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Abstract

Power consumption plays a crucial role in on-
device streaming speech recognition, signifi-
cantly influencing the user experience. This
study explores how the configuration of weight
parameters in speech recognition models af-
fects their overall energy efficiency. We found
that the influence of these parameters on power
consumption varies depending on factors such
as invocation frequency and memory allocation.
Leveraging these insights, we propose design
principles that enhance on-device speech recog-
nition models by reducing power consumption
with minimal impact on accuracy. Our ap-
proach, which adjusts model components based
on their specific energy sensitivities, achieves
up to 47% lower energy usage while preserv-
ing comparable model accuracy and improv-
ing real-time performance compared to leading
methods.

1 Introduction

Streaming automatic speech recognition (streaming
ASR) enables real-time transcription of speech to
text with latency typically under 500 milliseconds,
supporting applications such as interface naviga-
tion, voice commands, real-time communication,
and accessibility on mobile and wearable devices.
However, high power consumption poses a signifi-
cant challenge, limiting usability by requiring fre-
quent recharges. Improving the energy efficiency
of on-device streaming ASR is therefore essential
for enhancing user experience.

We focus on on-device streaming ASR models,
particularly the Neural Transducer (Graves, 2012),
which combines an Encoder for acoustic modeling,
a Predictor for language modeling, and a Joiner
to integrate their outputs (see Figure 1). Widely
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regarded as the standard for on-device streaming
ASR (Graves et al., 2013; He et al., 2019; Li et al.,
2021), the Neural Transducer excels in balancing
computational efficiency and accuracy. We train
and evaluate over 180 Neural Transducer models1,
exploring architectures including Emformer (Shi
et al., 2021) and Conformer (Gulati et al., 2020)
while varying component sizes. This extensive
study reveals how the components impact accuracy,
real-time factor (RTF),2 and power consumption.

Our analysis reveals several key findings: (1) En-
ergy usage in streaming ASR models is driven by
memory traffic for loading weights, which depends
on the invocation frequency of components and
their memory hierarchy placement. (2) Invoca-
tion frequencies vary widely, with the Joiner being
called far more often than the Predictor, and the Pre-
dictor more than the Encoder. Despite comprising
only 5–9% of the model’s size, the Joiner accounts
for 48–73% of its power consumption. (3) We
identify an exponential relationship between model
accuracy and encoder size, suggesting new direc-
tions for streaming ASR research.

Building on these insights, we propose a targeted
compression strategy to optimize energy efficiency
with minimal accuracy loss. This approach evalu-
ates power and accuracy sensitivity for each com-
ponent, prioritizing compression of components
with higher power sensitivity and lower accuracy
sensitivity. Specifically, we focus on compress-
ing the Joiner first, followed by the Predictor and
Encoder, and aim to store the Joiner’s weights in
energy-efficient local memory. Experiments on
LibriSpeech (Panayotov et al., 2015) and Public
Video datasets show our method reduces energy
usage by up to 47% and lowers RTF by up to 29%,
while maintaining comparable accuracy to state-
of-the-art compression strategies. Unlike previous

1Traning each model requires 640-960 V100 GPU hours.
2RTF is the ratio of inference time to the speech segment

duration, with lower values indicating faster processing.
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approaches, our method effectively leverages the
diverse runtime characteristics of ASR components,
showcasing its superior efficiency.

This paper makes the following contributions:

• Power consumption analysis: We reveal that
ASR component energy usage depends not
only on model size but also on invocation fre-
quency and memory placement. This chal-
lenges the prevailing belief that larger compo-
nents inherently consume more energy, em-
phasizing the role of operational dynamics
and memory management.

• Energy-efficient design: We propose design
guidelines that reduce energy consumption
by up to 47% and RTF by up to 29% while
maintaining comparable model accuracy to
state-of-the-art methods.

• Accuracy-size relationship: We uncover an
exponential relationship between model accu-
racy and encoder size, showing diminishing
gains with larger encoders and advocating for
more efficient use of computational and mem-
ory resources in on-device streaming ASR.

An earlier version of this paper was released as
a preprint on arXiv (Li et al., 2024b).

