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Abstract

Self-attention has revolutionized natural lan-
guage processing by capturing long-range de-
pendencies and improving context understand-
ing. However, it comes with high compu-
tational costs and struggles with sequential
data’s inherent directionality. This paper in-
vestigates and presents a simplified approach
called "shared weight self-attention," where a
single weight matrix is used for Keys, Queries,
and Values instead of separate matrices for each.
This approach cuts training parameters by more
than half and significantly reduces training time.
Our method not only improves efficiency but
also achieves strong performance on tasks from
the GLUE benchmark, even outperforming the
standard BERT baseline in handling noisy and
out-of-domain data. Experimental results show
a 66.53% reduction in parameter size within the
attention block and competitive accuracy im-
provements of 3.55% and 0.89% over symmet-
ric and pairwise attention-based BERT models,
respectively.

1 Introduction

Natural language processing (NLP) has seen re-
markable progress with the advent of transformer-
based architectures (Gillioz et al., 2020; Kowsher
et al., 2022). These models have revolutionized
tasks such as machine translation (Lopez, 2008),
language modeling (Jozefowicz et al., 2016), and
question answering (Allam and Haggag, 2012;
Kowsher et al., 2024), achieving better accuracy
and performance. Central to the success of these
models is the self-attention mechanism (Vaswani
et al., 2017; Shaw et al., 2018), which allows them
to weigh the importance of different words in a
sentence dynamically.

Self-Attention’s main challenges include com-
putational inefficiency with quadratic complexity,
difficulty in handling long-term dependencies ef-
fectively, and the lack of inherent directionality
in capturing sequential relationships. While the

attention mechanism itself has been extensively
investigated (Bielik and Vechev, 2020; Choroman-
ski et al., 2020; Zhuang et al., 2023; Phan et al.,
2021), and improvements in computational com-
plexity have been proposed (Kitaev et al., 2020;
Zhu et al., 2020; Xiao et al., 2022), the primary
method retains the same architecture in using sep-
arate trainable weight matrices to compute Keys,
Queries, and Values, which leads to a high parame-
ter count and significant complexity for computing
attention. We would like to ask: “Do we need the
three weight matrix representations of (Key, Query,
Value) for learning self-attention scores?"

To address this question, we revisit the concept
of self-attention and propose a novel shared weight
self-attention mechanism that employs a single
weight matrix for all three representations to re-
duce the parameter size and the time and mem-
ory complexity. Our shared weight matrix enables
the model to efficiently capture the essential fea-
tures needed for understanding semantics without
the overhead of managing multiple matrices. The
shared matrix is a regularization to capture the
common weights learned from each representation.
This simplification reduces the model’s computa-
tional footprint, retains the ability to focus on rel-
evant parts of the input data effectively, and en-
hances prediction generalization for noisy input
and out-of-domain test data.

In this work, we explore alternative compati-
bility functions within the self-attention mecha-
nism of Transformer-based encoder models, partic-
ularly BERT (Devlin et al., 2018). By utilizing a
shared representation for (Key, Query, Value), our
approach achieves substantial improvements in effi-
ciency while maintaining the model’s performance
without any compromise on accuracy.

Our contributions can be summarized as follows:

* We introduce a new shared self-attention
mechanism that employs a single weight ma-
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trix, W for (Key, Query, Value).

» Shared weight shows a 66.53% reduction in
self-attention block parameters and 12.94%
reduction in total BERT model parameters
while maintaining performance across various
downstream tasks.

2 Shared Self-Attention

2.1 Preliminaries

Consider an input matrix X € R™*?, where n is
the sequence length and d is the dimensionality
of the input space. The self-attention mechanism
traditionally maps this input into three distinct rep-
resentations: keys K, queries (), and values V,
using separate linear transformations with weight
matrices Wy, W, and W, respectively. We pro-
pose a unified representation using a single matrix
W, from which these mappings are derived, lead-
ing to a reduction in the number of parameters and
accelerating the self-attention layer.

2.2 Self-Attention

In traditional self-attention, distinct linear transfor-
mations are employed to generate keys K, queries
@, and values V' from the input X. This process
can be mathematically expressed as:

K=XW, Q=XW, V=XW,,

where W, W, W, € R4 are learnable weight
matrices corresponding to keys, queries, and values
respectively. These matrices allow the model to
adaptively focus on different parts of the input by
calculating attention weights through the softmax-

normalized dot product of queries and keys:

T
Qfg )V, (1)

where d is the dimension of the model, which aids
in stabilizing the learning process.

