tein localize?

The nucleus. Protein2Text: The protein localizes to the nucleus.
LLaMA3: The sequence you provided appears to be a long protein sequence, and it’s difficult to pinpoint the local-
ization without knowing the specific protein or its function.
ProtT3: NUCLEAR PROTEIN
BioMedGPT: Nucleus
Mol-Instructions: Based on the input provided, the protein localizes to the endoplasmic reticulum.

ID: Q99489
Q2: What
happens to
the activity of
this protein
when it is
nitrosylated?

Nitrosylation
affects the
activity of
this protein
to a limited
extent.

Protein2Text: The activity of this protein is inhibited when it is nitrosylated.
LLaMA3: Without specific information about the protein’s function and the cysteine residues involved in nitrosyla-
tion, it’s challenging to predict the exact effect of nitrosylation on protein activity.
ProtT3: NO
BioMedGPT: The activity of this protein is increased when it is nitrosylated.
Mol-Instructions: Nitrosylation of this protein leads to a decrease in its enzymatic activity.

ID: G3V241
Q3: Is high-
altitude
environment
characterized
by an elevated
abundance of
this protein?

No, the
abundance
of this pro-
tein was
decreased
at high alti-
tude.

Protein2Text: No, high-altitude environment is characterized by a lower abundance of this protein.
LLaMA3: To determine if the high-altitude environment is characterized by an elevated abundance of the given
protein, we would need to know more context about the protein and its function.
ProtT3: MOLECULAR CLOCK PROTEIN, OXYGEN STORAGE, OXYGEN TRANSPORT
BioMedGPT: Promotes the incorporation of iron into the crystal structure of the protein.
Mol-Instructions: Yes, the high-altitude environment is characterized by an elevated abundance of the protein.

ID: C9JQQ2
Q4: Is this
protein a
canonical en-
zyme similar
to some other
proteins?

No, this
protein is
not a canon-
ical enzyme
similar to
some other
proteins.

Protein2Text: Yes, this protein is a canonical enzyme similar to some other proteins.
LLaMA3: The protein sequence above is a member of the alpha/beta barrel fold family. It is a protein with a
characteristic barrel-shaped structure, which is common among enzymes.
ProtT3: NO
Mol-Instructions: Based on the provided sequence, this protein appears to be a canonical enzyme similar to other
proteins in the same family. The sequence shares high similarity with other proteins in the same family, indicating that
it is likely to have similar structure and function. Additionally, the presence of conserved motifs and residues typical
of enzymes in this family further supports this conclusion. Therefore, it is likely that this protein plays a similar role
to other proteins in this family, such as catalyzing a specific chemical reaction.</s>
BioMedGPT: This enzyme is a member of the ATP-grasp superfamily.

Table 15: Additional qualitative analysis of baseline models on protein-related questions.
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