2 Background

2.1 On-Device Streaming ASR
The Neural Transducer, introduced in (Graves,
2012), is the state-of-the-art solution for on-device
streaming speech recognition (Graves et al., 2013;
He et al., 2019; Li et al., 2021). It aligns au-
dio and text (Prabhavalkar et al., 2024) by in-
tegrating a compact language model and acous-
tic model within a single framework, making it
ideal for resource-constrained devices due to its
reduced memory footprint (Shangguan et al., 2019;
Venkatesh et al., 2021). With sub-500 millisec-
ond latency, it meets the demands of streaming
applications, and it is widely adopted by leading
companies for on-device ASR (Li et al., 2024a; Le
et al., 2023; Wang et al., 2023; Radfar et al., 2022).

The architecture comprises three components:
an Encoder, a Predictor, and a Joiner (Figure 1).
The Encoder processes chunks of audio (C1, ...,
Ct), each consisting of frames (xt,1, ..., xt,n) with
80-dimensional log Mel-filterbank features derived
from a 25 ms sliding window with a 10 ms step.
The Encoder maps frames to embeddings (enct,j).
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Figure 1: A schematic representation for the
Transformer-based Neural Transducer.

The Predictor uses previously predicted tokens (y1,
..., yu−1) to forecast the embedding of the next
token (predu). The Joiner combines the embed-
dings from the Encoder and Predictor, processes
them through a feedforward network, and applies
a softmax to generate the probability distribution
over sentence-piece targets and a "blank" token
indicating the end of a frame’s transcription.

Recent studies (Shi et al., 2021; Moritz et al.,
2020; Dong et al., 2018; Zhang et al., 2020; Yeh
et al., 2019; Gulati et al., 2020; Wang et al.,
2020; Karita et al., 2019) show a preference
for Transformer-based Encoders in Neural Trans-
ducers. We implement the Encoder using Em-
former (Shi et al., 2021) and Conformer (Gulati
et al., 2020), two Transformer variants optimized
for streaming. These designs enable chunk-based
frame processing, reducing Encoder invocation
frequency compared to the Predictor and Joiner,
which process frames individually. The Predictor
is invoked per meaningful output token, while the
Joiner operates for both meaningful tokens and fre-
quent "blank" tokens. This results in a hierarchy
of invocation frequency: the Joiner is used most,
followed by the Predictor, and then the Encoder.

2.2 Mobile and Wearable Devices

As shown in Figure 2, mobile and wearable devices
feature processors such as mobile CPUs, GPUs,
and hardware accelerators, all optimized for energy
efficiency. For example, a neural network accel-

CPU GPU Accelerator

Local Memory Off-Chip Memory

Figure 2: Architecture of mobile and wearable devices.
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(a) Compressing Encoder
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(b) Compressing Predictor
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(c) Compressing Joiner

Figure 3: Models trained on LibriSpeech: Model power consumption with compressing an individual component
(Encoder, Predictor, or Joiner) while keeping the sizes of the other two components constant.

Encoder Predictor Joiner
Size (M) 60.70 8.50 4.00
Compute Power (mW) 0.80 0.03 0.19
Memory Power (mW) 47.78 12.33 57.13
Invocation Frequency (Hz) 6.25 11.53 113.50

Table 1: A typical model trained on LibriSpeech.

erator highlighted by (Lee et al., 2018) achieves
5 GOPS/mW (INT8), consuming just 1 mW for 5
billion INT8 operations per second. These proces-
sors interact with two memory types: local mem-
ory (e.g., SRAM, eDRAM, on-chip DRAM) and
off-chip memory (e.g., DRAM). Local memory of-
fers faster, energy-efficient access, with 64-byte
read/write operations taking 0.5–20 ns and consum-
ing 1.1–1.5 pJ/byte (Li et al., 2019). In contrast,
off-chip memory is slower and less efficient, with
64-byte operations taking 50–70 ns and using about
120 pJ/byte (Li et al., 2019). This stark energy effi-
ciency gap makes memory operations a dominant
energy drain in on-device streaming ASR.

