
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 304–317

April 30, 2025 ©2025 Association for Computational Linguistics

Efficient Continual Pre-training of LLMs for Low-resource Languages
Arijit Nag

IIT Kharagpur
arijitnag@iitkgp.ac.in

Animesh Mukherjee
IIT Kharagpur

animeshm@cse.iitkgp.ac.in

Niloy Ganguly
IIT Kharagpur

niloy@cse.iitkgp.ac.in

Soumen Chakrabarti
IIT Bombay

soumen@cse.iitb.ac.in

Abstract

Open-source large language models (Os-
LLMs) propel the democratization of natural
language research by giving the flexibility
to augment or update model parameters for
performance improvement. Nevertheless, like
proprietary LLMs, Os-LLMs offer poorer
performance on low-resource languages
(LRLs) than high-resource languages (HRLs),
owing to smaller amounts of training data
and underrepresented vocabulary. On the
other hand, continual pre-training (CPT) with
large amounts of language-specific data is a
costly proposition in terms of data acquisition
and computational resources. Our goal is to
drastically reduce CPT cost. To that end, we
first develop a new algorithm to select a subset
of texts from a larger corpus. We show the
effectiveness of our technique using very little
CPT data. In search of further improvement,
we design a new algorithm to select tokens
to include in the LLM vocabulary. We ex-
periment with the recent Llama-3 model and
nine Indian languages with diverse scripts and
extent of resource availability. For evaluation,
we use IndicGenBench, a generation task
benchmark dataset for Indic languages. We
experiment with various CPT corpora and
augmented vocabulary size and offer insights
across language families.

1 Introduction

Large language models (LLMs) like GPT-4 (Ope-
nAI et al., 2023), ChatGPT, Llama-2 (Touvron
et al., 2023), Llama-3 (Dubey et al., 2024),
PaLM (Chowdhery et al., 2022), inter alia, are
opening up new possibilities for low-resource lan-
guages (LRLs). Until recently, collecting suffi-
cient labeled LRL data to finetune LLMs for clas-
sification and generation tasks used to be chal-
lenging. Today, LLMs give decent performance
with zero/few-shot inference. Having said that,
there is still a substantial performance gap be-
tween high-resource languages (HRLs) and LRLs

Avg. tokens per word

Odia
Malayalam

Kannada
Santali
Telugu

Tamil
Gujrati

Assamese
Punjabi
Bengali

Sanskrit
Bodo

Marathi
Konkani

Urdu
Hindi

English

0 20 40 60 80

LLama-3* Mistral Gemma Phi-3 GPT-4o

Figure 1: Average tokens generated per word for vari-
ous Indic languages using different recent LLMs. The
last column shows the performance in English.

for LLMs (Hendy et al., 2023; Jiao et al., 2023;
Bang et al., 2023). This is since LRLs like In-
dic languages are still under-represented by recent
LLMs, as shown in Figure 1: Compared to English,
the average number of tokens required to generate
a LRL word by these LLMs is substantially higher.
The inability to represent a word with a single to-
ken may lead to suboptimal learning of context
thus potentially affecting LLM’s performance for
LRL tasks. A feasible way to overcome such short-
coming is to initiate continual pre-training (CPT),
specifically with LRL text.
CPT can help LLMs learn domains/languages

that are un/under-explored in the pre-training stage.
While this is a viable option to improve LLM’s per-
formance, training such gigantic models consumes
expensiveGPU resources and time, whichmakes it
less feasible in resource-constrained setups. To ad-
dress these issues and harness CPT’s potential, we
propose a two-pronged approach. First, we intro-
duce a score-based method to select a small set of
high-quality, language-specific training data. Con-
currently, we implement a strategy to expand the
token vocabulary in LLMs. This vocabulary aug-
mentation improves the understanding of impor-
tant words in low-resource languages, leading to
further performance gains. The strategies and the
rigorous experiments undertaken are detailed next.

304

https://openai.com/blog/chatgpt

Large corpus Efficient subset
selection

Token selection
for

augmentation
CPT Adapted

LLM

Base
LLM

Downstream
tasks

Figure 2: Sketch of proposed LLM CPT method. Dotted lines indicate optional steps.

The two proposed methods
(1) We propose a global + local score for each sen-
tence for selecting a small subset of text from an
LRL training corpus to perform CPT and improve
LLM performance. Experiments show significant
performance boost.
(2) We propose a method to augment the token vo-
cabulary of the LLM to further improve LRL task
performance in certain situations.
Experiments We present a comprehensive study
on the recently released and very popular white-
box LLM LLama-3-8B, applying our CPT meth-
ods to nine Indian languages in six scripts, cover-
ing three resource levels (High, Mid, Low) (Singh
et al., 2024) over five LRL generation tasks pro-
vided by IndicGenBench (Singh et al., 2024), in-
cluding summarization, machine translation, and
question-answering.
Observations Single/limited word prediction
tasks like QA are more sensitive to vocabulary
augmentation compared to multi-word generation
tasks like summarization or machine translation;
the effect of vocabulary augmentation on tokeniza-
tion varies across scripts; and larger CPT corpus
and vocabulary do not always convert to perfor-
mance improvements.

2 Related work

Language models use diverse subword tok-
enization algorithms like Byte-Pair Encoding
(BPE) (Sennrich et al., 2016), Sentence-
Piece (Kudo and Richardson, 2018), Word-
Piece (Schuster and Nakajima, 2012), and
Unigram (Kudo, 2018). Due to the limited size of
an LLM’s token vocabulary, over-fragmentation
(Muller et al., 2021; Rust et al., 2021; Ahia et al.,
2023; Petrov et al., 2023) is a common problem,
especially for multilingual models where not all
languages get equal representation. Apart from
task performance degradation (Hendy et al., 2023;
Jiao et al., 2023; Bang et al., 2023; Toraman et al.,
2023; Fujii et al., 2023), over-fragmentation leads

to slow inference (Petrov et al., 2023; Hofmann
et al., 2022) and increased training and infer-
ence/generation cost (Ahia et al., 2023; Petrov
et al., 2023; Nag et al., 2024). Various mitigation
methods have been proposed, including vocabu-
lary expansion (Chau et al., 2020; Cui et al., 2024;
Balachandran, 2023; Fujii et al., 2024; Yamaguchi
et al., 2024a) and replacing existing tokens in
the vocabulary with new ones (Minixhofer et al.,
2022; Dobler and de Melo, 2023; Ostendorff and
Rehm, 2023; Downey et al., 2023). In recent
work such as ChineseLlama (Cui et al., 2024) and
TamilLlama (Balachandran, 2023), the authors
add new language-specific tokens and then pre-
train the model with large amounts of training
data. More recently, Yamaguchi et al. (2024b) and
Tejaswi et al. (2024) explore CPT of LLMs while
varying the corpus, additional vocabulary and
embedding initialization techniques. However,
they do not focus on strategies to select corpus
and vocabulary.
In contrast, in this work, we propose a global

+ local joint rank-based system to first select
the small-scale training corpus and then augment
the LLM’s vocabulary with additional language-
specific tokens for CPT.With a small amount of in-
formative training data and added vocabulary, we
show substantial LLM performance improvement
for Indic languages.