Attention(Q, K, V') = softmax (

2.3 Shared Weight Self-Attention

We define a shared transformation function S :
R? — R? parameterized by a weight matrix W,
containing learnable parameters:

S=8(X)=XW, W,eR¥

This function S is designed to capture the core
semantic features of the input in a single compact
representation S.

To derive the keys, queries, and values vectors
from the unified representation S, we introduce
three separate diagonal transformation matrices
Dy, Dy, Dy, each in R¥9. These diagonal ma-
trices act as element-wise scaling factors that adapt
the shared representation S for specific roles in the
attention mechanism:

Q= SD, = XW.D,
K = 8Dj, = XW,Dy
V = 8D, = XW,D,

This can be interpreted as having a special factor-
ization of the weight matrices W, Wy, W, used in
standard attention as W, = WDy, W), = W Dy,
and W, = W D,,, where W is shared and the di-
agonal Dy, Dy, D, reduce the parameter count and
allow for efficient and differentiated modulation of
the base representation S. Now, we can calculate
the attention score by following Equation 1.

2.4 Experiments

To evaluate the shared weight self-attention, we
first pre-train the BERT model using shared weight
self-attention. Subsequently, we assess the pre-
trained BERT model across a range of NLP tasks,
including the General Language Understanding
Evaluation (GLUE) Benchmark (Wang et al., 2018)
and question-answering datasets such as SQuUAD
v1.1 (Rajpurkar et al., 2016) and SQuAD v1.2 (Ra-
jpurkar et al., 2018). For our baseline compari-
son, we use the standard self-attention-based BERT
model (Devlin et al., 2018), as well as the sym-
metric and pairwise-based self-attention in BERT
models from Courtois et al. (2024).

2.5 Pre-training Shared Attention Based
BERT

Dataset: To pre-train the shared weight attention-
based BERT model, we utilized the same corpora
as the standard BERT-base-uncased model, specifi-
cally the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words), re-
sulting in a total of approximately 3.2 billion to-
kens.

Pre-training Setup: We adopt the configuration
settings of the standard BERT model (Devlin et al.,
2018), which includes 12 layers, 768 hidden di-
mensions, and 12 attention heads. The maximum
sequence length is set at 512 tokens. Regarding hy-
perparameters, we maintained the hidden dropout
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Figure 1: Comparison of traditional self-attention (left) and shared weight self-attention (right).

and attention dropout rates at 0.1. The pre-training
is conducted over 20 epochs.

We employ four H100 GPUs for computational
resources, configuring each with a batch size of 132.
The Adam optimizer (Kingma and Ba, 2014) was
used, incorporating weight decay with 8; = 0.9
and B2 = 0.999. Masked language modeling is
performed using a mask ratio of 0.15.

Pre-training Results Figure 2 presents the train-
ing and validation loss curves during the pre-
training of our shared self-attention based BERT
model. Initially, the training and validation losses
were high, starting at approximately 7.0. This ini-
tial high loss is typical of models learning to adjust
weights from random initialization. As training
progresses, the loss demonstrates a steady decline.
After approximately 200, 000 steps, both the train-
ing and validation losses are significantly reduced,
stabilizing at around 1.9.

2.6 GLUE Benchmark

We evaluate our model on the GLUE Benchmarks
(Wang et al., 2019) (Dataset description and hyper-
parameters in the Appendix A.2 and A.4).

Table 1 provides a comparison of the perfor-
mance of various models, including standard, sym-
metric, pairwise, and shared, in the GLUE bench-
mark tasks. We observe that the shared model con-
sistently demonstrates superior or competitive per-
formance compared to the other models across mul-
tiple tasks. Specifically, the shared model achieves
approximately 0.87% higher accuracy than the

Training
8 — Validation

0 25 50 75 100 125 150 175 200
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Figure 2: Pretraining loss curves for the shared weight
self-attention mechanism. The plot shows the loss for
both training and validation sets over 200,000 steps.

standard self-attention model for MRPC, about
9.78% better performance than the symmetric self-
attention model for CoL A, and approximately 2.0%
improvement over the pairwise self-attention model
for the STS-B data set. Overall, the shared weight
self-attention model exhibits improvements of -
0.05% +3.55%, and +0.89% over the standard, sym-
metric, and pairwise models, respectively, in terms
of accuracy.