In our study, we ran streaming ASR models on
a Google Pixel-5 smartphone, measuring RTF and
workload statistics including the number of opera-
tions and component invocations. These workload
metrics remain consistent across device platforms.
Therefore, the power analysis derived from these
metrics applies broadly to other mobile and wear-
able devices. We modeled ASR power consump-
tion using established methodologies (Li et al.,
2024a; Micron, 2006; Li et al., 2017; Lee et al.,
2009), leveraging computing and memory power
parameters from authoritative literature in the cir-
cuits community (Lee et al., 2018; Li et al., 2019).
Our setup includes a hardware accelerator, 2 MB of
local memory (1.5 MB for weights and 0.5 MB for
activations), and 8 GB of off-chip memory, with
local memory treated as a scratchpad for flexible

allocation. This setup does not represent a specific
commercial hardware platform or product; rather,
it serves as a general model that is broadly repre-
sentative of most mobile and wearable devices.

3 Power and Accuracy Analysis of
On-Device Streaming ASR

In this section, we use Adam-pruning (Yang et al.,
2022), a state-of-the-art weight pruning technique
for speech recognition,3 to adjust the sizes of the
Encoder, Predictor, and Joiner in ASR models.
This generates ASR models of varying sizes, en-
abling analysis of their power consumption and
accuracy, yielding key insights.

3.1 Power Analysis

Table 1 summarizes the characteristics of a typical
on-device streaming ASR model trained on Lib-
riSpeech (Panayotov et al., 2015), including size,
component invocation frequency, computing power,
and memory power. The data reveals that comput-
ing power accounts for less than 1% of total power,
with memory power dominating due to frequent
weight loading. Although the Encoder holds over
83% of the weights, the Joiner, invoked 18 times
more often, generates 1.2 times more memory traf-
fic and consumes more power. This challenges
the prevailing belief that larger components con-
sume more energy, highlighting the importance of
operational dynamics in energy optimization.

Figure 3 examines power consumption by com-
pressing individual components (Encoder, Predic-
tor, or Joiner) while keeping the others unchanged.
The results show that power closely tracks memory
traffic, which depends on component size and invo-
cation frequency. Notably, compressing the Joiner

3Adam-pruning is detailed in Appendix A.
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below 1.2M parameters does not reduce power fur-
ther, as its weights then fit into energy-efficient lo-
cal memory, minimizing data-loading energy costs.
This underscores the strategic advantage of plac-
ing the most energy-intensive components in local
memory to optimize energy efficiency.

We also investigate the effects of input stride and
chunk size—two key hyperparameters of streaming
ASR—on the model’s power consumption, reveal-
ing some interesting observations. Detailed results
are provided in Appendix D.

3.2 Accuracy Analysis

Figures 4 and 5 show the word error rates for com-
pressed models on LibriSpeech’s test-clean and
test-other sets. Reducing component sizes gener-
ally increases word error rates.4 Among the com-
ponents, the Predictor is least sensitive to compres-
sion, indicating that using a smaller Predictor or
omitting it entirely has minimal impact on accuracy.
In contrast, the Encoder and Joiner are more sensi-
tive to compression, with encoder size showing an
exponential relationship to word error rate:

Word Error Rate = exp (a · encoder_size + b) + c (1)

Fitting this function yielded parameters a, b, and
c with adjusted R-squared values of 0.9832 (test-
clean) and 0.9854 (test-other), confirming the
model’s strong fit. Similar trends were observed in
other datasets (Appendix C). This exponential re-
lationship suggests diminishing returns with larger
encoder sizes, encouraging the community to re-
think encoder design in ASR systems.

4 ASR Energy Efficiency Optimization

We aim to minimize the power consumption of
streaming ASR models with minimal performance
impact by evaluating the power and accuracy sen-
sitivities of the Encoder, Predictor, and Joiner com-
ponents. These sensitivities quantify the change in
power consumption and performance, respectively,
for a unit reduction in component size:

Power Sensitivitycomponent :=
∆Power

∆Sizecomponent

Accuracy Sensitivitycomponent :=
∆Accuracy

∆Sizecomponent

(2)

4Variability in Predictor and Joiner compression curves
stems from randomness in training and pruning.

Here, component refers to the Encoder, Predictor,
or Joiner, and accuracy is inversely related to the
word error rate.