3 Proposed method

In this work, we design a two-stage approach to im-
prove LLM’s performance with reduced resource
requirements. In the first stage, we select a subset
of the available LRL corpus, and in the next stage,
we select prospective new tokens for vocabulary
augmentation. These two together are used for the
purpose of CPT as shown in Figure 2. As the fig-
ure shows, the second stage (token selection) is op-
tional. Section 3.1 and 3.2 describe the corpus and
vocabulary selection algorithms, respectively.

305

Algorithm 1 Corpus selection for CPT.
Inputs:
• Large training corpus Cl

• Number of sentences to selectK
• LLM tokenizer T
• Parameters for weighted average α, β

1: W ← vocabulary from corpus Cl

2: fillWC (word count dictionary) usingW, Cl

3: SWC ← {} /* subword count dictionary */
4: for w ∈ W do
5: for subword tokens t ∈ T (w) do
6: SWC[t] +=WC[w]
7: for each word w do
8: initialize N [w]← 0
9: /* N [w] will store aggregated popularity of subwords

of w relative to itself */
10: for w ∈ W do
11: for t ∈ T (w) do
12: N [w] += SWC[t]−WC[w]
13: fillXco with word-word co-occurrence matrix from Cl

14: /* co-occurrence within a context window */
15: Wg ← PageRank(Xco)
16: /*Wg[w] stores the PageRank score of word w. */
17: initialize Rl[s]← 0 for all sentences s ∈ Cl

18: /* Local sentence score table */
19: initialize Rg[s]← 0 for all sentences s ∈ Cl

20: /* Global sentence score table */
21: initialize Rj [s]← 0 for all sentences s ∈ Cl

22: /* Joint sentence score table */
23: for sentence s ∈ Cl do
24: for word w ∈ s do
25: Rl[s] += N [w] /* popularity */
26: Rg[s] +=Wg[w] /* importance */
27: Rj [s] = αRl[s] + β Rg[s]
28: Cr ← top-K sentences by decreasing Rj [s]
29: return CPT training corpus Cr

3.1 Stage I: Sentence selection

In this stage, the goal is to identify a subset of sen-
tences from LRL corpusCl that will effectively en-
hance the LLM as a representative of the whole
of Cl. We regard a sentence as a strong represen-
tative if it contains numerous ‘important’ words
formed from popular subword tokens. These im-
portant words reflect the unique features of the cor-
pus, while the popular tokens represent commonly
used contexts.
Popular subwords In Algorithm 1, we first use
the LLM’s tokenizer to get all distinct subword to-
kens present in the corpus and compute their oc-
currence frequencies. Next, for a given word w
we compute the sum of the frequencies of its sub-
words. We now subtract the frequency of w from
this sum which indicates how much these tokens
solely contribute to words other than w. If this dif-
ference is high then it implies that the subwords
of w contribute to many other words in the corpus
and are thus more popular.
Important words From the LRL corpus, Algo-
rithm 1 (line 13) also builds a graph where the

words are nodes, and two words are connected if
they co-occur in a predefined context window. For
all of our experiments, we fixed the context win-
dow length as 5. The weighted adjacency matrix
is Xco. Then we apply the PageRank algorithm
(Page et al., 1999) on Xco to get the PageRank
score of eachword inWg. For a given sentence, we
sum the PageRank values of the constituent words
to assign a global score to the sentence (line 26).
Note that global score Rg[s] is LLM-agnostic.
Finally, we combine (global) importance and

(local) popularity scores to obtain a weighted com-
bination score for each sentence, and select the top
sentences based on this final score.

3.2 Stage II: Vocabulary selection

Similarly to the selection of the subsets of sen-
tences, we wish to find words from the selected
sentences (output of Algorithm 1) that are contex-
tually important and, at the same time, contain
popular subwords that are shared by many words,
making them vulnerable to distorted representa-
tion. Full details are in the Algorithm 2 described
in Appendix A.2.
To initialize the embedding of newly augmented

tokens, we use the mean embedding of the con-
stituent subwords generated by the existing tok-
enizer (Gee et al., 2022) and train them (update the
embedding value) while doing CPT.

4 Experiment and results

To check the effectiveness of our two-stage CPT
method, we use IndicGenBench (Singh et al.,
2024), a generation task benchmark dataset for
Indic languages covering Cross-lingual Summa-
rization, Machine Translation (MT) and Question-
Answering (QA) tasks (see Figure 4 in the Ap-
pendix for dataset overview). For MT and QA
tasks, there are two variants: one where the
target language is one of the Indic languages
(Flores(en→xx), XorQA(xx)), and the other where
the target language is English (Flores(xx→en),
XorQA(en)). For summarization, it is only from
English to Indic languages (CrossSum). We exper-
iment with nine Indic languages covering six (De-
vanagari, Bengali, Arabic, Telugu, Olchiki, Guru-
mukhi) different scripts and three (High/Mid/Low)
types of resource availability as described in the
existing work (Singh et al., 2024) and use the
Llama-3-8B parameter model as our base LLM.
We perform all our experiments in zero-shot set-

306

Target(xx) Target(en)
Metric→ Chrf++ Chrf++ Token-F1 Chrf++ Token-F1

Lang Script Type CPT data↓ CrossSum Flores(en→xx) XorQA(xx) Flores(xx→en) XorQA(en)