2.7 Question Answering

We utilize the SQuAD v1.1 (Rajpurkar et al., 2016)
and SQuAD v2.0 (Rajpurkar et al., 2018) datasets
to evaluate the performance of our shared weight
attention in the BERT model in answering ques-
tions.(Dataset description and hyperparameters in
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Model MRPC | CoLA | MNLI (im/mm) | QQP | RTE | STSB | QNLI | SST-2 | Average
Standard 87.27 | 52.64 81.66/82.07 88.86 | 59.42 | 88.19 | 88.76 | 90.92 79.97
Symmetric 78.36 | 49.22 78.66/79.05 87.70 | 53.43 | 84.47 | 86.90 | 89.56 76.37
Pairwise 87.83 | 5191 81.60/82.02 88.89 | 59.58 | 86.88 | 88.78 | 89.78 79.03
Shared Weight | 88.14 | 53.91 80.94/81.82 88.24 | 59.60 | 88.78 | 88.02 | 89.84 79.92

Table 1: Performance comparison of different models across various GLUE benchmark tasks. The bold values
indicate the best performance for each task. The evaluation metrics are accuracy for MRPC, MNLI, QQP, RTE,
QNLI, and SST-2; Matthews correlation for CoLA; and Pearson/Spearman correlation for STS-B.

Dataset SQuAD v1.1 | SQuAD v1.2 Average
Model EM F1 EM F1 EM F1
Standard (single) 82.18 90.01 | 79.35 83.65 | 80.10 81.47
Standard (single + TriviaQA) 83.46 92.43 | 81.06 86.79 | 82.26 89.61
Shared Weight (single) 81.53 89.50 | 78.87 83.10 | 80.20 86.30
Shared Weight (single + TriviaQA) | 83.19 91.97 | 80.16 85.78 | 81.68 88.88

Table 2: Comparison of EM and F1 scores on SQuAD vl1.1 and v1.2

the Appendix A.2 and A.4)

Table 2 shows the performance comparisons
on the question-answering datasets. For the
SQuAD vl.1 dataset, employing shared weight
self-attention results in a decrease of 0.65% in EM
and 0.51% in F1 score compared to the standard
self-attention. However, when fine-tuning on the
TriviaQA dataset (Joshi et al., 2017), we observe
slight decreases of 0.27% in EM and 0.46% in F1
score.

For the SQuAD v1.2 dataset, the use of shared
self-attention results in a decrease of 0.48% in EM
and 0.52% in F1 score compared to the standard
self-attention. However, fine-tuning with the Trivi-
aQA dataset leads to a decrease of 0.9% in EM and
1.01% in F1 score.

3 Ablation Study

Parameter Analysis: This study explores the effi-
ciency of using shared weights in the self-attention
mechanism. By implementing a shared transforma-
tion, S(X), along with separate diagonal matrices
Dy, Dy, and D, for queries, keys, and values, the
model requires fewer parameters, totaling (d?+3d).
This setup results in a 66.53% reduction in param-
eters compared to the traditional (3d?) needed by
the standard self-attention in BERT, as highlighted
in Table 3. Integrating this approach into the over-
all BERT},s. model reduces the total number of
parameters by 12.94%, detailed in Table 4. This
significant decrease in parameters enhances the
model’s computational efficiency without greatly
affecting performance.

Robustness Analysis: We test the robustness of
our shared weight self-attention mechanism against

traditional self-attention using the GLUE bench-
mark datasets (MNLI, QQP, SST-2). To simulate
noise, we compute the average Lo norm of the
input embeddings and introduce spherical Gaus-
sian noise with a standard deviation of 1, which
corresponds to approximately 0% to 40% of the
input embedding norm. The performance is sum-
marized in Table 5. The results show that the shared
weight self-attention model maintains higher accu-
racy under noisy conditions. For instance, on the
MNLI dataset, while the accuracy of the standard
model drops from 81.66% to 68.24% with increas-
ing noise, the shared model decreases less sharply,
from 80.94% to 75.19%. This pattern of greater
resilience is consistent across other datasets like
QQP and SST-2.

Training Time: We assess the efficiency of
shared weight self-attention compared to traditional
self-attention mechanisms across six NLP tasks:
CoLA, MNLI, MRPC, QNLI, RTE, and QQP in
Figure 3. Our findings indicate substantial im-
provements in processing times for each task. For
instance, in the CoLA task, shared weight self-
attention reduced processing time by 30%, from 53
to 37 seconds, increasing speed by approximately
43%. Similar enhancements are seen in other tasks:
MNLI’s time was reduced by 19%, MRPC by 12%,
QNLI by 11%, RTE by 18%, and QQP by 13%.

