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Abstract

Automated construction of shopping cart from
medical prescriptions is a vital prerequisite for
scaling up online pharmaceutical services in
emerging markets due to the high prevalence
of paper prescriptions that are challenging for
customers to interpret. We present RxLens,
a multi-step end-end Large Language Model
(LLM)-based deployed solution for automated
pharmacy cart construction comprising multi-
ple steps: redaction of Personal Identifiable
Information (PII), Optical Character Recogni-
tion (OCR), medication extraction, matching
against the catalog, and bounding box detec-
tion for lineage. Our multi-step design lever-
ages the synergy between retrieval and LLM-
based generation to mitigate the vocabulary
gaps in LLMs and fuzzy matching errors during
retrieval. Empirical evaluation demonstrates
that RxLens can yield up to 19% - 40% and
11% - 26% increase in Recall@3 relative to
SOTA methods such as Medical Comprehend
and vanilla retrieval augmentation of LLMs
on handwritten and printed prescriptions re-
spectively. We also explore LLM-based auto-
evaluation as an alternative to costly manual
annotations and observe a 76% - 100% match
relative to human judgements on various tasks.

1 Introduction

Global adoption of online pharmacy services has
surged in recent years, driven by demand for conve-
nient, affordable access to medications. However,
in emerging markets, paper prescriptions, which
are typically unstructured, handwritten, and illegi-
ble, pose a major barrier for customers ordering
medications online. Patients often report diffi-
culties in deciphering doctors’ handwriting accu-
rately enough to use traditional e-commerce search.
To mitigate the digitization errors and the conse-
quent health risks, e-pharmacies offer "medicine
dispensation" services where customers can upload
prescriptions and receive cart-building assistance
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through either asynchronous digitization or direct
pharmacist callbacks. While pharmacist calls pro-
vide better accuracy and capture specific needs
like medication quantities and alternatives, they
are costlier. Both approaches face scalability chal-
lenges due to the reliance on human pharmacists,
resulting in long wait times and high cart aban-
donment. Hence, there is an urgent need for an
automated, rapid, accurate, and scalable prescrip-
tion digitization system to enable seamless online
pharmacy ordering.

Building automated prescription-to-cart systems
poses several key challenges. These span handling
diverse layouts and handwriting styles, varying im-
age quality and orientation, and region-specific
medical terminology. Further, typos frequently
cause confusion between similar drug names, mak-
ing high accuracy critical for patient safety. A
practical system must also secure patient PII while
precisely mapping medications to the visual region
on prescriptions. Lastly, the sensitive nature of
prescriptions combined with expensive annotation
effort leads to a significant scarcity of ground truth,
complicating system development and evaluation.

Related Work. Current prescription digitiza-
tion methods (Sharma et al., 2023; Guzman et al.,
2020) follow a multi-step process: (a) optical
character recognition, (b) medication extraction
using custom-trained text and/or layout encoder
models, and (c) matching extracted medications
against a catalog. These methods perform poorly
on non-US and handwritten prescriptions due to
vocabulary gaps and limited training data. Stud-
ies on handwritten prescriptions (Gupta and Soeny,
2021; Davis and FACSM., 2008; Fajardo et al.,
2019) have achieved limited success in identify-
ing medicine names. Despite the broad success
of recent foundational generative LLMs and mul-
timodal approaches (Anthropic, 2023; McKinzie
et al., 2024), their adoption for prescription digiti-
zation remains minimal. These models, trained pri-
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Figure 1: Schematic view of automatic "scan and order"
cart building from the prescription image.