Urdu Arabic

High

Vanilla 17.79 31.01 0.34 42.24 0.65
TR(Best) 22.29 31.51 0.31 45.46 0.58
BR(Best) 14.37 24.21 0.31 38.26 0.65
Vanilla→TR(↑) 25.30% 1.61% -8.82% 7.62% -10.77%
BR→TR(↑) 55.11% 30.15% 0% 18.82% -10.77%

Bengali Bengali

Vanilla 16.09 28.45 0.61 41.41 0.64
TR(Best) 17.35 28.97 0.63 43.42 0.58
BR(Best) 14.69 24.44 0.67 44.81 0.66
Vanilla→TR(↑) 7.83% 1.83% 3.28% 4.85% -9.38%
BR→TR(↑) 18.11% 18.54% -5.97% -3.10% -12.12%

Telugu Telugu

Vanilla 13.21 25.59 0.28 39.65 0.61
TR(Best) 16.51 25.57 0.37 39.31 0.59
BR(Best) 14.39 23.34 0.33 39.53 0.67
Vanilla→TR(↑) 24.98% -0.08% 32.14% -0.86% -3.28%
BR→TR(↑) 14.73% 9.55% 12.12% -0.56% -11.94%
Avg(Vanilla→TR(↑)) 19.37% 1.12% 8.87% 3.87% -7.81%
Avg(BR→TR(↑)) 29.32% 19.41% 2.05% 5.05% -11.61%

Sanskrit Devanagari

Mid

Vanilla 7.69 12.35 0.43 30.35 0.55
TR(Best) 13.63 15.15 0.31 33.71 0.42
BR(Best) 12.57 16.21 0.41 31.47 0.39
Vanilla→TR(↑) 77.24% 22.67% -27.91% 11.07% -23.64%
BR→TR(↑) 8.43% -6.54% -24.39% 7.12% 7.69%

Assamese Bengali

Vanilla 11.01 15.91 0.57 30.26 0.56
TR(Best) 15.78 21.81 0.61 39.52 0.56
BR(Best) 12.81 18.18 0.59 34.38 0.61
Vanilla→TR(↑) 43.32% 37.08% 7.02% 30.60% 0%
BR→TR(↑) 23.19% 19.97% 3.39% 14.95% -8.20%

Punjabi Gurumukhi

Vanilla 15.36 27.23 0.58 36.33 0.64
TR(Best) 17.52 27.91 0.57 44.14 0.62
BR(Best) 12.03 18.97 0.63 40.25 0.63
Vanilla→TR(↑) 14.06% 2.50% -1.72% 21.50% -3.13%
BR→TR(↑) 45.64% 47.13% -9.52% 9.66% -1.59%
Avg(Vanilla→TR(↑)) 44.87% 20.75% -7.54% 21.06% -8.92%
Avg(BR→TR(↑)) 25.75% 20.19% -10.17% 10.58% -0.70%

Santali Olchiki

Low

Vanilla 0.34 0.63 0.62 18.79 0.35
TR(Best) 9.49 12.24 0.67 20.71 0.41
BR(Best) 13.12 16.51 0.63 20.18 0.42
Vanilla→TR(↑) 2691.18% 1842.86% 8.06% 10.22% 17.14%
BR→TR(↑) -27.67% -25.86% 6.35% 2.63% -2.38%

Konkani Devanagari

Vanilla 0.88 1.86 0.31 27.89 0.56
TR(Best) 16.06 18.81 0.38 36.29 0.51
BR(Best) 0.21 0.71 0.31 35.58 0.58
Vanilla→TR(↑) 1725% 911.29% 22.58% 30.12% -8.93%
BR→TR(↑) 7547.62% 2549.30% 22.58% 2% -12.07%

Bodo Devanagari

Vanilla 0.44 0.89 0.09 18.42 0.29
TR(Best) 15.89 20.31 0.37 31.56 0.58
BR(Best) 14.69 17.12 0.41 26.65 0.53
Vanilla→TR(↑) 3511.36% 2182.02% 311.11% 71.34% 100%
BR→TR(↑) 8.17% 18.63% -9.76% 18.42% 9.43%
Avg(Vanilla→TR(↑)) 2642.51% 1645.39% 113.92% 37.23% 36.07%
Avg(BR→TR(↑)) 2509.37% 847.36% 6.39% 7.68% -1.67%

Table 1: Vanilla LLM’s performance comparison after CPT with TR=Top Rank, BR=Bottom Rank small size
(≤30K) corpus for various Indic languages covering different scripts and resource types. We report the perfor-
mance improvement from Vanilla→TR and BR→TR. We also report the average improvement across resource
type availability as Avg(Vanilla→TR(↑)) and Avg(BR→TR(↑)), positive improvements are marked in bold and
underlined.

ting both for off-the-shelf vanilla LLM and after
doing the CPT over it. Details of LLM parameters
and prompts are in the Appendix B (see Table 9
and Figure 5, respectively). For evaluation, we use
Character-F1 (ChrF++ (Popović, 2017)) for Sum-
marization and MT tasks and Token-F1 for QA
tasks. For all languages, we sample the CPT cor-
pus from the IndicCorpV2 dataset (Doddapaneni
et al., 2022) and to restrict the cost of experiments,
we limit the CPT corpus size to 10K, 20K and 30K
and, similarly, the augmented vocabulary size to
100, 200 and 300.

4.1 CPT corpus helps despite small size

In Table 1, we show the effect of CPT of the
vanilla LLM with the small-sized ranked corpus
that we obtain using Algorithm 1. We experi-
ment with 10K, 20K and 30K top-ranked sentences

as CPT corpus and report the best among them
(denoted as TR(Best)). As the average results
(please refer to the Appendix Table 8) are simi-
lar to the best result, here we only report the best
performance result. We use off-the-shelf vanilla
Llama-3-8B model’s performance as our baseline.
We also report the change in performance (%)
from vanilla to TR(Best) for individual languages
as well as resource type availability. In general,
we observe significant performance improvements
for most of the tasks and languages. The im-
provements are progressively higher from the high-
resource language group to the low-resource lan-
guage group. This observation is expected as
the vanilla LLMs are already well-trained in high-
resource languages and may not get much benefit
from CPT as compared to the resource-poor lan-
guages. Further for the QA tasks, both when the

307

Metric→ Chrf++ Chrf++ Token-F1 Chrf++ Token-F1
Lang Script Fragment CPT data +Vocab CrossSum Flores(en→xx) XorQA(xx) Flores(xx→en) XorQA(en)

