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Abstract

Typical evaluations of Large Language Mod-
els (LLMs) report a single metric per dataset,
often representing the model’s best-case perfor-
mance under carefully selected settings. Un-
fortunately, this approach overlooks model ro-
bustness and reliability in real-world applica-
tions. For instance, simple paraphrasing of
prompts on the MMLU-Pro dataset causes ac-
curacy fluctuations of up to 10%, while re-
ordering answer choices in the AGIEval dataset
results in accuracy differences of up to 6.1%.
While some studies discuss issues with LLM
robustness, there is no unified or centralized
framework for evaluating the robustness of lan-
guage models. To address this gap and con-
solidate existing research on model robustness,
we present SCORE (Systematic COnsistency
and Robustness Evaluation), a comprehensive
framework for non-adversarial evaluation of
LLMs. The SCORE framework evaluates mod-
els by repeatedly testing them on the same
benchmarks in various setups to give a real-
istic estimate of their accuracy and consistency.
We release the code1 publicly and start an LLM
robustness leaderboard2 to facilitate further de-
velopment and research.

1 Introduction

The evaluation of Large Language Models (LLMs)
typically focuses on a single accuracy metric per
dataset, often derived from an optimized setup.
This approach provides an incomplete picture of
the model capabilities in real-world scenarios. For
an LLM to be trustworthy in practical applications,
it must exhibit robustness, i.e., produce consistent
responses when the input is rephrased or slightly al-
tered. Consistency is particularly crucial for factual
questions in which an objective answer exists. In

1https://github.com/EleutherAI/lm-evaluation-
harness/tree/main/lm_eval/tasks/score

2https://huggingface.co/spaces/nvidia/llm-robustness-
leaderboard

    Who was on the $500 bill?
  A: Calvin Coolidge   B: Abraham Lincoln   C: George Washington D: Benjamin Franklin  E: Andrew Jackson
  F: William McKinley G: Thomas Jefferson  H: John Adams              I: Ulysses S. Grant      J: Aaron Burr

   You must reply with only a single letter from A, B, C, D, E, F, G, H, I or J to this question.

The best answer is F: William McKinley

Prompt 1

     Evaluate the multiple-choice question and select the most fitting response from 'A', 'B',
    'C', 'D', 'E', 'F','G', 'H', 'I', 'J'. 

The best answer is D: Benjamin Franklin

Prompt 2

Figure 1: Llama-3.1 70B responding inconsistently to
an MMLU-Pro question when only prompt is changed.

particular, consistent predictions do not necessarily
equate to correct predictions. Given two models
with similar accuracy, the one that makes the same
incorrect predictions across different setups is ar-
guably preferable. Recent research has highlighted
the limitations of current LLM evaluation practices.
(Mizrahi et al., 2023; Polo et al., 2024; Alzahrani
et al., 2024) demonstrate the significant impact of
simple input perturbations on model performance.
(Sclar et al., 2023) further underscores the sensitiv-
ity of the models to seemingly minor changes in
input formatting, such as changing the separator or
spacing. Although robustness analysis is gaining
momentum in LLM research, robustness evalua-
tions are often scattered, ad hoc, and difficult to
compare between models (Dubey et al., 2024).

We propose an open evaluation framework
SCORE: Systematic COnsistency and Robustness
Evaluation for Large Language Models. SCORE
focuses on consistency alongside accuracy to pro-
vide a more nuanced understanding of LLM ca-
pabilities and facilitate the development of more
trustworthy and reliable models. Our contributions
are as follows:

• We introduce the SCORE framework, an open
and holistic framework that standardizes and
unifies the evaluation of the non-adversarial
robustness of LLMs.
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• We investigate the impact of prompt vari-
ations, random seed of non-greedy infer-
ence, and choice order on model predictions.
Our experiments demonstrate that evaluating
LLMs across multiple scenarios, considering
a range of accuracy values rather than a single
metric, and tracking consistency rate provide
a more accurate assessment of the model’s
true capabilities.

• We evaluate latest open LLMs to explore
the relationship between accuracy and con-
sistency. Our findings reveal that, while these
metrics are correlated, higher accuracy or nar-
row accuracy ranges do not always guarantee
better consistency. Furthermore, model size
alone is not a reliable indicator of robustness.

2 Related Work

Open LLM Leaderboard-v2 (Fourrier et al., 2024)
is a centralized platform for evaluating LLMs in a
consistent setup, ensuring fair comparisons. It uses
datasets that are both relevant and challenging, but
still relies on a single metric evaluation.

PromptBench (Zhu et al., 2023a,b) focuses on
adversarial robustness by providing tools to evalu-
ate models on adversarial prompts — deliberate in-
puts designed to break their predictions. Although
effective, these adversarial attacks could be unre-
alistic and considerably change the semantics of
input samples. PromptBench evaluates models’
worst-case performance by estimating how much
accuracy degrades under various attacks.

HELM (Holistic Evaluation of Language Mod-
els) (Liang et al., 2023) uses a multi-metric ap-
proach to assess the models across various sce-
narios. However, robustness analysis is limited to
character-level perturbations, typos, and a small
subset of Contrast Sets (Gardner et al., 2020).

3 Benchmark

3.1 Datasets

To ensure a comprehensive and rigorous evalua-
tion, we employ the following criteria when select-
ing datasets for our SCORE framework: Factual-
ity: datasets must have objective, verifiable ground
truth answers to avoid subjective judgments, such
as relying on LLM-as-a-judge evaluation. Diver-
sity: a wide range of topics should be represented
to assess model capabilities across various domains.