marily on public datasets with limited handwritten
documents and regional medical vocabulary, fail
to achieve the desired accuracy when used directly
or with vanilla retrieval augmentation, often due
to hallucination. Further, the high LLM deploy-
ment costs (Sharir et al., 2020; Hoffmann et al.,
2022) and PII concerns with third-party LLM APIs
complicate their use in prescription digitization.
Appendix A presents additional related work.
Contributions. We explore how to use LLMs
(both multimodal and text-only) to develop an auto-
mated prescription-to-cart system. We investigate
choices related to solution architecture, component-
specific design, annotation scaling, and practical
deployment, and present the below key contribu-
tions: 1) Building on existing methods, we propose
RxLens, a modular LLM-based architecture com-
prising OCR, medication extraction, and matching
against the catalog. This multi-step design lever-
ages catalog-based retrieval augmentation to en-
sure medication validity. Within each step, we
explore the benefits of LLMs and prompting strate-
gies, focusing on the synergy between retrieval
and generation. 2) We present solutions for han-
dling practical system requirements, such as PII
redaction before LLM invocation, medication-to-
prescription region mapping, and latency optimiza-
tion. 3) To address the lack of annotations and ex-
pensive labeling, we develop an LLM-based auto-
evaluation approach using prompts that mimic hu-
man annotation (75.7% - 100% correlation). 4)
Empirical evaluation shows RxLens achieves sig-
nificant improvements (+19%-40% and +11%-26%
Recall@3) over SOTA baselines like Medical Com-
prehend and vanilla LLM retrieval augmentation on
handwritten and printed prescriptions, respectively.

2 Prescription Image Digitization

Formally, given a medicine catalog A !, a pre-
scription image P, and K, the max. number

! Catalog refers to a known list of medications.

of suggestions per prescription item, the digiti-
zation process generates a list of s medication
groups, MA(P) = {gi1,...,9s}. Each group
gi = (vi,a;) includes a visual rectangular region
of the prescription v; and an ordered list of rele-
vant medications a; = {a;1,...,a;x} C A. Let
M%(P) = {941, ., 9%} denote the ideal cart with
s* groups where each group g/ = (v, {a};}) con-
tains the correct visual region and medication. Let
p:{1,---,s*} — {1, -, s} map the medication
groups in the ideal cart to the predicted ones 2. The
goal of digitization is to optimize the medication
ranking and the visual region detection:

S*
max Lrank(ai7a ; )+)\Lvi5ual(v;k’v ; ))
MA(P) (; o o

where L7%"%(.,.) refers to metrics such as Re-
call@K (Manning et al., 2008) while LV*sua!(. .)
measures coverage and precision of the detected
visual regions relative to the true ones (Zou et al.,
2023) and ) is a relative weighting factor. In our
work, we optimize these separately with focus on
ranking accuracy. Figure 1 shows the user interface
with input P and output M (P).

3 RxLens Solution Architecture

3.1 Design considerations

Data Privacy. Given the sensitivity of medical
data, PII must be robustly redacted from both im-
age and text inputs to third party LLM APIs.
Catalog-based Augmentation. Prescriptions of-
ten use medical terms absent in LLM training data.
Performing OCR on prescriptions and using the
output to retrieve relevant context from medicine
catalogs can enhance LLM text interpretation accu-
racy.

Ensuring Validity of Suggestions. To mitigate
medication errors due to LLM hallucination, it is
vital to select matching products from the catalog,
rather than through direct generation.

Trust and Explainability. To boost customer trust,
it is desirable to display relevant visual regions
alongside product suggestions.

Low Latency. Given high e-commerce dropout
rates, low-latency responses are crucial, even if
that entails a slight drop in suggestion quality.
Limited Labeled Data. Prescription digitization
spans multiple tasks from medicine extraction to

*Mapping p can be found based on best match between
the visual regions or the medication names across the groups.
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Figure 2: Schematic of the RxLens model pipeline.

catalog validation, each with limited labeled data ~ Table 1: Metrics computed for different tasks within
and significant diversity across market places. Us-  RxLens pipeline and their definitions.

ing SOTA LLM APIs with world knowledge, en-

Task (s) ‘ Metric ‘ Definition (average per prescription)
hanced by contextual retrleval, 1S llkely to be more Any | P90 Latency (s) | 90th percentile of latency for that task
effective than training custom models. | Cost @) | Cost of AWS Services/LLMs

OCR & ‘ Medicine-name (M)-Recall ‘ Fraction of ground truth medicines

Medication NMogie | whose attributes (M, M+F, M +F+S)