Santali OlChiki

Large

TR(Best) No 9.49 12.24 0.67 20.71 0.41
Yes 13.97 13.99 0.26 14.54 0.32
chg(↑) 47.21% 14.30% -61.19% -29.79% -21.95%

Telugu Telugu TR(Best) No 16.51 25.57 0.37 39.31 0.59
Yes 18.13 26.03 0.36 43.59 0.61
chg(↑) 9.81% 1.80% -2.70% 10.89% 3.39%
Avg chg 28.51% 8.05% -31.95% -9.45% -9.28%

Assamese Bengali

Medium

TR(Best) No 15.78 21.81 0.61 39.52 0.56
Yes 16.63 21.92 0.54 38.57 0.64
chg(↑) 5.39% 0.50% -11.48% -2.40% 14.29%

Bengali Bengali TR(Best) No 17.35 28.97 0.63 43.42 0.58
Yes 17.94 28.27 0.63 43.27 0.65
chg(↑) 3.40% -2.42% 0% -0.35% 12.07%

Punjabi Gurumukhi TR(Best) No 17.52 27.91 0.57 44.14 0.62
Yes 17.34 28.44 0.56 39.73 0.59
chg(↑) -1.03% 1.90% -1.75% -9.99% -4.84%
Avg chg 2.59% -0.01% -4.41% -4.25% 7.17%

Sanskrit Devanagari

Small

TR(Best) No 13.63 15.15 0.31 33.71 0.42
Yes 13.84 14.14 0.36 28.31 0.41
chg(↑) 1.54% -6.67% 16.13% -16.02% -2.38%

Bodo Devanagari TR(Best) No 15.89 20.31 0.37 31.56 0.58
Yes 17.12 20.51 0.49 30.11 0.51
chg(↑) 7.74% 0.98% 32.43% -4.59% -12.07%

Konkani Devanagari TR(Best) No 16.06 18.81 0.38 36.29 0.51
Yes 15.12 15.95 0.46 31.52 0.36
chg(↑) -5.85% -15.20% 21.05% -13.14% -29.41%

Urdu Arabic TR(Best) No 22.29 31.51 0.31 45.46 0.58
Yes 21.41 27.76 0.47 42.77 0.62
chg(↑) -3.95% -11.90% 51.61% -5.92% 6.90%
Avg chg -0.13% -8.20% 30.31% -9.92% -9.24%

Table 2: Comparing LLM’s performance w/o and w/ vocabulary augmentation (≤300) along with CPT with small
size (≤30K) ranked training corpus for various Indic languages covering different scripts and resource types. We
segregate the language (Large/Medium/Small) as per their fragmentation ratio reported in Table 7 and report in-
dividual and average performance changes across different levels of fragmentation, positive improvements are
marked bold and underlined.

target language is Indic and English, we observe
limited improvement for most of the cases and
especially for English target (XorQA(en)) perfor-
mance drops after CPT. This can be due to catas-
trophic forgetting of the English part as we do the
CPT with Indic language-specific data and also as
QA tasks performed here are limited word (1-2
words) prediction tasks, making it more vulnera-
ble to such problems. In Section 4.5, we discuss a
solution for them.

4.2 Sentence scoring and ranking help

To study the effect of corpus ranking we com-
pare TR(Best) with BR(Best). We form 10K, 20K,
30K subsets with the least scoring sentences from
the corpus, perform CPT and report the best per-
formance among them as BR(Best). In Table 1,
we report the change in performance (%) from
TR(Best) to BR(Best) for individual languages as
well as based on resource type availability. We ob-
serve that TR(Best) outperforms BR(Best) across
all tasks and languages except the QA tasks, show-
ing the effectiveness of the ranking algorithm. It
might be possible that top-ranked sentences lack
diversity and may constrain the output token distri-
bution. As QA tasks are sensitive to single-word
prediction, it can affect performance adversely.

4.3 Vocabulary augmentation helps in
specific cases

In previous sections, we observed CPT with a
small corpus improves LLM performance for most
tasks and languages. To check if the performance
can be improved further, we attempt vocabulary
augmentation. Our hypothesis is that vocabulary
augmentation would typically work for those lan-
guages where fragment ratio (average number of
tokens generated per word) is high. We find the
fragment ratio of the nine languages (Table 7) and
group them into large, medium and small. We
compare LLM performance with and without vo-
cabulary augmentation while running CPT with
TR(Best) and report the average improvement in
Table 2. We experiment with addition of 100, 200
and 300 tokens and report the best result. We see
vocabulary augmentation helps multi-word gen-
eration tasks like CrossSum and Flores(en→xx),
when the fragmentation ratio is medium to large.
At lower levels of fragment ratios, we do not see
benefits from vocabulary augmentation. In case of
XorQA(xx), we see performance drop after vocab-
ulary augmentation, for languages with a high frag-
ment ratio. Poor initialization of the newly aug-
mented words, followed by limited training, may
hamper their single-word prediction abilities. We
also discuss few error cases of XorQA(xx) in Ap-
pendix A.1.
For Flores(xx→en) and XorQA(en), where

308

Metric→ Chrf++ Chrf++ Token-F1 Chrf++ Token-F1
Lang Script Type CPT data +Vocab CrossSum Flores(en→xx) XorQA(xx) Flores(xx→en) XorQA(en)

Urdu Arabic

High

30K 300 20.69 27.17 0.44 40.52 0.56
100K 2000 23.19 30.79 0.37 39.37 0.51

chg 12.08% 13.32% -15.91% -2.84% -8.93%

Bengali Bengali
30K 300 17.32 27.61 0.63 37.02 0.61
100K 2000 19.29 29.67 0.49 39.07 0.55

chg 11.37% 7.46% -22.22% 5.54% -9.84%

Telugu Telugu
30K 300 18.13 24.19 0.31 41.88 0.61
100K 2000 18.16 26.13 0.17 31.59 0.54

chg 0.17% 8.02% -45.16% -24.57% -11.48%
Avg.chg 7.87% 9.6% -27.76% -7.29% -10.08%