The power consumption of on-device streaming
ASR is primarily due to loading model weights
from memory. Power sensitivity is therefore ex-
pressed as:

Power Sensitivitycomponent

=
∆(size × invocation frequency × memory energy unit)

∆size
= invocation frequency × memory energy unit

(3)
with the memory energy unit representing the en-
ergy required to load a byte from memory, we adopt
1.5pJ/byte for local memory and 120pJ/byte (Li
et al., 2019) for off-chip memory. Component size
determines whether weights fit in energy-efficient
local memory or power-hungry off-chip memory,
influencing power sensitivity.

Accuracy sensitivity is calculated by progres-
sively reducing a component’s size, observing the
effect on model accuracy, and fitting an exponential
function to describe the relationship. The derivative
of this function quantifies accuracy sensitivity.

Finally, we use the power-to-accuracy sensitivity
ratio to prioritize compression decisions:

power-to-accuracy sensitivity ratio =
power sensitivity

accuracy sensitivity
(4)

A higher ratio identifies components where com-
pression provides the greatest power savings for
minimal accuracy loss, helping determine the opti-
mal compression order for on-device ASR models.

Our compression algorithm starts with a fully un-
compressed model and iteratively reduces its size
to achieve a user-defined power reduction target
(e.g., "reduce power by 60 mW"). At each step,
we calculate the power-to-accuracy sensitivity ratio
for each component and compress the one with the
highest ratio. In Neural Transducer models, the
Joiner typically starts with the highest ratio due
to its high power sensitivity from frequent invoca-
tion. Once its size is reduced enough to fit into
energy-efficient local memory, its ratio decreases,
and the Predictor becomes the next priority. The
Predictor is compressed until it reaches its user-
defined minimum size, beyond which further com-
pression would cause significant accuracy loss due
to the exponential relationship between accuracy
and size. The Encoder is then compressed similarly,
followed by additional compression of the Joiner if
more power reduction is required.
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Figure 4: Models trained on LibriSpeech: Word error rate on Test-Clean with compressing an individual component
(Encoder, Predictor, or Joiner) while keeping the sizes of the other two components constant.
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Figure 5: Models trained on LibriSpeech: Word error rate on Test-Other with compressing an individual component
(Encoder, Predictor, or Joiner) while keeping the sizes of the other two components constant.

The compression order is thus: Joiner → Pre-
dictor → Encoder → Joiner. Our algorithm deter-
mines only the compression order between compo-
nents, delegating the pruning of weight parameters
within a selected component to existing compres-
sion methods. This makes our approach compatible
with any existing compression algorithm.

5 Experiments

5.1 Datasets and Models

We conduct experiments on two datasets: Lib-
riSpeech and Public Video (details in Appendix B).

LibriSpeech, from audiobooks, contains 960
hours of training data and two evaluation sets: Test-
Clean, with easily transcribed recordings, and Test-
Other, featuring recordings with accents or poor
audio quality. Public Video, an in-house dataset
of de-identified audio from publicly available En-
glish videos (with consent), includes 148.9K hours
of training data and two evaluation sets: Dictation
(5.8K hours of open-domain conversations) and
Messaging (13.4K hours of audio messages).

For LibriSpeech, we use Emformer models (Shi
et al., 2021) with a 40ms input stride and 160ms
chunk size. For Public Video, we use Conformer
models (Gulati et al., 2020) with a 60ms input stride
and 300ms chunk size.

5.2 Baselines and Evaluation Methodologies

Our method identifies the most critical model com-
ponent for compression to maximize energy sav-
ings. The specific compression technique applied
to the identified component is beyond our scope.

We compare two scenarios: a uniform applica-
tion of a baseline compression technique across
the entire model ("baseline") and an enhanced ver-
sion where the same technique is guided by our
approach to strategically prioritize components
("baseline + our approach"). This comparison
demonstrates the power savings achieved by our
method and highlights the benefits of strategic com-
ponent prioritization.

Our experiments use Adam-prune (Yang et al.,
2022), the state-of-the-art compression technique
for speech recognition models. While we employ
the strongest available baseline, the choice or num-
ber of baselines is not critical, because our primary
focus is on demonstrating consistent power sav-
ings achieved by integrating our approach with the
baseline, irrespective of the baseline’s inherent per-
formance. Stronger baselines yield higher accuracy,
and weaker baselines result in lower accuracy; how-
ever, the relative power savings for a given model
size remain consistent. Therefore, the baseline se-
lection does not affect our objective of highlighting
power efficiency enhancement.
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Figure 6: Models trained on LibriSpeech under different
sizes and compression schemes.