Medicine-name+Dosage

Extraction are present in OCR and Medication

3.2 Key Processing Stages w Extraction output with a "fuzzy" match
Medicine-name+Dosage to permit downstream detection
. Form+Strength (M+F+S)
Accounting for the above factors, we present our Recall
: : . : . Matching ASINs Medication-Recall @K Fraction of ground truth medicines that
RXLenS arChlteCture m Flgure 2’ Wthh COIan'lSCS from Catalog can be found in final retrieved top K
four online processing steps and an offline evalua- ASIN suggestions with exact match.
. . . .. . PII redaction Precision & Recall Precision & recall w.r.t human judge-
tion step, each optimized via empirical analysis. ment
PII Redaction and OCR- We ﬁrSt employ secure Bounding box Coverage & Precision Fra.ction of. r}nedic{ﬂtiOn groups for
. . (BB) Lincage whlc.h a BB is identified and the. where
OCR and named-entity recognition (NER) to ex- the identificd BB overlaps wih the
ground truth one

tract text from prescriptions, followed by identifi-
cation and redaction of sensitive PII entities such
as names and phone numbers from both text and
input images. The sanitized outputs can then be
processed via third-party multimodal LLM APIs to
improve extraction quality.

Medication Extraction. Using sanitized text and
prescription image, we extract medication records
with pharmacy-mandated attributes: medicine
name, dosage form, and dosage strength. To ad-
dress vocabulary gaps in generative LLMs during
the extraction, we augment the LLM prompt with
relevant product titles retrieved from the catalog
using the OCR text. To balance extraction accu-
racy, computational costs, and latency, we optimize
input combinations (image, text, catalog context)
and prompt design (role, task, format, in-context
learning examples) (Chen et al., 2023).

Matching products from Catalog. For each ex-
tracted medication, we identify top catalog matches
prioritizing ranking accuracy. We explore sev-
eral retrieval methods, ranging from simple text
searches to more complex ones based on weighted
attribute similarity. To leverage LLM fuzzy match-
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ing capabilities (e.g., matching 0.5g with 500 mil-
ligrams), we also consider a three-step retrieval
process comprising text search followed by LLM-
based ranking, and validation against the catalog.
Bounding Box Lineage. Finally, we link medica-
tion suggestions to visual regions in the prescrip-
tion, using LLMs to identify the relevant boxes
using the OCR output. The smallest rectangle en-
compassing the relevant boxes is displayed along-
side the medication suggestions.

Offline Auto-evaluation. Additionally, we also
perform offline auto evaluation of the online pro-
cessing steps using customer cart preferences as
implicit feedback. While the matching against cat-
alog can be directly assessed, for the OCR and
medication extraction steps, we use an LLM to es-
timate the recall of key attributes associated with
the user-selected medications within the respective
outputs, calibrating it with human judgements.



4 Experimental Setup

We describe our setup for evaluating LL.M-based
prescription digitization focusing on questions re-
lated to solution architecture, component choices,
deployment constraints, and auto-evaluation.

4.1 Datasets

To the best of our knowledge, there are no public
datasets of unstructured prescription images paired
with ground truth digitization. Hence, we use
two proprietary e-pharmacy datasets: Handwrit-
ten and Printed, comprising 1469 handwritten
and 1001 printed prescriptions respectively. All pre-
scription images undergo PII redaction, customer
ID anonymization, and are paired with pharmacist-
digitized orders. These prescriptions are sourced
from a diverse range of clinics, hospitals, and prac-
titioners from an emerging marketplace, featur-
ing varied formats, abbreviations (e.g., T., Tab.
Tablets), layouts (e.g., double column, slanting),
image resolutions, and orientations. Since our
LLM-based solution(s) and baselines do not in-
volve training, we evaluate each digitization step
across the full datasets. To assess offline LLM-
based auto-evaluation, we obtain manual judge-
ments of RxLens output on a subset of the data.

4.2 Tasks and Models

As discussed in Section 3, our approach comprises
the following tasks: PII redaction, OCR, medica-
tion extraction, product matching from the catalog,
and bounding box detection, with an overlap in the
first two tasks. We explore solutions for each of
these tasks using judicious combination of models
suited for OCR, NER, LLM, and retrieval limiting
our exploration to the representative choices below.
OCR - AWS Textract: An automated OCR service
for scanned handwritten and printed documents,
supporting English and EU multiple languages.
NER - AWS Comprehend, Comprehend Medi-
cal: ML services for natural language understand-
ing, capable of extracting named/PII entities with
Comprehend Medical tuned for medical entities.
LLM - Claude V3 and V3.5 Sonnet, Llama 3.1-
8B: The most powerful cost-effective generative
LLMs hosted on AWS Bedrock featuring long con-
text windows (128K tokens for Llama 3.1 and 200K
for the Claude models). Results in Section 5 are
based on Claude V3 Sonnet and we provide a com-
parison across LLMs in Appendix B.