Scale: the datasets should be large enough to en-
sure the statistical significance of the results. Chal-
lenging Nature: the datasets should pose a signifi-
cant challenge to current open-source LLM mod-
els. Minimal Contamination: as demonstrated by
Dubey et al. (Dubey et al., 2024), widely used
benchmarks can be significantly contaminated in
the training dataset, which can result in inflated
benchmark scores that do not accurately reflect the
model’s true capabilities. We carefully consider the
age and quality of the selected datasets.

Given the substantial computational resources
required for multiple evaluations per dataset, we
limited our benchmark to the following three open-
source datasets that best met our selection crite-
ria - MMLU-Pro (Wang et al., 2024b), AGIEval
(Zhong et al., 2023) and MATH (Hendrycks et al.,
2021) (see Appendix A for detailed information on
each dataset).

We recognize the limitations of using these
datasets, as they do not fully encompass the wide
range of use cases that models may encounter in
real-world applications. However, they provide a
solid foundation for our benchmark. We leave the
exploration of additional datasets for future work.

3.2 Tasks
Prompt Robustness. The prompt can significantly
influence the accuracy and quality of LLM out-
put. Most model evaluation reports contain a single
metric corresponding to a tuned and engineered
prompt, which maximizes the metric. For a given
query, models are expected to get a variety of se-
mantically equivalent prompts. For example, one
can think of hundreds of ways to ask a model to
solve a mathematical problem. LLMs should to be
robust to the changes of prompt formulation and
consistent in their answers. A robust LLM will re-
quire less prompt engineering as the exact wording
of the prompt will not matter for the model.
We choose ten prompts and analyze model accu-
racy and prediction consistency against changing
the prompt. The prompts are not adversarial and
are not engineered to increase or decrease model
accuracy in any way. We include both CoT (Wei
et al., 2022) and non-CoT prompts and vary the
placement of the question in the prompt to be either
in the beginning, in the middle, or at the end of the
prompt. For MCQ datasets, prompts ask the model
to choose the correct option letter. For MATH,
prompts ask the model to solve the problem. The
full list of prompts can be found in Appendix G.
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A) Beater        B) Seeker      C) Keeper     D) Chaser

What position does Harry Potter play on the  Gryffindor Quidditch team?
A) Beater       B) Keeper         C) Seeker         D) Chaser

Prompt Robustness  Choice Order RobustnessNon-Greedy Robustness

What position does Harry Potter play on the  Gryffindor
Quidditch team? 

From the options A-D, select the correct answer to the
following  question. End the answer with - The best answer is

answer_letter,  where answer_letter is one of A, B, C or D. 

Evaluate the multiple-choice question and select the most
fitting response from 'A', 'B', 'C', 'D'.

Non greedy generation of answer with 
seed=1

Non greedy generation of answer with 
seed=2

× 5 seeds with temerature=0.7
...

× 10 prompts
...

× N options
...

A) Seeker        B) Keeper      C) Beater      D) Chaser

What position does Harry Potter play on the  Gryffindor
Quidditch team? 

Figure 2: Overview of the SCORE robustness tasks. Prompt Robustness: This task evaluates multiple-choice ques-
tion (MCQ) and MATH datasets using ten semantically similar non-adversarial prompts; Non-Greedy Robustness:
Evaluation is conducted using five random seeds with a fixed prompt, question, and options, with a temperature
setting of 0.7; Choice Order Robustness: For MCQ datasets, the positions of options are altered while keeping the
prompt and question fixed.
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Figure 3: Accuracy ranges for Prompt Robustness task on AGIEval, MMLU-Pro and MATH datasets. Evaluation is
done using ten distinct prompts (see Appendix G).

Non-Greedy Inference. Non-greedy inference
is a common technique used to diversify the
outputs of LLMs, particularly for queries without
objective answers, such as movie recommenda-
tions or text paraphrasing. However, for factual
questions, the generated answers should remain
consistent regardless of the random seed used. The
inherent randomness in the answer-generation
process can influence the "path" the model takes
to arrive at a response. Ideally, the model’s
underlying distribution should be precise enough
that the choice of random seed does not affect the
sampling of the next token.
We perform non-greedy inference with a tem-
perature of 0.7 and five random seeds across
all datasets. Since the datasets are factual, the
random seed should have minimal impact on the
model’s predictions. To reduce computational
cost, we use a fixed prompt for the non-greedy task.

Choice Order Robustness. For multiple-choice
question (MCQ) datasets MMLU-Pro and AGIEval,
models should choose the correct option letter as
an answer, as illustrated in Figure 2. Both (Zheng
et al., 2023) and (Alzahrani et al., 2024) demon-
strate that even simple changes, such as altering
the order of choices, can impact the accuracy of
LLMs. These effects may be due to internal model
instabilities, biases, or contamination of the test
data. Following previous work, we evaluate mod-
els against changes in the order of choices for MCQ
datasets. We swap the order of options while ensur-
ing the correct answer always corresponds to the
same position (all correct answers are A, B, etc.).
Changing the order of choices does not alter the
input’s semantics, so models should ideally remain
robust to such minor changes. Although fixing the
correct answer to a specific letter could introduce
evaluation bias, it also helps identify if the model
shows a preference for certain answer options.
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We expect the model to be resilient to these biases.
Unlike prior work, we use generative evaluation in-
stead of log-likelihood, and we analyze prediction
consistency along with accuracy. The same prompt
used in the non-greedy evaluation is applied here.

3.3 Models and Inference Setup
We include instruct-tuned models from various
model families to examine the impact of model
size and compare different models of similar scale.
All the models included are open-source, and most
have been publicly released within the past few
months. Specifically, we consider the following
models: Llama-3.1 (Dubey et al., 2024) 8B, 70B,
405B, Llama-3 70B3, Mistral Nemo 12B, Mistral
Large 123B4, Qwen-2 72B and 7B5, and Yi-1.5
34B6.