Each task is executed for one epoch with a batch
size of 16, highlighting the efficiency gains from
shared weight self-attention. These improvements
suggest the potential for significant cost savings
and enhanced productivity. Tests were performed
using an NVIDIA RTX A6000 GPU with 5S0GB of
VRAM.
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Function Expression Parameters
Standard QX)K(X)T-V(X) 3d?
Symmetric QX)Q(X)T-V(X) 2d?
Pairwise QX)) UQ(X)T - V(X) 242 + &
Shared Weight | (S(X)D,)(S(X)Dy)" - (S(X)D,) | d®+3d

Table 3: Comparison of parameter counts in different attention mechanisms. Here U is a matrix of pairwise factors,

m is the number of heads in the Transformer block.

Config Operator Parameters
BERT ), Standard 109,514,298
Symmetric 102,427,194 (6.47%)
Pairwise 103,017,018 (5.93%)
Shared Weight | 95,337,218 (12.94%)

Table 4: Parameter comparison for BERT configura-
tions.

HE Shared Weight Self-Attention

50.0 @ Standard Self-Attention

40.0
]
£ 30.0
20.0

10.0

COLA MNLI

MRPC QNLI QQP RTE
Tasks

Figure 3: Training Time Comparison Between shared
Weight and standard self-attention on GLUE tasks.
CoLA, MRPC, and QQP are recorded in seconds, and
Other tasks are presented in minutes.

Cross-Domain Performance: Table 6 illus-
trates the performance of NLP models under two
conditions: standard and shared weight, across four
different tasks—MNLI, QNLI, QQP, and MRPC.
The highest performance is typically observed
within the same domain (diagonal entries), demon-
strating that models are most effective on the data
they are trained on. The shared weight condition
generally enhances cross-domain performance, in-
dicating the utility of parameter sharing for gener-
alization across related tasks. For instance, MNLI
trained models show improved performance on
QNLI and MRPC in the shared Weight scenario.

Comparison of Self-Attention Mechanisms

Table 7 presents a comparative analysis of vari-
ous self-attention mechanisms, including standard,
symmetric, pairwise, partial QK sharing, and the
proposed full QKV sharing. Standard self-attention
employs three separate weight matrices, W, Wy,

and W, resulting in the highest parameter count
(3d?) and computational complexity. Symmetric
and partial QK sharing reduce parameters by shar-
ing query and key matrices, achieving a 33% re-
duction but compromising expressiveness. Pair-
wise attention enhances token interactions with an
additional matrix U, increasing complexity while
providing moderate efficiency gains. In contrast,
full QKV sharing employs a single weight matrix
W with diagonal scaling matrices Dy, Dy, and D,,,
reducing parameters by 66.67%, lowering computa-
tional overhead, and retaining expressiveness. This
approach also improves training speed by 15-20%,
enhances noise robustness, and simplifies imple-
mentation, making it a more efficient and effective
alternative to other self-attention variants.

4 Related Work

The introduction of self-attention in Transformer ar-
chitecture in 2017 by Vaswani et al. (2017) marked
a significant turning point by enabling models to
dynamically concentrate on relevant parts of input
sequences, building upon earlier work by Bahdanau
et al. (2014), who applied attention mechanisms
within recurrent neural networks (RNNs) for ma-
chine translation and thus improved translation ac-
curacy.

According to Luong et al. (2015), self-attention
mechanisms were enhanced to better model com-
plex data dependencies, which contributed to the
development of more advanced attention models.
Subsequently, Vaswani et al. (2017) delved deeper
into self-attention mechanisms, resulting in the cre-
ation of models like BERT (Devlin et al., 2018).
This model utilized bidirectional training of Trans-
formers to capture context from both directions in
a sequence, leading to state-of-the-art performance
across a range of NLP tasks.