Retrieval - AWS OpenSearch: A fully hosted

version of ElasticSearch with advanced real-time
retrieval and fuzzy matching over large indexes.

Note that all services used in the RxLens sys-
tem (AWS Comprehend, Textract, Bedrock) are
security-certified for medical applications with
guaranteed data encryption at rest and in transit.
While AWS Bedrock’s terms of service guaran-
tee RxLens data privacy and security, we prefer to
redact PII from prescriptions to minimize sensitive
data exposure to external LL.Ms.

4.3 Evaluation Metrics

From a business standpoint, the primary metric of
interest is the recall of correct medications within
the top-K suggestions (Recall@K), with latency
and LLM generation costs being secondary met-
rics. For proprietary reasons, we skip discussion
of the impact of these metrics on operational costs
and customer experience. Additionally, we also
evaluate various task-level metrics listed in Table 1.
At each stage, we evaluate whether the output per-
mits downstream detection of the medicine name,
dosage form, and dosage strength of the medica-
tions corresponding to the ground truth medicines.
We also evaluate the effectiveness of PII redaction,
and the accuracy of bounding box mapping for
medication suggestions. Lastly, we assess the cor-
relation between LLM-based auto-evaluation and
manual judgments.

5 Experimental Results

5.1 Component-wise Design Choices

Below we present evaluation of the design choices
associated with the three critical steps of the
RxLens digitization pipeline.

OCR. We evaluate two choices: a) Textract and
b) OCR-Claude, which is Claude prompt-tuned for
prescription text extraction. Table 2 compares their
performance on medication attribute extraction, la-
tency, and compute costs. Surprisingly, Textract
is not only faster and cheaper but more accurate
especially on handwritten prescriptions due to in-
built correction of image orientation and document
image-specific training versus Claude’s general-
purpose design, making it our preferred choice.
Medication Extraction (Med-Extract). Here, we
evaluate three approaches: (a) Comprehend Medi-
cal (Comp-Med), (b) Extract-Claude based on
Claude prompt-tuned to extract medication records
from the prescription image and OCR output, (c)
Med-Extract-Claude-IR, which is a RAG-variant
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of Med-Extract-Claude where relevant products
from the catalog are identified using an intermedi-
ate retrieval (IR) step (matching each line of OCR
output with text Jaccard similarity) and included in
the prompt as additional context. For approaches
(b) and (c), we consider variants with Image-only,
Text-only and Image+Text as inputs. Table 2 shows
the attribute recall results pointing to clear superi-
ority of Claude-based methods over Comprehend
Medical especially on handwritten prescriptions,
despite the specialized medical tuning, possibly
because of limited coverage of non-US prescrip-
tions in its training data. We observe a sizeable
boost due to the inclusion of additional catalog con-
text especially for handwritten prescriptions (+10%
medicine name recall) likely due to correction of
OCR errors. Including images with the OCR text
leads to slightly better extraction but entails extra
latency, compute costs and PII redaction effort. Ta-
ble 4 in Appendix B compares the performance of
multiple SOTA LLMs (Claude 3.5 Sonnet, Claude
v3 Sonnet, Llama 3.1-8B) on this task.

Matching products against Catalog. We evalu-
ate three approaches: (a) Simple Text Search
using Jaccard similarity on medicine names, (b)
Attribute Search, which ranks products using
a weighted combination of similarities along each
attribute (Medicine Name: 2, Dosage Form: 3,
Dosage Strength: 2) with weights determined via
Bayesian optimization (Perrone et al., 2021), and
(c) Reranker-Claude, which combines the output
of the first two methods and reranks using Claude.
Figure 3 shows the ranking performance in terms
of recall @K, pointing to the clear superiority of
the re-ranking approach especially at low K due
to the LLM’s fuzzy matching abilities and a priori
knowledge on medication attributes.