Sanskrit Devanagari

Mid

30K 300 12.02 12.98 0.37 26.39 0.47
100K 2000 9.06 13.91 0.22 25.44 0.41

chg -24.63% 7.16% -40.54% -3.6% -12.77%

Assamese Bengali
30K 300 16.67 22.38 0.55 35.92 0.54
100K 2000 16.69 23.29 0.46 35.56 0.47

chg 0.12% 4.07% -16.36% -1% -12.96%

Punjabi Gurumukhi
30K 300 17.41 28.78 0.53 41.78 0.59
100K 2000 16.81 26.32 0.33 11.01 0.47

chg -3.45% -8.55% -37.74% -73.65% -20.34%
Avg.chg -9.32% 0.89% -31.55% -26.08% -15.36%

Santali Ol Chiki

Low

30K 300 12.66 13.02 0.17 13.75 0.36
100K 2000 10.89 4.49 0.05 14.91 0.22

chg -13.98% -65.51% -70.59% 8.44% -38.89%

Konkani Devanagari
30K 300 15.45 15.81 0.37 30.96 0.31
100K 2000 15.51 20.15 0.38 30.13 0.34

chg 0.39% 27.45% 2.7% -2.68% 9.68%

Bodo Devanagari
30K 300 16.83 19.51 0.46 30.55 0.49
100K 2000 16.83 21.08 0.44 32.19 0.53

chg 0% 8.05% -4.35% 5.37% 8.16%
Avg.chg -4.53% -10% -24.08% 3.71% -7.02%

Table 3: Comparing LLM’s performance after CPT with 30K corpus, 300 additional vocabulary with 100K corpus
with 2000 additional vocabulary for various Indic languages covering different scripts and resource types. Positive
average improvements are marked bold and underlined.

the target language is English, we do not see
any improvement from vocabulary augmenta-
tion. This may be because we are adding In-
dic language-specific vocabulary and training with
that language-specific corpus, giving no or nega-
tive improvement for English target tasks (we dis-
cuss it in Section 4.5). Another interesting obser-
vation is that with vocabulary augmentation, the
LLM can generate more tokens than vanilla or
without vocabulary-augmented LLM, given a sim-
ilar output generation limit (more details on Ap-
pendix A.3).

4.4 Additional corpus and tokens not always
helpful

To check if CPT with a larger corpus size and an
order of magnitude large vocabulary size results
in even better performance, we conduct CPT with
100K ranked corpus and 2000 additional vocabu-
lary and compare it with 30K ranked corpus and
300 additional vocabulary. In Table 3, we report
the result of these two configurations and find that
a large CPT corpus with more additional vocab-
ulary does not improve the performance as com-
pared to a small-size corpus and vocabulary aug-
mentation. This can be due to two reasons, first,
as we are ranking the corpus, it might be possi-
ble most informative sentences are already present
in the smaller 30K corpus. Second, as we are do-
ing cost-efficient CPT by using LoRA and limited
training steps (2 epochs), a large corpus with more
additional vocabulary finds it difficult to converge,

resulting in sub-optimal performance.
Metric→ Chrf++ Token-F1

Lang CPT data +Vocab Flores(xx→en) XorQA(en)

Urdu 30K Yes 40.52 0.56
+20K(En) Yes 40.72 0.63

Bengali 30K Yes 40.58 0.61
+20K(En) Yes 40.55 0.56

Telugu 30K Yes 41.88 0.61
+20K(En) Yes 43.91 0.61

Sanskrit 30K Yes 26.39 0.47
+20K(En) Yes 28.01 0.37

Assamese 30K Yes 38.49 0.61
+20K(En) Yes 38.92 0.58

Punjabi 30K Yes 41.78 0.59
+20K(En) Yes 43.55 0.59

Santali 30K Yes 14.54 0.32
+20K(En) Yes 17.93 0.39

Konkani 30K Yes 30.96 0.31
+20K(En) Yes 29.49 0.45

Bodo 30K Yes 30.55 0.49
+20K(En) Yes 32.08 0.61

Table 4: Comparing LLM’s performance on English
target generation tasks w/o and w/ additional 20K En-
glish corpus along with 30K ranked CPT corpus for var-
ious Indic languages. covering different scripts and re-
source types. Best performances are marked bold and
underlined.

4.5 Adding English corpus to CPT improves
English generation

In Table 2, we see LLM’s performance drops for
English target generation tasks like Flores(xx→en)
and XorQA(en) after CPT using additional vocab-
ulary. We hypothesize that this can be due to catas-
trophic forgetting as English corpus is not used
while doing CPT. To verify this we add 20K ran-
domly selected English sentence corpus with exist-
ing 30K Indic language-specific ranked corpus for
CPT. In Table 4, we compare the LLM’s perfor-
mance after doing CPT with and without 20K En-
glish sentence corpus. We see that in almost all the
cases, performance improves or remains the same

309

Lang Script Type CPT data +Vocab CrossSum Flores(en→xx) XorQA(xx)

Bengali Bengali High Vanilla - 192.95 149.58 20.90
30K 300 158.37 123.22 16.23

Telugu Telugu High Vanilla - 277.20 223.01 6.00
30K 300 113.22 93.88 2.00

Assamese Bengali Mid Vanilla - 179.91 157.89 22.04
30K 300 98.09 91.06 12.39

Punjabi Gurumukhi Mid Vanilla - 233.87 206.14 25.47
30K 300 112.97 99.01 12.21

Santali Ol Chiki Low Vanilla - 353.90 344.09 40.85
30K 300 142.88 138.85 15.50

Konkani Devanagari Low Vanilla - 82.70 72.73 10.44
30K 300 110.09 98.55 13.96

Bodo Devanagari Low Vanilla - 86.51 83.86 8.85
30K 300 98.32 92.41 10.90

Sanskrit Devanagari Mid Vanilla - 82.41 69.05 9.31
30K 300 106.14 90.00 12.22

Urdu Arabic High Vanilla - 96.98 80.24 9.42
30K 300 155.19 125.79 13.56

Table 5: Comparing the average number of tokens gen-
erated by the LLM before and after CPT with 30K and
300 additional vocabularies for all the tasks across Indic
languages covering different scripts and resource types.
The highest values are marked bold and underlined.

as compared to CPT with only language-specific
corpus. This justifies adding English language-
specific corpus before CPT.