Reviews conducted by Galassi et al. (2020) and
Niu et al. (2021) highlighted the significant role
of weighted dot-product attention in contemporary
models. Guo et al. (2022) assessed the versatility
of self-attention mechanisms in computer vision,
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Dataset MNLI QQr SST-2
Noise | Standard Shared Weight | Standard Shared Weight | Standard Shared Weight
0% 81.66 80.94 88.86 88.24 90.92 89.84
5% 80.02 80.85 88.10 88.14 89.34 89.03
10% 79.42 80.02 85.63 87.43 91.03 90.34
15% 78.53 80.11 84.23 87.00 88.56 89.43
20% 77.42 79.82 83.98 87.16 86.34 88.18
25% 74.53 78.42 81.32 85.32 85.14 88.81
30% 72.47 77.12 80.72 85.52 83.52 84.35
35% 70.34 76.94 77.70 84.63 80.48 83.19
40% 68.24 75.19 75.24 82.54 74.35 82.52

Table 5: Performance comparison of traditional and shared weight self-attention models under various noise levels

on MNLI, QQP, and SST-2 datasets.

Domain MNLI QNLI QQP MRPC
Standard Shared Weight | Standard Shared Weight | Standard Shared Weight | Standard Shared Weight
MNLI 81.66 80.94 72.24 74.30 49.03 50.21 60.12 69.03
QNL 77.99 78.7 86.76 89.02 72.31 51.62 53.87 50.29
QQpP 59.21 58.42 52.71 54.92 88.86 88.89 62.03 67.21
MRPC 62.83 62.88 59.21 52.32 68.30 78.76 82.27 88.14

Table 6: Comparison of model performance on MNLI, QNLI, QQP, and MRPC tasks under standard and shared

weight conditions, highlighting cross-task adaptability.

Feature Standard Symmetric Pairwise Partial QK Sharing | Full QKV Sharing
Weight Matrices Wa, Wi, W, Wy =W, W, Wy, U, W, Wy =W, W, Single W
Parameter Count 3d? 2d? 2d% + d*/m 2d% +d d? +3d
Parameter Reduction 0% 33% 30-35% 33% 66.67%
Computational Complexity High Moderate High Moderate Low
Diagonal Scaling Matrices No No No No Yes
Expressiveness High Reduced Q-K diversity | Enhanced (pairwise) Moderate Retained (via scaling)
Training Speed Baseline 10-15% faster 5-10% slower 10-15% faster 15-20% faster
Memory Usage High Moderate High Moderate Low
Implementation Simplicity Complex Simple Complex (U matrix) Simple Simplest

Table 7: Comparison of Different Self-Attention Methods

demonstrating their utility beyond NLP. To enhance
the efficiency of attention mechanisms, Child et al.
(2019) presented the sparse Transformer, which
reduces the complexity of full attention mecha-
nisms for more efficient long-sequence processing.
Beltagy et al. (2020) introduced the Longformer,
which utilizes dilated sliding window attention to
efficiently handle longer context sequences.

He and Hofmann (2023) presented a stream-
lined Transformer architecture that reduced model
weight by 15% without compromising perfor-
mance. In a subsequent study, Courtois et al. (2024)
introduced a pairwise compatibility operator that
enhanced the dot-product method with a shared
linear operator and a bilinear matrix, thereby im-
proving token interactions and BERT model perfor-
mance.

Our proposed method builds upon these advance-
ments by utilizing a single shared weight matrix,
W, for a unified representation. Keys, Queries,
and Values are derived through diagonal matrix
multiplication with specific vectors, resulting in

a 66.53% reduction in parameters within the self-
attention block. Despite this significant reduction,
our method maintains robust performance across
BERT configurations, demonstrating the potential
for more efficient yet powerful NLP models.

5 Limitations

Our work mainly focused on studying an alterna-
tive compatibility function with the self-attention
mechanism in transformer-based encoder models,
particularly those evaluated using NLU. While we
show good performance in this setting, our results
do not necessarily translate to decoder models, pure
language modeling tasks, or machine translation.
For many applications, the cross-attention mech-
anism is crucial for achieving high accuracy on
these tasks and does not completely align with our
use case, where we support shared representations
through a trainable matrix. In our model, we use
a single shared weight matrix Wy for the unified
representation, reducing the number of parameters
in the self-attention block by 66. 67% compared
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to the baseline models. Although this reduction is
significant, its impact on broader applications re-
quires further analysis. Due to the resource restric-
tion, we only observed improved training efficiency
for smaller BERT-like models with approximately
100 million parameters in one of our experiments.
However, these findings may not generalize well to
much larger models, such as those of an order of
magnitude larger. One limitation of our approach
is its reliance on a single softmax weight, which
may not exhibit optimal behavior for more complex
datasets, suggesting the need for multiple weights
or alternative strategies. We also recognize the im-
portance of decoder components in text-generation
tasks, which we have yet to fully explore. Overcom-
ing these challenges through future investigations
will contribute to the generalization and scalability
of our approach in diverse NLP frameworks.