5.2 Overall Performance vs. SOTA methods

To assess the overall digitization performance of
RxLens system, we compare the implementation
with optimised choices for each step with two other
natural end-to-end baseline systems where the first
OCR step is performed using Textract. For the
first baseline the latter steps involve Compre-
hend Medical + Attribute-search for match-
ing, while the second one RAG-Claude is based on
conventional retrieval-augmented generation with
the first step involving retrieval of relevant products
based on the OCR text followed by invocation of
Claude, prompt-tuned to perform both medication
extraction and the generation of product sugges-

tions while utilising the context. Results in Table
3 point to the dominance of the RxLens approach
over the alternatives. Anecdotal results point to
the utility of enhancing medication extraction with
retrieval augmentation (e.g., Dislar being corrected
to Deslor) as well as enhancing ranking with ad-
ditional LLMs for superior fuzzy matching (e.g.,
50 mg matched against 0.05 gram). Superior per-
formance of Rx-Lens relative to RAG-Claude also
points to benefits of decomposing a complex task
into multiple steps and interleaving retrieval with
generation (Khattab et al., 2024).

5.3 Practical System Considerations

For a practical customer-facing system, data pri-
vacy, latency, and usability are paramount. Below,
we discuss evaluation of our proposed approach for
handling these aspects as discussed in Section 3.
PII Redaction. Manual assessment of Compre-
hend on PII information detection points to a pre-
cision and recall of 90.7% and 82.9% respectively
for printed prescriptions and of 69.4% and 81.3%
for handwritten prescriptions. Most of the errors
can be attributed to personal signature blocks and
non-English text, which does not actually pose pri-
vacy risk when only the OCR output (and not the
sanitised image) is used in the later stages. Fur-
ther, our choice of PII definitions includes attributes
such as gender and age, which by themselves might
not be highly sensitive, and are viewed as not PII
as per Comprehend contributing to the recall gap.
BB Lineage. We identify the bounding box for
each extracted medication using a suitable LLM
prompt (Lineage-Claude. Comparing with expert
annotations, the coverage for detecting the relevant
BBs stands at 75% and 100% while the precision
of the identified BBs is 87.5% and 94.1% for hand-
written and printed prescriptions respectively.
Latency Optimization. Since response time is
critical in real-time customer-facing flows, we opti-
mised the LLM prompts and inference process by
parallelising the retrieval and LLM calls for rerank-
ing suggestions for each extracted medicine record,
resulting in a 2.5x decrease in overall latency.

5.4 Offline AutoEvaluation using LLMs

Since obtaining fine-grained manual annotations of
prescriptions is labour intensive, we explore LLM-
based auto evaluation (AutoEval-Claude) of the
intermediate stages of RxLens using only the final
user-selected product list. We observe correlations
ranging from 76% - 88% respectively with human

826



Table 2: Performance of the different models within the OCR and Extraction phase across the Handwritten and
Printed prescription for Medicine-name (M), Medicine-Name + Dosage-Form (M + F) and Medicine-name +
Dosage-Form + Dosage-Strength (M + F + S). Note the cost reported is in cents (¢) and Latency is seconds (s).

Phase ‘ Model ‘ };1 put ‘ Handwritten ‘ Printed ‘ Cost  Latency

| | P | M M+F  M+F+S | M M+F  M+F+S | (g) (s)

ocr | Texwact | Img [80.6% 656% 269% |89.0% 855% 55.1% | 015 25

| OCR-Claude | Img |54.1% 41.8% 159% |769% 73.8% 51.5% | 050 6.5

| Comp-Med. | Txt |142% 5.1% 14% |624% 427% 132% | 024 09

| | Img |209% 165% 64% |555% 50.1% 13.8% | 042 3.0

Med-Extract | NoContext | "y | 4679, 32.6% 142% |778% 68.3% 325% | 040 28

| | Img+Txt | 47.4% 343% 152% | 79.6% 72.1% 32.8% | 070 3.5

| | Txt |573% 38.6% 162% |80.6% 714% 32.1% |044 3.1

IR-Context

| | Img+Txt | 57.2% 412% 182% | 81.7% 729% 30.7% | 074 3.6
Table 3: Performance comparison of different SoTA OCR Extraction —
approaches (excluding BB lineage step). = 3
g =
g &