5.3 Results on LibriSpeech
Figure 6 (a) shows the power consumption across
different model sizes. Our method achieves sig-
nificant power savings compared to the baseline
for models between 30–76 MB. For models under
30 MB, further compression results in minimal-size
components, reducing differences between meth-
ods and leading to similar power consumption.

Figure 6 (b) illustrates the Real-Time Factor
(RTF). Interestingly, while focusing on energy effi-
ciency, our method improves RTF, indicating faster
inference. This is due to prioritizing compression
of heavily used components, which more signifi-
cantly reduces overall inference time.

Figures 6 (c) and (d) show that word error rates
remain consistent across model sizes, demonstrat-
ing that our method preserves baseline accuracy.
Overall, Figures 6 (a)–(d) highlight that our ap-
proach reduces energy consumption by up to 47%
and RTF by 29% while maintaining accuracy com-
parable to the baseline.

5.4 Results on Public Video
Figures 7 (a)–(d) show the power consumption,
RTF, and accuracy for models of various sizes
trained on the Public Video dataset. Our method
reduces energy consumption by up to 38% and RTF
by 15% while preserving accuracy.

5.5 Discussion
As hardware technology advances, on-chip local
memory in mobile and wearable devices continues
to expand, allowing an increasing portion of Neu-
ral Transducer model weights to be stored locally.
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Figure 7: Models trained on Public Video under differ-
ent sizes and compression schemes.

This shift enhances energy efficiency by leveraging
the high energy efficiency of the on-chip memory.
Simultaneously, these advancements may enable
the deployment of more complex speech model
architectures—previously infeasible for on-device
or streaming scenarios due to model size and hard-
ware constraints—as viable on-device streaming so-
lutions. Consequently, we believe that power con-
sumption will remain an important bottleneck in on-
device streaming speech recognition. When new ar-
chitectures incorporate multiple components with
varying invocation frequencies, each component
exhibits distinct power sensitivities. Our proposed
energy efficiency optimization guidelines, which
account for differences in power-to-accuracy sensi-
tivity across model components, remain highly rel-
evant in such cases. By adopting these guidelines,
power consumption can be significantly reduced,
fostering broader development, applicability, and
deployment of on-device streaming speech recog-
nition technology.

6 Related Work

This study is the first to analyze the operational
dynamics and memory placement of model com-
ponents to enhance energy efficiency in on-device
streaming ASR. The most relevant prior works fo-
cus on ASR compression and power optimization.

6.1 On-Device ASR Compression

Ghodsi et al. (2020) demonstrated that removing
recurrent layers from the Predictor in Neural Trans-
ducer models does not degrade word-error rates,
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enabling stateless operation and potential compres-
sion. Botros et al. (2021) proposed parameter shar-
ing between the Predictor and Joiner embedding
matrices, introducing a weighted-average embed-
ding to capture Predictor token history and reduce
footprint. Shangguan et al. (2019) reduced Predic-
tor size by replacing LSTM units with sparsified
Simple Recurrent Units (SRU) and adapted En-
coders with sparsified CIFG LSTMs. Yang et al.
(2022) applied Supernet-based neural architecture
search to optimize layer sparsity, balancing accu-
racy and size. While these works focused on reduc-
ing model size or RTF, they did not address power
consumption, which is the central goal of our study.

6.2 On-Device ASR Power Optimization

Efforts to optimize Neural Transducer power con-
sumption often involve modifying cell architec-
tures. Li et al. (2024a) introduced folding attention,
reducing model size and power consumption by
24% and 23%, respectively, without sacrificing ac-
curacy. Venkatesh et al. (2021) streamlined LSTM
cells and designed a deeper, narrower model, re-
ducing off-chip memory access by 4.5x and energy
costs by 2x, with minimal accuracy loss. Our work
differs by examining the runtime behaviors of Neu-
ral Transducer components to guide compression
strategies specifically toward energy optimization.