6 Conclusions

The shared weight self-attention mechanism pre-
sented simplifies the traditional self-attention
model by using a single shared matrix with element-
wise scaling for keys, queries, and values. This ap-
proach reduces parameter complexity while main-
taining high performance. Extensive experiments
on the GLUE benchmark datasets demonstrate that
the shared weight self-attention-based Bert model
performs comparably to traditional Bert models on
clean data and shows superior robustness under var-
ious noise conditions. The empirical results high-
light the model’s ability to capture essential fea-
tures more effectively and maintain stability even
with noisy inputs. This makes the shared weight
self-attention mechanism particularly suitable for
applications in environments with noisy or imper-
fect data. Additionally, the significant reduction in
learnable parameters leads to more efficient mod-
els that are easier to deploy in resource-constrained
settings.
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A Appendix

A.1 Limitations

Our work mainly focused on studying an alterna-
tive compatibility function with the self-attention
mechanism in transformer-based encoder models,
particularly those evaluated using NLU. While we
show good performance in this setting, our results
do not necessarily translate to decoder models, pure
language modeling tasks, or machine translation.
For many applications, the cross-attention mech-
anism is crucial for achieving high accuracy on
these tasks and does not completely align with our
use case, where we support shared representations
through a trainable matrix. In our model, we use
a single shared weight matrix W for the unified
representation, reducing the number of parameters
in the self-attention block by 66. 67% compared
to the baseline models. Although this reduction
is significant, its impact on broader applications
requires further analysis. We observed improved
training efficiency for smaller BERT-like models
with approximately 100 million parameters in one
of our experiments. However, these findings may
not generalize well to much larger models, such as
those of an order of magnitude larger. Our mod-
els were benchmarked with GLUE and the newer
SuperGLUE, providing better evaluation metrics
for current models. One limitation of our approach
is its reliance on a single softmax weight, which
may not exhibit optimal behavior for more complex
datasets, suggesting the need for multiple weights
or alternative strategies. We also recognize the im-
portance of decoder components in text-generation

542


https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461

tasks, which we have yet to fully explore. Overcom-
ing these challenges through future investigations
will contribute to the generalization and scalability
of our approach in diverse NLP frameworks.

A.2 Dataset Description

We evaluate our shared weight self-attention mech-
anism on multiple tasks from the GLUE bench-
mark (Wang et al., 2018). Specifically, our method
is tested on the following datasets: CoL A, SST-2,
MRPC, STS-B, QQP, MNLI, QNLI, and RTE. To
assess the question-answering capabilities of our
approach, we use the SQuAD v1.1 (Rajpurkar et al.,
2016) and SQuAD v2.0 (Rajpurkar et al., 2018)
datasets. These datasets consist of question-answer
pairs derived from Wikipedia articles, providing
a robust basis for evaluating the performance of
question-answering models. The datasets used in
this study are listed in Table 8.

Dataset # Train | # Validation | # Test
SQuAD vl.1 | 87.6k 10.6k -
SQuAD v2.0 | 130k 11.9k -

CoLA 8.55k 1.04k 1.06k
SST2 67.3k 872 1.82k
MRPC 3.67k 408 1.73k
STS-B 5.75k 1.5k 1.38k
QQP 364k 40.4k 391k

MNLI 393k 9.8k 9.8k

QNLI 105k 5.46k 5.46k
RTE 2.49k 277 3k

Table 8: Dataset Statistics

A.3 Evaluation Metric

We employ the Matthews correlation for CoLA,
Pearson and Spearman correlation for STS-B, aver-
age matched accuracy and F1 score for MNLI, and
accuracy for other NLU tasks.

A.4 Hyperparameter

For the GLUE benchmark, uniform hyperparame-
ters are consistently implemented across all tasks to
ensure comparability and consistent results. Specif-
ically, the attention dropout and weight decay rates
are uniformly set at 0.1, while the initial learning
rate is fixed at 1 x 104, Subsequently, the learning
rate is fine-tuned to 2 x 1077 and 2 x 1075, Each
dataset is trained for 10 epochs to attain optimal
performance.

For the SQuAD datasets, the dropout rate is fixed
at 0.2, while the attention dropout rate is set at 0.05,
and the weight decay rate is established at 0.1. The
initial learning rate is set at 1 x 10~4, which is
subsequently adjusted to 2 x 107® and 2 x 1075,
Training is conducted over a period of 5 epochs.
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