Prescription Set ‘ Handwritten ‘ Printed ‘ Overall g
Model | Recall@l Recall@3 | Recall@l Recall@3 | Cost(¢) Latency (s) -;— —
RxLens | 384% 539% | 60.2% 755% | 23 12.1 ‘g g
RAG-Claude | 258% 34.9% | 49.9% 644% | 17 3.7 S g
Comprehend Medical | 11.1% 138% | 382% 499% | 038 44 2 S
T
M F s M F S
Attributes

annotations for Medication Name, Dosage Form,
and Strength for the OCR stage and 78% - 100% for
the Medicine Extraction stage (see Figure 4). As
expected, there is a superior correlation on printed
prescriptions relative to handwritten ones. Upon
further examination, we find that the divergence pri-
marily arises from fuzzy matching interpretation,
with human experts being more lenient than the
LLM, suggesting slightly pessimistic yet direction-
ally valid evaluations. Note that our LLM-based
auto-evaluation aims to supplement, not replace
manual evaluation by enabling robust large-scale
monitoring previously limited by manual effort.
Expert annotations collected at smaller scale help
calibrate and refine the automated system.

mmm Printed === Handwritten

v x '::::x;ézx‘.—.x__:
7 LT S REE e meen
X0 et
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’ ! 6 8 10

K

Figure 3: Recall@K vs. K for various retrieval methods
across Handwritten and Printed prescriptions.

Figure 4: Agreement between AutoEval-Claude and
human annotations on the prescription images for
Medicine Name (M), Dosage Form (F) and Dosage
Strength (S), evaluated across Handwritten and Printed
prescriptions. Error bars: Binomial error.

6 Conclusion and Future Work

Our current work presents an LLM-based architec-
ture of a deployed system for digitizing medical
prescriptions, assessing various design choices in-
cluding data privacy and usability.

Summary of key learnings. 1) Specialized mod-
els can sometimes outperform foundational models,
such as Textract trained on document images out-
performing Claude. 2) Retrieval augmentation with
relevant context can yield significant performance
benefits for specialized domains like pharmacy. 3)
Reranking with LLMs improves top ranking results
due to their intrinsic world knowledge and ability
to perform fuzzy matching over textual attributes.
4) Auto-evaluation using LLMs closely matches
human evaluation, enabling scalable monitoring
and system optimization. 5) For real-time appli-
cations, latency is an important factor, making it
crucial to focus on parallelization opportunities.
Future directions. We also plan to explore (a) spe-
cialized multimodal models for handwritten con-
tent recognition, (b) automated prompt optimiza-
tion using meta-prompting strategies, (c) assess-
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ment of auto-evaluation with more manual annota-
tions. The approach can also be extended to digi-
tizing other documents such as shopping lists.

Limitations

While RxLens has proven fairly effective, it does
have some limitations that need to be addressed.
OCR from Handwritten prescriptions. The per-
formance of our current OCR model (AWS Tex-
tract) on handwritten prescription data depends on
the legibility of the handwriting, with low recall
particularly for the strength attribute. To address
this, we plan to fine-tune existing handwritten text
recognition models on prescription images.
Multilingual support. While all the components
of RxLens support multiple languages, our study
primarily focused on English-language support, as
the medication attributes critical for shopping cart
construction are typically written in English even
if there is some other non-English content, e.g.,
medication consumption instructions. For health
applications requiring complete prescription digiti-
zation, it might be necessary to augment RxLens
with multilingual medical vocabularies and per-
form further evaluation on multilingual support.
Dependence on Catalog Quality and Coverage.
Since retrieval augmentation is a critical step in our
methodology, the overall performance of RxLens
depends heavily on the quality and coverage of the
medication catalog used for retrieval. Expanding
the catalog to be as exhaustive and standardized as
possible is an important area of improvement.
Dependence on LLM choice. Since RxLens in-
volves multiple steps that require invoking a lan-
guage model, the current prompts used have been
optimized for Claude V3 Sonnet. As we explore
new LLMs, we will need to automate the process
of prompt optimization.