उ�ाटनीयम

['Ġà¤īà¤¦', 'à¥įà¤§', 'à¤¾à¤Ł',
'à¤¨', 'à¥Ģà¤¯', 'à¤®'] -- 6

['Ġ', 'उ', '�', '◌ा', 'ट', 'न',
'◌ी', 'य', 'म'] -- 9

��వరణ

['à°', 'µ', 'à°', '¾', 'à°', '¤', 'à°', '¾',
'à°', 'µ', 'à°', '°', 'à°', '£'] -- 14

['వ', '◌ా', 'త', '◌ా', 'వ',
'ర', 'ణ'] -- 7

Devanagari

Telugu

Figure 3: Number of tokens (mentioned in numbers)
generated before and after the vocabulary augmenta-
tion for Devanagari and Telugu scripts. Red and Green
shades indicate an increase and decrease of tokens, re-
spectively, after vocabulary addition. (The strange-
looking characters are not typesetting aberrations.)

4.6 Effect of tokenization after vocabulary
addition

Finally, we study the LLM’s tokenizer capability
before and after adding additional vocabulary. In
general, extra vocabulary can improve toke niza-
tion and generate a lesser number of tokens, which
helps to reduce generation costs. In Table 5, we
show the average number of tokens generated by
the LLM’s tokenizer before and after adding addi-
tional vocabulary for all languages and tasks. In
our case, we stick to adding single-character to-
kens whenever possible, as this can help to trans-
fer the CPT benefit to downstream tasks. During
CPT, if we add multi-character tokens, it might
be possible that the downstream tasks may not
have that token, resulting in not passing the train-
ing benefit to target tasks. We observe that addi-
tional vocabulary augmentation reduces the aver-
age tokens per word except for the languages us-

ing Devanagari and Arabic scripts. Flores(xx→en)
and XorQA(en) are unaffected by addition of only
Indic language-specific tokens. In Figure 3, we
show two examples of tokenization with and with-
out additional vocabulary augmentation. As for
Devanagari scripts, the word उद्धाटनीयम splits into
6 tokens, whereas, after vocabulary addition, it
splits into 9 tokens. This is due to the fact that
vanilla LLM tokenizer already splits the word bet-
ter than single character split, but when we add
single character tokens as additional vocabulary,
it worsens the tokenization. However, for Telugu
scripts where the word వాతావరణ splits into 14 to-
kens (single character splits into multiple bytes),
single character token addition improves the tok-
enization by splitting it into 7 characters. Sum-
mary of observations: Combining the observa-
tions from Tables 1, 2 and 5, we see all the lan-
guages benefit from CPT without vocabulary aug-
mentation, though the degree of improvement is
more for low resource languages. However, a sim-
ilar pattern of improvement is absent when we
augment additional vocabulary during CPT; here,
we see improvement only if the language is over-
fragmented by the LLM’s tokenizer, irrespective
of their resource availability type. As an exam-
ple, although the language Bodo is resource-poor,
it has a lesser fragment ratio (Table 7) as it shares
the resource-rich Devanagari script, failing to reap
the benefit of vocabulary augmentation. On the
other hand, Santali, both a resource-poor and over-
fragmented language (Table 7), get additional gain
after vocabulary augmentation. So, our conclu-
sion from this whole exercise is our method works
best for a language which is poor in both terms, re-
sources and script representation.

5 Conclusion

This work proposes a technique to select a com-
pact CPT corpus and a method to augment the
LLM vocabulary with a small set of new tokens.
Experiments on IndicGenBench, covering nine In-
dian languages with diverse scripts and resources,
show that a small CPT corpus improves perfor-
mance, with additional gains possible through lim-
ited vocabulary augmentation. However, improve-
ments vary by script, and excessive token addition
or a larger CPT corpus may not always help. We
also observed that language-specific CPT can neg-
atively impact English generation. Our findings of-
fer valuable insights for leveraging LLMs in LRLs.

310

6 Limitations

Although recently, many white box LLMs like
Llama families, Mistral, Phi, Gemma, etc., are
available; we have only experimented with the
LLama-3-8B model to work within our computa-
tion budget and carry out experiments with vari-
ous languages and tasks. Though we stick to only
one LLM for our research, including more LLMs
in our study would be more insightful. To initial-
ize the newly added word embedding, we use only
the mean pooling method, which takes the aver-
age embedding of constituent tokens produced by
the existing tokenizer. Although there are methods
of embedding initialization like FOCUS, Merge,
Align, Random, etc., we choose to mean as exist-
ing studies (Yamaguchi et al., 2024b; Tejaswi et al.,
2024) show that it produces comparable results de-
spite being simple. Having said that, considering
other embedding techniques can make the study
more comprehensive. Lastly, we restrict our exper-
iment to only Indic languages and a few generation
tasks; adding resource-poor languages from other
language families and some more generation and
classification tasks can strengthen our study fur-
ther. We leave addressing these issues to future
work.

References
Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo
Kasai, David R. Mortensen, Noah A. Smith, and Yu-
lia Tsvetkov. 2023. Do all languages cost the same?
tokenization in the era of commercial language mod-
els.

Abhinand Balachandran. 2023. Tamil-llama: A new
tamil language model based on llama 2.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Zi-
wei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan
Xu, and Pascale Fung. 2023. A multitask, multilin-
gual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity.

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 2020.
Parsing with multilingual BERT, a small corpus, and
a small treebank. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1324–1334, Online. Association for Computational
Linguistics.

Aakanksha Chowdhery et al. 2022. Palm: Scaling lan-
guage modeling with pathways.

Yiming Cui, Ziqing Yang, and Xin Yao. 2024. Efficient
and effective text encoding for chinese llama and al-
paca.

Konstantin Dobler and Gerard de Melo. 2023. FO-
CUS: Effective embedding initialization for mono-
lingual specialization ofmultilingual models. InPro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 13440–
13454, Singapore. Association for Computational
Linguistics.

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham
Ramesh, Shreyansh Goyal, Mitesh M. Khapra,
Anoop Kunchukuttan, and Pratyush Kumar. 2022.
Towards leaving no indic language behind: Building
monolingual corpora, benchmark and models for in-
dic languages. ArXiv, abs/2212.05409.

C.m. Downey, Terra Blevins, Nora Goldfine, and Shane
Steinert-Threlkeld. 2023. Embedding structure mat-
ters: Comparing methods to adapt multilingual vo-
cabularies to new languages. In Proceedings of
the 3rd Workshop on Multi-lingual Representation
Learning (MRL), pages 268–281, Singapore. Asso-
ciation for Computational Linguistics.