We use generative evaluation for all tasks to align
with real-world human interactions. This approach,
as demonstrated by (Wang et al., 2024a; Lyu et al.,
2024), provides a more accurate assessment of
LLM performance than log-probability evaluation,
particularly for tasks requiring reasoning or com-
putation. The inference setup is explained in more
detail in Appendix B.

3.4 Metrics
We measure category-level macro accuracy for
MMLU-Pro and micro accuracy for AGIEval and
MATH, reporting both the mean and the [minimum,
maximum] accuracy range. Following (Yukun
et al., 2024), we use consistency rate (CR) to
assess the robustness and prediction consistency of
LLMs. CR compares all pairs of predictions for a
given set of predictions. It is defined as

CR =
1

|Q|
∑

Qk∈Q

∑

yi∈Yk

∑

yj∈Yk

j ̸=i

sim(yi, yj)(|Yk|
2

) (1)

where Q is a dataset; Qk is a single data point;
Yk is the set of predictions for Qk (e.g. |Yk| = 10
for prompt robustness); yi and yj is a pair of pre-
dictions for Qk;

(|Yk|
2

)
is the number of all possi-

ble prediction pairs and sim(yi, yj) is a similarity
function for two predictions. We extract the final

3Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct,
Llama-3.1-405B-Instruct, Meta-Llama-3-70B-Instruct from
https://huggingface.co/meta-llama/

4Mistral-Nemo-Instruct-2407 and Mistral-Large-Instruct-
2407 from https://huggingface.co/mistralai/

5Qwen2-72B-Instruct and Qwen2-7B-Instruct from
https://huggingface.co/Qwen/

6https://huggingface.co/01-ai/Yi-1.5-34B-Chat

answer from the model’s generated text (the choice
letter for MCQ and the final answer for MATH)
to compute the similarity. For MCQ datasets, we
determine the similarity by checking if the two pre-
dictions are equal. For MATH, we evaluate the
symbolic equivalence between two predictions us-
ing the sympy package (Meurer et al., 2017). CR
does not take the accuracy of individual predic-
tions into account but rather the consistency of the
model’s responses, e.g., CR = 70% means that
70% of all prediction pairs for a data point are the
same.

4 Results

4.1 Prompt Robustness

Figure 3 illustrates the variation in accuracy across
ten prompts for each dataset. There is an outlier
prompt, appearing outside the interquartile range of
the MMLU-Pro and AGIEval boxplots for all mod-
els. This outlier corresponds to the same prompt
- “You must reply with only a single letter from
A, B, C, D, E, F, G, H, I or J to this question.
Conclude with:\n The best answer is answer_letter
where the answer_letter is a single letter from A
to J.\n{QUESTION}". Although the prompt was
not deliberately crafted or tuned to reduce accu-
racy, it causes a significant drop in accuracy and
presents a curious phenomenon. We do not include
this prompt in the further analysis to avoid mak-
ing exaggerated claims. We observe no strong
correlation between overall accuracy and the
spread of accuracy. Both Mistral models show
a variation of 2.3-3.2% on the MATH dataset, yet
their mean accuracy improves significantly from
40.7% for Mistral 12B to 70.9% for Mistral Large
123B. Moreover, models exhibit varying accuracy
ranges across different datasets. For example,
Yi-1.5 34B accuracy by 2% on MATH varies, 4.2%
on MMLU-Pro, and 7.6% on AGIEval. It is im-
portant to note that changes in accuracy do not
fully capture prediction stability, as predictions
can vary without affecting the score (e.g., when the
model switches from one incorrect prediction to
another). There is a positive correlation between
mean accuracy and consistency, but higher ac-
curacy does not always guarantee higher con-
sistency. For instance, two versions of Llama 70B
models - 3 and 3.1 - achieve comparable consis-
tency on the MMLU-Pro dataset (72% and 70.8%,
respectively). However, Llama-3.1 70B reaches a
6.6% higher mean accuracy. In MCQ datasets, the
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Figure 4: Accuracy ranges and Consistency Rate (shown in red) on MMLU-Pro for Choice Order Robustness Task:
order of choices is changed while prompt is fixed.

accuracy varies by 1.5-10.6% on AGIEval and 1.3-
15.2% on MMLU-Pro, even when excluding the
outlier prompt. Across all models, consistency is
higher on AGIEval than on MMLU-Pro. This could
be attributed to the greater difficulty of MMLU-
Pro and the difference in the number of answer
choices (up to five for AGIEval versus up to ten
for MMLU-Pro). Accuracy is least sensitive on
MATH, though still varies by 2-7.9%. Prediction
consistency on MATH is low for all models and
reaches a maximum of 69.8%. For Mistral Large
123B, the consistency rate is 69.7%, and only 60%
of the data points have at least eight equivalent pre-
dictions. Table 4 (Appendix C) summarizes the
accuracies and consistencies of all models on the
prompt robustness task.