Ethics Statement

Our work aims to expand the adoption of online
pharmaceutical services in emerging markets by
digitizing medical prescriptions. We are acutely
aware of the sensitive nature of prescription data
and its potential health impacts, and have taken
several steps to ensure the ethical development and
deployment of our system as discussed below.

Data Safety. We employ a secure pipeline with
appropriate encryption to collect, store, and anno-
tate customer prescriptions. To protect customer

privacy and prevent data leakage, we use AWS ser-
vices (Textract, Comprehend) to detect and redact
all personally identifiable information from the pre-
scription text and image before performing LLM-
based inference. As we are using a pretrained LLM
(Claude), the prescription data is not directly used
to train any language model. However, the per-
formance relative to expert digitization is used to
optimize system hyperparameters.

System Bias. Pre-trained foundational LLMs are
often ill-equipped to handle tasks in specialized
domains such as pharmacy due to gaps in their
training data. Additionally, these models may have
limited exposure to the unique vocabulary and lay-
outs of prescriptions originating from emerging
markets, which could hinder their performance if
used directly. To mitigate these gaps, our solu-
tion design prioritizes retrieval augmentation of
LLMs with a region-specific medicine catalog. In
future, we plan to continually optimize the prompts
and retrieval algorithms based on customer implicit
feedback on the suggested medications to further
reduce the system biases.

Health Safety. Customer well-being is our top pri-
ority. To eliminate the risk of errors that could lead
to adverse health impacts, RxLens only presents
the top three medication suggestions that meet a
certain score threshold, and enables dual review by
customers and pharmacists. Highlighting the rel-
evant visual regions in the prescription also helps
customers assess the suggestions without undue
cognitive load. Our LLM-based auto-evaluation
approach paired with suggestion acceptance met-
rics also also enables the continuous monitoring of
system performance and the proactive detection of
any issues.
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Appendix A Additional Works

Prescription digitization has attracted increasing
attention as a vital prerequisite for digital trans-
formation of healthcare services. Most earlier
methods (Guzman et al., 2020; Uzuner et al., 2010;
Patrick and Li, 2010), focus on entity recognition
assuming input is unstructured text and evaluate
on printed clinical documents from US. Recent
techniques (Sharma et al., 2023; G et al., 2022;
Rasmy et al., 2021; C et al., 2017) address the
task of digitizing images of paper prescriptions
using Convolutional Neural Networks (CNNs) or
off-the-shelf tools such as Textract for OCR. This
step is followed by further analysis of the OCR
output (text and positional information) using
sequence fine-tuned models such as Recurrent
Neural Networks (RNNs), LSTMs and more
recently Transformer models such as BERT and
LayoutLM combined with Conditional Random
Fields (CRFs) to detect the medication attributes
such as medication names, and dosages, along
with their associations. These techniques based
on custom models, however, require substantial
manual annotations.

Document AI primarily deals with understanding
visually rich documents (VRDs) by combining
compute vision techniques with layout and text
understanding. While these techniques (Barrow
et al., 2020; Katti et al., 2018; Majumder et al.,
2020; Cui et al., 2021) based on graph neural
networks and layout-enhanced Transformer
models are effective in extracting structured data
from well-formatted printed documents with
tables such as invoices, these perform poorly on
handwritten documents and heterogeneous layouts.
Increasingly, these techniques are being replaced
by the more versatile multimodal LLM solutions.

Multimodal Generative LLLMs such as GPT-4,
Claude (Anthropic, 2023) that can process both
textual and visual data have emerged as powerful
automation and analysis tools. In principle, these
models can be directly prompted to digitise a pre-
scription image and convert it to into a list of canon-
icalised products in a single invocation. However,
in practice, the resulting digitization quality is fairly
low since these foundational models have scant
exposure to medical vocabulary and handwritten
prescription images. Currently, even the OCR per-
formance of these models on medical documents

lags behind simpler models though that is likely to
change over time. Solution strategies typically in-
volve decomposing complex tasks and combining
MLLM invocation with additional preprocessing,
retrieval, and post processing steps (Khattab et al.,
2024). In our current work, we employ Claude
V3 Sonnet (Anthropic, 2023) multimodal system
to digitize both printed and handwritten medical
prescription utilising a similar multi-step strategy
including retrieval from medical knowledge base to
allow the LLM to reason about the context of med-
ical terminology and abbreviations and improve
extraction accuracy.