Abhimanyu Dubey et al. 2024. The llama 3 herd of
models.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hi-
roki Iida, Masanari Ohi, Kakeru Hattori, Hirai Shota,
Sakae Mizuki, Rio Yokota, and Naoaki Okazaki.
2024. Continual pre-training for cross-lingual llm
adaptation: Enhancing japanese language capabili-
ties.

Takuro Fujii, Koki Shibata, Atsuki Yamaguchi, Teru-
fumi Morishita, and Yasuhiro Sogawa. 2023. How
do different tokenizers perform on downstream tasks
in scriptio continua languages?: A case study in
Japanese. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 39–
49, Toronto, Canada. Association for Computational
Linguistics.

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini,
and Paolo Torroni. 2022. Fast vocabulary transfer
for language model compression. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing: Industry Track, pages
409–416, Abu Dhabi, UAE. Association for Compu-
tational Linguistics.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas
Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are gpt models at ma-
chine translation? a comprehensive evaluation.

Valentin Hofmann, Hinrich Schütze, and Janet Pierre-
humbert. 2022. An embarrassingly simple method
to mitigate undesirable properties of pretrained lan-
guage model tokenizers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics.

311

http://arxiv.org/abs/2305.13707
http://arxiv.org/abs/2305.13707
http://arxiv.org/abs/2305.13707
http://arxiv.org/abs/2311.05845
http://arxiv.org/abs/2311.05845
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2304.08177
http://arxiv.org/abs/2304.08177
http://arxiv.org/abs/2304.08177
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.mrl-1.20
https://doi.org/10.18653/v1/2023.mrl-1.20
https://doi.org/10.18653/v1/2023.mrl-1.20
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2404.17790
http://arxiv.org/abs/2404.17790
http://arxiv.org/abs/2404.17790
https://doi.org/10.18653/v1/2023.acl-srw.5
https://doi.org/10.18653/v1/2023.acl-srw.5
https://doi.org/10.18653/v1/2023.acl-srw.5
https://doi.org/10.18653/v1/2023.acl-srw.5
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://doi.org/10.18653/v1/2022.emnlp-industry.41
http://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2302.09210

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is
chatgpt a good translator? yes with gpt-4 as the en-
gine.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization
of subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 3992–
4006, Seattle, United States. Association for Com-
putational Linguistics.

Benjamin Muller, Antonios Anastasopoulos, Benoît
Sagot, and Djamé Seddah. 2021. When being un-
seen from mBERT is just the beginning: Handling
new languages with multilingual language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 448–462, Online. Association for Computa-
tional Linguistics.

Arijit Nag, Animesh Mukherjee, Niloy Ganguly, and
Soumen Chakrabarti. 2024. Cost-performance opti-
mization for processing low-resource language tasks
using commercial llms.

OpenAI et al. 2023. Gpt-4 technical report.

Malte Ostendorff and Georg Rehm. 2023. Efficient lan-
guage model training through cross-lingual and pro-
gressive transfer learning.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing : Bringing order to the web. In The Web Confer-
ence.

Aleksandar Petrov, Emanuele La Malfa, Philip H. S.
Torr, and Adel Bibi. 2023. Language model tokeniz-
ers introduce unfairness between languages.

Maja Popović. 2017. chrF++: words helping char-
acter n-grams. In Proceedings of the Second Con-
ference on Machine Translation, pages 612–618,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian
Ruder, and Iryna Gurevych. 2021. How good is
your tokenizer? on the monolingual performance of
multilingual language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3118–3135, Online. As-
sociation for Computational Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units.

Harman Singh, Nitish Gupta, Shikhar Bharadwaj, Di-
nesh Tewari, and Partha Talukdar. 2024. Indicgen-
bench: A multilingual benchmark to evaluate gener-
ation capabilities of llms on indic languages.

Atula Tejaswi, Nilesh Gupta, and Eunsol Choi. 2024.
Exploring design choices for building language-
specific llms.

Cagri Toraman, Eyup Halit Yilmaz, Furkan Şahi
�
nuç,

and Oguzhan Ozcelik. 2023. Impact of tokenization
on language models: An analysis for turkish. ACM
Trans. Asian Low-Resour. Lang. Inf. Process., 22(4).

Hugo Touvron et al. 2023. LLaMA 2: Open foundation
and fine-tuned chat models.

Atsuki Yamaguchi, Aline Villavicencio, and Nikolaos
Aletras. 2024a. An empirical study on cross-lingual
vocabulary adaptation for efficient language model
inference.

Atsuki Yamaguchi, Aline Villavicencio, and Nikolaos
Aletras. 2024b. How can we effectively expand the
vocabulary of llms with 0.01gb of target language
text?

312

http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
http://arxiv.org/abs/2403.05434
http://arxiv.org/abs/2403.05434
http://arxiv.org/abs/2403.05434
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2301.09626
http://arxiv.org/abs/2301.09626
http://arxiv.org/abs/2301.09626
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
http://arxiv.org/abs/2305.15425
http://arxiv.org/abs/2305.15425
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2406.14670
http://arxiv.org/abs/2406.14670
https://doi.org/10.1145/3578707
https://doi.org/10.1145/3578707
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2402.10712
http://arxiv.org/abs/2402.10712
http://arxiv.org/abs/2402.10712
http://arxiv.org/abs/2406.11477
http://arxiv.org/abs/2406.11477
http://arxiv.org/abs/2406.11477

Efficient Continual Pre-training of LLMs for Low-resource Languages
(Appendix)

A Supplementary results

Figure 4: Example instance from each dataset.

A.1 Error cases for QA tasks
We show a few error cases in Table 6, where the LLM fails after vocabulary augmentation for XorQA(xx).
In one such case, the prediction is correct after vocabulary augmentation, but the evaluation metric flags it
as incorrect owing to different wording. E.g.,৮৭,০০০ and৮৭ হাজাৰ have samemeaning as in Assamese
হাজাৰ means 1000. There are cases where we find the vocabulary-augmented LM generates the correct
response, but in English. Also, there are cases where the LM stopped generation after producing the first
character, which is correct. This can be due to the adverse effect of change in vocabulary distribution
after augmentation. Another case is possibly related to the undesirable change in vocabulary distribution
where the model starts with newly added tokens and ultimately produces the wrong outcome.