4.2 Choice Order Robustness

Table 5 (Appendix D) summarizes how model pre-
dictions and metrics are affected by changes in
the order of answer choices. On the MMLU-Pro
dataset, accuracy fluctuates between 4% and 13.5%,
while on AGIEval, the fluctuation is between 2%
and 7.5% (with up to 29.2% for Mistral 12B). Fig-
ure 4 illustrates the accuracy variance and consis-
tency rate for the choice order robustness task on
MMLU-Pro. The wide range of accuracy scores
demonstrates why relying on a single number for
reporting and model comparison can be misleading.
For example, when comparing Llama-3.1 405B and
Llama-3.1 70B on MMLU-Pro, accuracy metrics
can be very similar (70.5% vs. 69.5%) or signifi-
cantly different (75% vs 63%) simply by altering
the order of choices. Llama-3.1 405B is more ac-
curate and more consistent on MMLU-Pro dataset.
The Choice Order Robustness experiments align

with the findings from the Prompt Robustness tests,
demonstrating that a higher accuracy does not
necessarily imply greater consistency. For exam-
ple, while Llama-3.1 70B and Llama-3 70B both
achieve a consistency rate of 76%, the mean accu-
racy of Llama-3.1 70B is 9.6% higher.

4.3 Non-Greedy Inference

Table 6 (Appendix E) aggregates non-greedy infer-
ence results across all datasets and models. We ob-
serve minimal changes in accuracy, except for Mis-
tral 12B. However, despite the stability in accu-
racy, the consistency rate remains relatively low,
indicating unstable predictions. On the MMLU-
Pro, Llama-3.1 405B achieves the highest consis-
tency of 83.3%, but only 73.4% of predictions are
the same across all seeds. For Llama-3.1 8B, the
accuracy varies by 2.32%, but the consistency rate
is only 54.4%, with 37.9% of identical predictions
across all seeds. Similarly, for MATH, accuracy
varies slightly (0.8–3.4%), but overall consistency
is low. The highest consistency rate is 74.6% for
Qwen-2 72B, with 65.7% of predictions being iden-
tical. This variability in predictions can be par-
tially attributed to the difficulty of the problems
(see Appendix H for further analysis). For Level 1
problems, 85% of the predictions are identical be-
tween different seeds, while for Level 5 problems,
only 29.6% are consistent. Hence, harder problems
mean a more uniform underlying distribution, and
changing the seed changes the "path" model takes
for a solution. Despite having low accuracy on both
datasets, Qwen-2 7B, the smallest model of all, has
the highest consistency rate on AGIEval (95.8%)
and MMLU-Pro (92.5%).
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Figure 5: Aggregated accuracy ranges for all SCORE robustness tasks and datasets.

4.4 Aggregated Analysis

Table 7 (Appendix F) summarizes the overall con-
sistency rate and accuracy range for each model by
averaging the consistency rates across all experi-
ments and aggregating the accuracies (excluding
outliers from the MMLU-Pro and AGIEval datasets
to avoid exaggerated claims). For instance, aggre-
gated metric for MMLU-Pro includes 24 predic-
tions per data point (nine predictions for Prompt
Robustness, ten for Choice Order Robustness, and
five for Non-Greedy evaluation). Figure 5 shows
that accuracy range varies significantly depend-
ing on the specific model and dataset. For ex-
ample, Yi-1.5 34B has an accuracy variance of
2% on MATH but 10.5% on AGIEval. The varia-
tion in metrics can partially be attributed to differ-
ences in training data. Llama-3.1 405B is the only
model with an accuracy variance below 5% across
all datasets. Overall, mean accuracy and consis-
tency are correlated. Across datasets, all models’
highest mean accuracy and consistency rate is on
AGIEval. Every model’s consistency on MATH
is lowest. This can be partially attributed to the na-
ture of the task, as models must generate the entire
answer for the math problem rather than provid-
ing a single-letter response, as in standard MCQs.
Model size alone is not a reliable predictor of
accuracy and consistency. For example, Mistral
Large 123B is 75% bigger than Llama-3.1 70B, but
CR on MMLU-Pro is 74% for both, and Llama-
3.1’s accuracy variance is 6.3% compared to 9.9%
of Mistral Large. Similarly, Llama-3 70B is almost
nine times bigger than Llama-3.1 8B, but the mean
accuracy of Llama-3 on MATH is higher by 1.6%,
and consistency is lower by 1.7 points. The results
highlight why model comparison based on a sin-
gle metric could be misleading. For example, if

we focus solely on maximum accuracy—often em-
phasized in model releases—one might conclude
that Yi-1.5 34B performs on par with Llama-3 70B
on the AGIEval dataset, despite being half the size.
While this is technically true, Yi-1.5 has a wider ac-
curacy range (60.6% to 71.1%) compared to Llama-
3 70B’s range (68.8% to 72.4%). Moreover, the
consistency rate of Llama-3 70B is 13.2% higher
than Yi-1.5. Similarly, Mistral Large 123B is 3.2
times smaller than Llama-3.1 405B and its max-
imum accuracy on AGIEval is only 2.65% lower
than Llama-3.1 405B. However, the accuracy range
of Llama-3.1 405B is below 3% (75. 3% to 77.
9%), while the accuracy of Mistral 123B is more
sensitive to input changes (65.8% to 75.2%). In
addition, Llama-3.1 405B has an 11.1% higher CR.

5 Conclusion

Our evaluation demonstrates that relying solely on
a single-point evaluation provides an incomplete
assessment of the LLM capabilities. We offer a
more nuanced and informative understanding of
model performance by evaluating models under
various conditions and reporting accuracy ranges
and consistency rates. Our SCORE framework es-
tablishes a foundation for systematic LLM evalua-
tion, facilitating standardized analysis and research
of non-adversarial robustness.