7 Conclusion
Power consumption is a critical challenge for on-
device streaming ASR, impacting device recharge
frequency and user experience. This study ana-
lyzed power usage in ASR models, revealing its
dependence on model size, invocation frequency,
and memory placement. Notably, the Joiner con-
sumes more power than the larger Encoder and
Predictor due to its higher invocation frequency
and off-chip memory usage. We also identified an
exponential relationship between word error rate
and encoder size.

Based on these insights, we developed guide-
lines for model compression to enhance energy
efficiency. Applying these guidelines to the Lib-
riSpeech and Public Video datasets achieved up to
47% energy savings and a 29% reduction in RTF,
maintaining accuracy comparable to state-of-the-
art methods. These findings highlight the potential
of targeted optimizations to advance sustainable
and energy-efficient on-device streaming speech
recognition.
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A Details of Adam-Pruning Algorithm

Adam-pruning is an iterative method designed to
prune a model or its components. Each pruning
step is executed over N training epochs. During
each step, Adam-pruning evaluates the square of
the gradient (E

[(
∂l
∂w

)2]
) for every non-sparse pa-

rameter w in the model. A larger square of the
gradient suggests that pruning the parameter would
result in a substantial change in the model’s perfor-
mance. Based on this, Adam-pruning prunes only
the parameters with the top K smallest gradient
squares at the end of each pruning step. After M
such steps, Adam-pruning reduces the model to a
desired level of sparsity.

B Details of the Datasets

B.1 LibriSpeech
LibriSpeech (Panayotov et al., 2015), is a promi-
nent corpus extensively utilized in speech recogni-
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tion research. This corpus features 960 hours of
English speech, sourced from audiobooks available
through the LibriVox project, which are in the pub-
lic domain. It includes two main evaluation sets
tailored for different testing scenarios:

• Test-Clean: This subset consists of high-
quality, clean audio recordings. It provides an
ideal condition for benchmarking the baseline
performance of speech recognition systems
due to its clarity and ease of transcription.

• Test-Others: This subset encompasses record-
ings that present a variety of challenges, such
as accents, background noises, and lower
recording qualities. It serves as a stringent
testing environment to evaluate the robustness
and adaptability of speech recognition tech-
nologies under less-than-ideal conditions.

B.2 Public Video
The Public Video dataset, an in-house collection, is
derived from 29.8K hours of audio extracted from
English public videos. This dataset has been ethi-
cally curated with the consent of video owners and
further processed to ensure privacy and enhance
quality. We de-identify the audio, aggregate it, re-
move personally identifiable information (PII), and
add simulated reverberation. We further augment
the audio with sampled additive background noise
extracted from publicly available videos. Speed
perturbations (Ko et al., 2015) are applied to create
two additional copies of the training dataset at 0.9
and 1.1 times the original speed. We apply distor-
tion and additive noise to the speed-perturbed data.
These processing steps eventually result in a total
of 148.9K hours of training data. For evaluating
the performance of models trained on this dataset,
we use the following two test sets:

• Dictation: This subset consists of 5.8K hours
of human-transcribed, anonymized utterances,
sourced from a vendor. Participants were
asked to engage in unscripted open-domain
dictation conversations, recorded across vari-
ous signal-to-noise ratios (SNR), providing a
diverse assessment environment.

• Messaging: This subset comprises 13.4K
hours of utterances, sourced from a vendor. It
features audio messages recorded by individu-
als following scripted scenarios intended for
an unspecified recipient. These utterances are
generally shorter and incorporate more noise

than those in the dictation subset, offering a
different dimension to evaluate ASR systems.

C Accuracy of ASR Models Trained on
Public Video

We applied compression to the Encoder of the ASR
model trained using the Public Video dataset. The
impact of this compression on word error rates
across two evaluation sets, Dictation and Messag-
ing, is depicted in Figures 8 (a) and (b). To analyze
the data, we employed the function outlined in
Equation 1, which proved to be an excellent fit; the
predictions derived from this function align closely
with the observed data. Quantitatively speaking,
the adjusted R-squared values—0.9760 for Dicta-
tion and 0.9851 for Messaging—underscore the
exponential relationship between word error rate
and encoder size, reaffirming this pattern’s consis-
tency across different datasets.