Appendix B Comparison across LLMs

Table 4 compares the performance of different
large language models (LLMs) in extracting medi-
cal information, specifically medicine names (M),
medicine names with dosage forms (M+F), and
medicine names with both dosage forms and
dosage strengths (M+F+S), from both handwritten
and printed prescriptions. The models evaluated
are Claude Sonnet v3, Claude Sonnet v3.5, and
Llama 3.1 8b, with performance metrics shown for
both handwritten and printed inputs.

Overall, the Claude Sonnet models demonstrate
more robust performance across both handwritten
and printed prescriptions, with slight improvements
observed in the transition from v3 to v3.5. In
contrast, Llama 3.1 8b tends to underperform in
comparison, especially when the extraction task
includes both dosage form and dosage strength.

Table 4: Comparison of LLMs in the Extraction phase
for retrieving context from catalog and text-only inputs
across Handwritten and Printed prescriptions for M,
M+F, M+F+S. (M = Medicine-name, F = Dosage-Form,
S = Dosage-Strength)

Model ‘ Handwritten ‘ Printed
M M+F M+F+S |M  M+F M+F+S
Claude Sonnet v3 | 57.3 386 162 | 806 714 32.1

Claude Sonnet v3.5 | 584 38.5 165 |815 715 322
Llama 3.1 8b | 551 406 17.1 |74 648 238
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Appendix C API Costs

Table 4 provides additional details on the average cost of invoking various AWS services and Claude V3
Sonnet for different tasks.

Task | API | Char. ImgSize Input Tokens Output Tokens Cost (¢)
OCR Claude Sonnet - 0.74 126 116 0.508
Extract-Img Claude Sonnet - 0.74 240 38 0.425
Extract-Txt Claude Sonnet - 0 1182 31 0.401
Extract-Img+Txt Claude Sonnet - 0.74 1201 33 0.706
ExtractIR-Img Claude Sonnet - 0.74 304 34 0.438
ExtractIR-Img+Text Claude Sonnet - 0.74 1318 33 0.741
Reranker Claude Sonnet - 0 1216 664 1.361
RAG Claude Sonnet - 0 1523 681 1.478
OCR Textract - - - - 0.15
NER Comprehend 946 - - - 0.095
NER Comprehend Medical | 946 - - - 0.237

Table 5: This Table provides additional details on the average cost of invoking various AWS services and Claude V3
Sonnet for different tasks. The cost (in ¢) was computed based on the following pricing policy. Claude V3 Sonnet:
$3 per Million input tokens, $15 per Million output tokens, $4 per 1000 1MP images. AWS Textract: $1.5 per
1000 pages. AWS Comprehend: $1 per Million characters. AWS Comprehend Medical - RxNorm: $2.5 per
Million characters
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Appendix D Prompt Templates

Algorithm 1 Medical Prescription Extraction Prompt Template

1: Role: Define the role description for the task (e.g., Medical Assistant, Prescription Interpreter, etc.)
2: Task: Define the task description including the rules, relevant domain information, and the expected
input-output format.
3. Input:
* OCR Output: Text captured from the scanned prescription.
* Prescription Image: The scanned prescription.
* Medicine List: List of possible relevant medicine names retrieved from the catalog.

4: Output: Expected output format: A structured list with the name of the medicine, its dosage form,
and its strength.
5: In-Context Learning Examples:

* Input: OCR output + image of a medical prescription + list of possible medicine names.
* Output: A formatted list of medicines with the following fields:
— Name of the medicine.
— Dosage form (e.g., tablet, suspension, etc.).
— Strength (e.g., 500mg, 1g, etc.).
6: Steps:
1. Extract relevant data from OCR output.
2. Cross-reference extracted data with medicine catalog.
3. Format the output to list medicines, their dosage form, and strength.
4. Ensure all fields are clearly separated and properly formatted.
7: Output Format: List of medicines with columns for:
* Name
* Dosage Form
» Strength
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