6 Limitations

The datasets and robustness tests employed in this
work may not fully capture the breadth of LLM
capabilities. For instance, we rely heavily on MCQ
datasets that offer ease of evaluation and factual
clarity, and we do not explicitly consider creative
tasks such as summarization, where consistency is
more subjective. Expanding the scope of evalua-
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tion to include additional datasets and robustness
tasks would provide an even more complete pic-
ture. However, it could also lead to a significant
increase in computational costs. Furthermore, our
reliance on publicly available datasets exposes us
to the potential risks of data contamination.
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A Datasets Statistics

MATH (Hendrycks et al., 2021) dataset, which con-
sists of around 5,000 challenging competition-level
mathematics problems. Solving these problems re-
quires LLMs to perform multiple reasoning steps
to arrive at the correct answer.

Topic Number of Samples
Level 1 437
Level 2 894
Level 3 1131
Level 4 1214
Level 5 1324
TOTAL 5000

Table 1: Subset statistics of the MATH dataset (MIT
License), categorized by problem difficulty levels.

MMLU-Pro (Wang et al., 2024b) is an enhanced
version of MMLU (Hendrycks et al., 2020), a
widely used multiple-choice benchmark for eval-
uating the core knowledge and reasoning abilities
of LLMs. MMLU-Pro increases the number of
answer choices from 4 to 10, incorporates more
reasoning-based questions, and removes incorrect
or outdated content. It includes 12,032 questions
across 14 subjects, covering a broad range of top-
ics such as natural sciences, business, engineering,
and law. Overall, MMLU-Pro provides a higher
quality and more challenging assessment than its
predecessor.

Topic Number of Samples
biology 717
business 789

chemistry 1132
computer science 410

economics 844
engineering 969

health 818
history 381

law 1101
math 1351
other 924

philosophy 499
physics 1299

psychology 798
TOTAL 12032

Table 2: Subset statistics of the MMLU-Pro dataset
(Apache License Version 2.0), categorized by subject.

AGIEval (Zhong et al., 2023) is a multiple-
choice dataset derived from standardized exams
such as SAT and LSAT. It tests models’ abilities
in reading comprehension, reasoning, and mathe-
matics. For our analysis, we selected SAT-English,
SAT-Math, LSAT-Analytics, LSAT-Logic, LSAT-
Reading, LogiQA-En, and AQuA-RAT (GRE,
GMAT) subsets comprising 2340 datapoints.

Topic Number of Samples
aqua_rat 254

logiqa_en 651
lsat_ar 230
lsat_lr 510
lsat_rc 269
sat_en 206

sat_math 220
TOTAL 2340

Table 3: Subset statistics of the AGIEval dataset (MIT
License).
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B Inference Setup

While generative evaluation incurs higher compu-
tational costs than other methods, the additional
expense is negligible compared to the overall train-
ing costs. For each model and dataset, we gener-
ate 1024 tokens. We found that over 95% of the
datasets can be answered within this token limit,
with models occasionally getting stuck in repetitive
loops that require generating more tokens. Gen-
erating additional tokens beyond this limit yields
diminishing returns in metrics while significantly
increasing computational costs. To simulate av-
erage user behaviour, we conduct all evaluations
in a 0-shot setting, without providing any few-
shot examples. Model predictions are extracted by
parsing the generated text. For MATH problems,
we instruct the model to format its answer within
$\\boxed{{answer}}$ to extract prediction easily
and verify its symbolic equivalence with the ground
truth using the sympy package (Meurer et al., 2017).
In the case of MCQ, the model is prompted to con-
clude with The best answer is answer_letter, and
the corresponding letter is extracted from the out-
put. While more complex post-processing might
improve metrics by addressing cases where models
deviate from instructions, we avoid such techniques
to maintain a model-independent parsing logic and
ensure that models follow the given prompts.
We convert models to TRT-LLM7 for evaluation.
We have used two NVIDIA A100 80GB nodes for
Llama-3.1 405B evaluation and a single node for
the rest of the models. For the SCORE evaluation,
we conducted a series of robustness evaluations
for each model: 25 evaluations on the MMLU-Pro
dataset (ten predictions for Prompt Robustness, ten
for Choice Order Robustness, and five for Non-
greedy evaluation), 19 on the AGIEval dataset (ten
predictions for Prompt Robustness, four for Choice
Order Robustness, and five for Non-greedy evalua-
tion), and 15 on the MATH dataset (ten predictions
for Prompt Robustness, and five for Non-greedy
evaluation). The specific computational require-
ments for each evaluation varied depending on the
model size, dataset size, and the model’s verbosity
in generating answers.

7https://github.com/NVIDIA/TensorRT-LLM

C Prompt Robustness Results

Model Accuracy, % CRMean [Min, Max]
AGIEval

Llama-3.1 405B 77.0 [74.7, 77.9] 86.1
Mistral Large 123B 68.8 [61.5, 75.2] 74.3

Qwen-2 72B 70.2 [62.0, 72.5] 80.5
Llama-3.1 70B 72.0 [65.3, 74.7] 80.5
Llama-3 70B 69.2 [61.0, 71.0] 80.5
Yi-1.5 34B 63.6 [56.5, 68.3] 66.4

Mistral Nemo 12B 52.4 [43.2, 56.8] 58.9
Llama-3.1 8B 53.9 [43.1, 57.1] 59.7
Qwen-2 7B 52.4 [48.8, 56.4] 61.5

MMLU-Pro
Llama-3.1 405B 72.8 [69.5, 73.9] 79.8

Mistral Large 123B 63.6 [49.9, 68.5] 70.2
Qwen-2 72B 62.1 [52.5, 65.2] 72.2

Llama-3.1 70B 65.7 [54.8, 68.3] 72.0
Llama-3 70B 59.1 [49.1, 62.7] 70.8
Yi-1.5 34B 49.4 [42.4, 51.9] 53.3

Mistral Nemo 12B 41.0 [31.5, 44.6] 46.7
Llama-3.1 8B 44.4 [33.3, 48.6] 47.9
Qwen-2 7B 41.3 [34.6, 44.8] 49.1