0 10 20 30 40
Encoder Size (M)

16

18

20

22

24

26

W
or

d 
E

rr
or

 R
at

e 
(%

)

(a) Dictation

0 10 20 30 40
Encoder Size (M)

4

5

6

7

8

9

10

W
or

d 
E

rr
or

 R
at

e 
(%

)

(b) Messaging

Figure 8: Models trained on the Public Video dataset:
Word error rate with compressing Encoder while keep-
ing the size of Predictor and Joiner.

D Impact of Input Stride and Chunk Size
on Model Accuracy and Power Usage

Input stride and chunk size are two essential hy-
perparameters for on-device streaming ASR. Input
stride defines the time window over which input
frames are combined into an aggregated frame that
is then fed into the model. Chunk size refers to the
time duration over which these aggregated frames
are processed together as a batch by the model. In
this section, we examine how varying these param-
eters affects the performance and power consump-
tion of the Neural Transducer.

We first vary the input stride from 20 millisec-
onds to 40 milliseconds and evaluate the accuracy
and power consumption of four models trained on
LibriSpeech: a dense model, a model with 80%
sparsity in its encoder, a model with 80% sparsity
in its predictor, and a model with 80% sparsity in its
joiner. The results are provided in Tables 2 and 3.
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Word Error Rate
(%) Input Stride Dense Model

80% Sparse
Encoder

80% Sparse
Predictor

80% Sparse
Joiner

Test-Clean 20ms 3.61 4.72 3.61 4.17

40ms 3.56 4.86 3.60 3.64

Test-Other 20ms 9.13 11.90 9.13 9.58

40ms 9.06 12.08 9.14 9.29

Table 2: Impact of input stride on the model accuracy trained on LibriSpeech.

Model Power
Consumption (mW) Input Stride Dense Model

80% Sparse
Encoder

80% Sparse
Predictor

80% Sparse
Joiner

20ms 131 104 123 62

40ms 118 92 110 62

Table 3: Impact of input stride on the power consumption of models trained on LibriSpeech.

Word Error Rate
(%) Chunk Size Dense Model

80% Sparse
Encoder

80% Sparse
Predictor

80% Sparse
Joiner

Test-Clean 160ms 3.56 4.86 3.60 3.64

320ms 3.50 4.60 3.50 3.52

Test-Other 160ms 9.06 12.08 9.14 9.29

320ms 8.82 11.75 8.83 8.90

Table 4: Impact of chunk size on the model accuracy trained on LibriSpeech.

Model Power
Consumption (mW) Chunk Size Dense Model

80% Sparse
Encoder

80% Sparse
Predictor

80% Sparse
Joiner

160ms 118 92 110 62

320ms 94 86 87 38

Table 5: Impact of chunk size on the power consumption of models trained on LibriSpeech.
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Our findings are as follows:

• Observation 1: A smaller stride can have both
positive and negative effects on model perfor-
mance.

• Observation 2: A smaller stride generally in-
creases power consumption.

Regarding the first observation, input stride is
used to enhance training and inference efficiency
by reducing sequence length. While a smaller
stride better preserves local acoustic features and
improves performance, it also introduces risks such
as greater sensitivity to noise and loss of broader
contextual information. A stride of 4–6 is com-
monly chosen to balance accuracy and efficiency.

As for the second observation, in streaming ASR,
a smaller stride increases the number of segments,
resulting in more frequent decoding of blank tokens
and thus more frequent invocation of the joiner,
which raises power consumption. However, if the
joiner is compressed to fit within the SRAM, this
increased invocation has minimal impact on power
usage, due to the high energy efficiency of SRAM.

We also vary the chunk size from 160ms to
320ms and measure the accuracy and power con-
sumption of four models: a dense model, a model
with 80% sparsity in its encoder, a model with 80%
sparsity in its predictor, and a model with 80% spar-
sity in its joiner. The results are provided in Tables
4 and 5. Our observations are as follows:

• Observation 3: Increasing the chunk size gen-
erally improves model accuracy.

• Observation 4: Larger chunk sizes reduce
model power consumption.

For the third observation, larger chunk sizes en-
able the encoder to capture relationships between
segments more effectively, improving performance.
However, smaller chunk sizes have the advantage
of lowering decoding latency.

As for the fourth observation, in streaming ASR,
a larger chunk size decreases the frequency at
which the encoder is invoked, thereby reducing
memory power usage and overall power usage.
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