MATH
Llama-3.1 405B 71.0 [67.9, 72.5] 69.8

Mistral Large 123B 70.9 [69.7, 72.0] 69.7
Qwen-2 72B 67.6 [52.1, 65.2] 72.2

Llama-3.1 70B 66.3 [60.4, 68.4] 64.6
Llama-3 70B 51.8 [49.7, 54.2] 50.1
Yi-1.5 34B 53.3 [52.7, 54.7] 48.0

Mistral Nemo 12B 40.7 [39.4, 42.6] 36.9
Llama-3.1 8B 50.2 [47.0, 52.2] 46.0
Qwen-2 7B 57.6 [56.5, 58.6] 58.3

Table 4: Accuracy ranges and consistency rates (CR)
on Prompt Robustness task: the evaluation is conducted
using 10 prompts, while keeping the context fixed.

478



D Choice Order Robustness Results

Model Accuracy, % CRMean [Min, Max]
AGIEval

Llama-3.1 405B 76.5 [75.3, 77.3] 88.5
Mistral Large 123B 68.2 [66.8, 68.8] 78

Qwen-2 72B 71.7 [70.2, 73.6] 80.8
Llama-3.1 70B 73.6 [72.1, 74.7] 82.5
Llama-3 70B 70.3 [69.1, 72.4] 84.1
Yi-1.5 34B 68.1 [65.0, 71.1] 71.8

Mistral Nemo 12B 51.6 [35.9, 65.1] 61.2
Llama-3.1 8B 56.2 [53.8, 58.8] 67.2
Qwen-2 7B 55.6 [52.6, 60.2] 72.3

MMLU-Pro
Llama-3.1 405B 73.1 [70.5, 75.3] 83.1

Mistral Large 123B 66.4 [65.0, 69.1] 79.1
Qwen-2 72B 64.0 [59.2, 68.7] 76.2

Llama-3.1 70B 67.0 [63.7, 69.9] 76.6
Llama-3 70B 57.5 [52.2, 62.0] 76.1
Yi-1.5 34B 52.0 [49.2, 55.6] 61.6

Mistral Nemo 12B 40.8 [34.0, 46.6] 58.6
Llama-3.1 8B 46.2 [41.1, 51.6] 59.6
Qwen-2 7B 44.4 [38.5, 52.2] 65.9

Table 5: Accuracy and consistency rates (CR) for
Choice Order Robustness task: order of choices is
changed while prompt is fixed.

E Non Greedy Results

Model Accuracy, % CRMean [Min, Max]
AGIEval

Llama-3.1 405B 76.4 [75.9, 76.7] 91.1
Mistral Large 123B 68.3 [67.4, 69.1] 78.1

Qwen-2 72B 71.2 [70.8, 71.7] 91.5
Llama-3.1 70B 73.2 [72.8, 73.5] 85.2
Llama-3 70B 70.0 [69.7, 70.2] 89.4
Yi-1.5 34B 66.1 [65.4, 67.0] 74.9

Mistral Nemo 12B 49.4 [44.4, 52.8] 53.9
Llama-3.1 8B 54.9 [53.6, 56.6] 66.6
Qwen-2 7B 56.2 [55.3, 56.5] 95.8

MMLU-Pro
Llama-3.1 405B 72.7 [72.6, 72.9] 83.3

Mistral Large 123B 65.8 [65.3, 66.0] 76.0
Qwen-2 72B 63.7 [63.7, 64.0] 86.9

Llama-3.1 70B 66.5 [65.6, 67.1] 74.8
Llama-3 70B 57.4 [57.2, 57.6] 79.8
Yi-1.5 34B 51.5 [51.4, 51.9] 63.0

Mistral Nemo 12B 39.0 [35.8, 40.9] 47.2
Llama-3.1 8B 45.1 [44.1, 46.2] 54.4
Qwen-2 7B 44.6 [44.4, 44.9] 92.5

MATH
Llama-3.1 405B 70.6 [70.2, 71.1] 68.0

Mistral Large 123B 70.9 [70.5, 71.4] 68.6
Qwen-2 72B 68.0 [67.4, 68.5] 74.6

Llama-3.1 70B 67.3 [66.7, 68.1] 65.0
Llama-3 70B 50.8 [50.0, 51.6] 48.6
Yi-1.5 34B 53.2 [52.8, 53.6] 48.0

Mistral Nemo 12B 40.1 [39.2, 42.6] 33.7
Llama-3.1 8B 50.8 [49.6, 51.9] 45.5
Qwen-2 7B 58.1 [57.2, 58.6] 68.3

Table 6: Accuracy ranges and consistency rates (CR)
for Non-Greedy Robustness tasks: models evaluated on
five random seeds with temperature set to 0.7.
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F Aggregated Results

Model Accuracy, % CRMean [Min, Max]
AGIEval

Llama-3.1 405B 77.0 [75.3, 77.9] 87.3
Mistral Large 123B 69.2 [65.8, 75.2] 76.2

Qwen-2 72B 71.3 [65.9, 73.6] 80.7
Llama-3.1 70B 73.0 [70.3, 74.7] 81.7
Llama-3 70B 70.2 [68.8, 72.4] 82.3
Yi-1.5 34B 65.6 [60.6, 71.1] 69.1

Mistral Nemo 12B 52.9 [35.9, 65.1] 60.0
Llama-3.1 8B 55.3 [46.5, 58.8] 63.3
Qwen-2 7B 53.6 [48.8, 60.2] 66.9

MMLU-Pro
Llama-3.1 405B 73.1 [70.5, 75.3] 81.5

Mistral Large 123B 65.8 [59.2, 69.1] 74.7
Qwen-2 72B 63.6 [59.2, 68.7] 74.2

Llama-3.1 70B 67.0 [63.6, 69.9] 74.3
Llama-3 70B 58.8 [52.2, 62.7] 73.5
Yi-1.5 34B 51.2 [47.6, 55.6] 57.4

Mistral Nemo 12B 41.4 [34.0, 46.6] 52.6
Llama-3.1 8B 45.8 [33.3, 51.6] 53.8
Qwen-2 7B 43.3 [37.8, 52.1] 57.5

MATH
Llama-3.1 405B 71.0 [67.9, 72.5] 71.1

Mistral Large 123B 70.9 [69.7, 72.0] 70.6
Qwen-2 72B 67.6 [66.2, 68.4] 68.6

Llama-3.1 70B 66.3 [60.4, 68.4] 67.0
Llama-3 70B 51.8 [49.7, 54.2] 50.4
Yi-1.5 34B 53.3 [52.7, 54.7] 49.4

Mistral Nemo 12B 40.7 [39.2, 42.6] 38.2
Llama-3.1 8B 50.2 [47.0, 52.2] 52.1
Qwen-2 7B 57.6 [56.5, 58.6] 61.0

Table 7: Accuracy ranges and consistency rates (CR)
aggregated across Prompt Robustness, Choice Order
Robustness and random seed variation for Non-greedy
inference.
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G Prompts

G.1 MMLU-Pro Prompts

—————————————————————————————————————————-
{} Examine the question and choose the correct answer from the options ’A’, ’B’, ’C’, ’D’, ’E’,
’F’, ’G’, ’H’, ’I’ or ’J’. End your answer with: The best answer is [the_answer_letter]. where the
[the_answer_letter] is a letter from A to J.
—————————————————————————————————————————-
{} Answer the multiple-choice question about task by selecting the correct option from A to J. Always
conclude with ’The best answer is (answer_letter)’ where the (answer_letter) is one of A, B, C, D, E, F,
G, H, I, J.
—————————————————————————————————————————-
You must reply with only a single letter from A, B, C, D, E, F, G, H, I or J to this question. Conclude
with: The best answer is answer_letter where the answer_letter is a single letter from A to J. {}
—————————————————————————————————————————-
From the options A-J, select the correct answer to the following question. End the answer with - The
best answer is answer_letter, where answer_letter is one of A, B, C, D, E, F, G, H, I, or J. Question: {}
—————————————————————————————————————————-
For the multiple-choice question related to task, which option (A-J) is correct?.
Question:{} End the answer with the following: The best answer is (the_answer_letter) where the
(the_answer_letter) is one of ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’ or ’J’.
*Used as the fixed prompt for Choice Order and Non-greedy Robustness tasks
—————————————————————————————————————————-
Evaluate the multiple-choice question and select the most fitting response from ’A’, ’B’, ’C’, ’D’, ’E’,
’F’, ’G’, ’H’, ’I’, ’J’. Question:{} Always conclude with: The best answer is [the_answer_letter]. where
the [the_answer_letter] is one of A, B, C, D, E, F, G, H, I or J.
—————————————————————————————————————————-
Answer to the following question about task by selecting the correct option A, B, C, D, E, F, G, H, I or J.
{} The answer should end with: The best answer is [the_answer_letter] where [the_answer_letter] is one
of letters A to J. Let’s think step by step.
—————————————————————————————————————————-
Select the correct answer from the options ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’,’J’ for the question
provided below. Conclude by stating: The best answer is answer_letter where answer_letter is one of ’A’,
’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’ or ’J’. Question: {} Let’s think step by step.
—————————————————————————————————————————-
{} For this question about task with 10 possible answers A, B, C, D, E, F, G, H, I, J, choose the one that
answers the question. If the problem is simple or straightforward, just provide the answer. If the answer
is more complex, use a step-by-step approach and for each step briefly explain your reasoning. Always
conclude with ’The best answer is (answer_letter)’ where the (answer_letter) is one of ’A’, ’B’, ’C’, ’D’,
’E’, ’F’, ’G’, ’H’, ’I’,’J’. Let’s think step by step.
—————————————————————————————————————————-
Read the question and options below, then determine the correct answer choice (A-J) Question: {}
For simple questions, provide a quick answer. For complicated ones, think step by step, break down the
question into smaller problems and reach to a conclusion End your answer by stating: The best answer is
[the_answer_letter]. where [the_answer_letter] is one of A, B, C, D, E, F, G, H, I, or J.
—————————————————————————————————————————-

Table 8: Prompts used to evaluate LLMs on the MMLU-Pro dataset for SCORE tasks. {} denotes a placeholder for
an input query.
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G.2 AGIEval Prompts

—————————————————————————————————————————-
{} Examine the question and choose the correct answer from the options ’A’, ’B’, ’C’, ’D’ or ’E’. End
your answer with: The best answer is [the_answer_letter]. where the [the_answer_letter] is a letter from
A to E.
—————————————————————————————————————————-
{} Answer the multiple-choice question by selecting the correct option from A to E. Always conclude
with ’The best answer is (answer_letter)’ where the (answer_letter) is one of A, B, C, D, E.
—————————————————————————————————————————-
You must reply with only a single letter from A, B, C, D or E to this question. Conclude with: The best
answer is answer_letter where the answer_letter is a single letter from A to E. {}
—————————————————————————————————————————-
From the options A-E, select the correct answer to the following question. End the answer with - The
best answer is answer_letter, where answer_letter is one of A, B, C, D or E. Question: {}
—————————————————————————————————————————-
For the multiple-choice question, which option (A-E) is correct?.
Question:{} End the answer with the following: The best answer is (the_answer_letter) where the
(the_answer_letter) is one of ’A’, ’B’, ’C’, ’D’ or ’E’.
—————————————————————————————————————————-
Evaluate the multiple-choice question and select the most fitting response from ’A’, ’B’, ’C’,
’D’, ’E’. Question:{} Always conclude with: The best answer is [the_answer_letter]. where the
[the_answer_letter] is one of A, B, C, D or E.
*Used as a fixed prompt for Choice Order and Non-greedy Robustness tasks
—————————————————————————————————————————-
Answer to the following question by selecting the correct option A, B, C, D or E. {} The answer should
end with: The best answer is [the_answer_letter] where [the_answer_letter] is one of letters A to E. Let’s
think step by step.
—————————————————————————————————————————-
Select the correct answer from the options ’A’, ’B’, ’C’, ’D’, ’E’ for the question provided below.
Conclude by stating: The best answer is answer_letter where answer_letter is one of ’A’, ’B’, ’C’, ’D’ or
’E’. Question: {} Let’s think step by step.
—————————————————————————————————————————-
{} For this question with 10 possible answers A, B, C, D, E, choose the one that answers the question. If
the problem is simple or straightforward, just provide the answer. If the answer is more complex, use a
step-by-step approach and for each step briefly explain your reasoning. Always conclude with ’The best
answer is (answer_letter)’ where the (answer_letter) is one of ’A’, ’B’, ’C’, ’D’, ’E’. Let’s think step by
step.
—————————————————————————————————————————-
Read the question and options below, then determine the correct answer choice (A-E) Question: {}
For simple questions, provide a quick answer. For complicated ones, think step by step, break down the
question into smaller problems and reach to a conclusion End your answer by stating: The best answer is
[the_answer_letter]. where [the_answer_letter] is one of A, B, C, D or E.
—————————————————————————————————————————-

Table 9: Prompts used to evaluate LLMs on the AGIEval dataset for SCORE tasks. {} denotes a placeholder for an
input query.
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G.3 MATH Prompts

—————————————————————————————————————————-
Solve this math problem. Your answer should end with ’The final answer is: $\\boxed{{answer}}$ where
[answer] is just the final number or expression that solves the problem Problem: {question}
—————————————————————————————————————————-
{question} Please solve this math problem efficiently. Finish with: The final answer is:
$\\boxed{{answer}}$ where [answer] is just the final number or expression that solves the problem.
—————————————————————————————————————————-
Find the answer to the following math question. Conclude with: ’The final answer is:
$\\boxed{{answer}}$ ’ where [answer] is just the final number or expression that solves the prob-
lem Problem: {question}
—————————————————————————————————————————-
{question} Find the solution to this math problem. Your answer should end with - The final answer is:
$\\boxed{{answer}}$ where [answer] is just the final number or expression that solves the problem.
—————————————————————————————————————————-
Analyze and solve the math task. Problem: {question} End the answer with: The final answer is:
$\\boxed{{answer}}$ where [answer] is just the final number or expression that solves the problem.
—————————————————————————————————————————-
Calculate the answer to this math problem Problem: {question} Conclude your answer with: The final
answer is: $\\boxed{{answer}}$ where [answer] is just the final number or expression that solves the
problem.
*Used as a fixed prompt for Choice Order and Non-greedy Robustness tasks
—————————————————————————————————————————-
{question} Solve the following math problem Show each step of your solution Conclude with: The final
answer is: $\\boxed{{answer}}$ [answer] is just the final number or expression that solves the problem
Lets think step by step
—————————————————————————————————————————-
Efficiently solve the following math challenge. Explain your approach step-by-step The answer should
end with: The final answer is: $\\boxed{{answer}}$ where [answer] is just the final number or expression
that solves the problem Problem: {question} Lets think step by step
—————————————————————————————————————————-
Please solve the math problem. For simple problems offer a quick solution with minimal details.
For more challenging problems, explain your approach step-by-step. Finish with The final answer is:
$\\boxed{{answer}}$ . where [answer] is just the final number or expression that solves the problem.
Problem: {question} Lets think step by step.
—————————————————————————————————————————-
You should solve this math problem. If the problem is easy, provide a brief solution with little explanation.
For more difficult problems, follow this structured format Step 1: [Brief description] [Simple explanation
and calculations]
Step 2: [Brief description] [Simple explanation and calculations]
Repeat steps until your reach a solution
Problem: {question} End with: The final answer is: $\\boxed{{answer}}$ where [answer] is just the
final number or expression that solves the problem.
—————————————————————————————————————————-

Table 10: Prompts used to evaluate LLMs on the MATH dataset for SCORE tasks. {question} denotes a placeholder
for an input query.
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H Per Topic Analysis

Figure 6: Accuracy ranges and consistency rates (CR) for Llama-3.1 405B model across three datasets a) MMLU-
Pro b) AGIEval c) MATH. Each plot represents values across corresponding to specific topics or areas of the dataset
(see Appendix A for details). "All" - indicates the accuracy and consistency values for the entire dataset.
For MMLU-Pro, consistency is not uniformly distributed, and accuracy varies between 3.8% and 10.9%. There
are tasks with same consistency but varying accuracy (e.g., health vs. history) and same accuracy but varying
consistency (e.g., physics vs. other). For AGIEval, the accuracy variance across subsets ranges from a maximum of
1% on LSAT-AR to a minimum of 2.3% on SAT-EN. In the case of MATH, the trend is clear: as question complexity
increases, accuracy decreases, consistency declines, and variance grows.
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