313

Cases Gold label w/o Vocab add w/ Vocab add
Correct but different wording ৮৭,০০০ (87,000) ৮৭,০০০ ৮৭ হাজাৰ (হাজাৰ = 1000)
Correct but in English ᱓᱕ (35) ᱓᱕ 35
Stopped after few character నాసా (NASA) నాస నా
Started with added vocab and failed পিųম বংগ (West Bengal) পিųম বংগ িব বংগা.

Table 6: Error cases for XorQA(xx) tasks. The second, third and fourth columns show the gold label, predication
without and with additional vocabulary augmentation, respectively, for a particular question given a context. Im-
portant information related to the answers are underlined.

A.2 Vocabulary selection
The initial parts of Algorithm 2 are identical to sentence selection, but then we create score maps
Rl[w], Rg[w], Rj [w] for words to be used to get prospective tokens for augmentation in the LLM vo-
cabulary, not sentences. Here, we get the important words Vtarget by sorting w by decreasing Rj values
and choosing the words with top Q percentile scores (line 21). In our experiments, we use the 50th per-
centile (median) as the threshold to avoid long tail words. Next, we create a dummy corpus Cdummy by
concatenating each wordw in Vtarget,WC[w] number of times, separated by space (line 24). Finally, we
pass the dummy corpus Cdummy, and the desired token sizeK to a dictionary building and tokenization
algorithm ψ (line 26). For our case, we use the SentencePieceBPE tokenization algorithm.

Algorithm 2 Vocabulary extension before CPT.
Inputs:
• CPT corpus CCPT
• (existing) LLM tokenizer T
• Tokenizer training algorithm ψ
• Parameter for weighted average α, β
• Q, top percentile of words to send to tokenizer
• K, the number of new tokens to include

1: W ← vocabulary from corpus CCPT
2: fillWC (word count dictionary) usingW, CCPT
3: SWC ← {} /* subword count dictionary */
4: for word w ∈ W do
5: for subword tokens t ∈ T (w) do
6: SWC[t] +=WC[w]
7: initialize Rl[w]← 0 for all word w ∈ W
8: /* Local word score table */
9: Initialize Rg[w]← 0 for all word w ∈ W
10: /* Global word score table */
11: Initialize Rj [w]← 0 for all word w ∈ W
12: /* Joint word score table */
13: for word w ∈ W do
14: for t ∈ T (w) do
15: Rl[w] += SWC[t]−WC[w]
16: Xco ←Word co-occurrence matrix of Cl

17: Rg ← PageRank(Xco)
18: for w ∈ W do
19: Rj [w] = αRl[w] + β Rg[w]
20: Vtarget ← {}
21: sort w by decreasing Rj [w] and add top-Q percentile words to Vtarget

22: Cdummy ← empty string
23: /* Dummy corpus for training LLM tokenizer */
24: for word w ∈ Vtarget do
25: append w to Cdummy a total ofWC[w] times
26: taug ← ψ(Cdummy,K)
27: return taug , the tokens selected for augmentation

A.3 Vocabulary augmentation helps generate more tokens
An interesting observation is with vocabulary augmentation, the LLM can generate more tokens than
vanilla or without vocabulary-augmented LM, given a similar output generation limit. Consequently,
sometimes it can improve summarization performance by extracting more information about the context.
As shown in Figure 6, the LLM generates a longer and more informative summary of the given paragraph
after vocabulary augmentation. However, a thorough investigation is needed to check if more generations
are always linked with more relevant information.

314

https://huggingface.co/docs/transformers/en/tokenizer_summary

A.4 Fragment ratio

Language Fragment ratio
Santali 13.67
Telugu 12.44
Assamese 8.82
Bengali 8.04
Punjabi 7.54
Sanskrit 5.32
Bodo 3.89
Konkani 3.67
Urdu 2.85

Table 7: Degree of fragmentation on 30K rank training corpus for 9 Indic languages using LLama-3-8b model
tokenizer.

Metric→ chrf++ chrf++ Token-F1 chrf++ Token-F1
Lang Script Type CPT data↓ CrossSum Flores(en→xx) XorQA(xx) Flores(xx→en) XorQA(en)

Urdu Arabic High TR(Best) 22.29 31.51 0.31 45.46 0.58
TR(Mean) 21.80 31.10 0.30 44.79 0.54

Bengali Bengali High TR(Best) 17.35 28.97 0.63 43.42 0.58
TR(Mean) 16.93 28.24 0.61 42.24 0.57

Telugu Telugu High TR(Best) 16.51 25.57 0.37 39.31 0.59
TR(Mean) 15.48 25.04 0.35 37.99 0.59

Sanskrit Devanagari Mid TR(Best) 13.63 15.15 0.31 33.71 0.42
TR(Mean) 12.18 14.92 0.28 32.54 0.34

Assamese Bengali Mid TR(Best) 15.78 21.81 0.61 39.52 0.56
TR(Mean) 15.60 21.48 0.57 37.07 0.55

Punjabi Gurumukhi Mid TR(Best) 17.52 27.91 0.57 44.14 0.62
TR(Mean) 16.86 27.54 0.56 42.97 0.60

Santali Olchiki Low TR(Best) 9.49 12.24 0.67 20.71 0.41
TR(Mean) 9.31 9.32 0.64 20.14 0.39

Konkani Devanagari Low TR(Best) 16.06 18.81 0.38 36.29 0.51
TR(Mean) 15.20 18.23 0.36 35.99 0.47

Bodo Devanagari Low TR(Best) 15.89 20.31 0.37 31.56 0.58
TR(Mean) 14.94 18.29 0.33 29.79 0.51

Table 8: Vanilla LLM’s performance comparison between CPT with TR=Top Rank Best and Mean results using
small size (≤30K) corpus for various Indic languages covering different scripts and resource types.

B Experimental settings

Hyperparameter Value
LLM LLama-3
LLM parameter size 8 Billion
LLM model type 8B-Instruct
LLM temperature 0.5 (for summarization), 0.3(for translation), 0.001(for QA tasks)
LLM top p 0.95
Seed 42
LoRA r 8
LoRA alpha 32
LoRA dropout 0.05
LoRA task type CAUSAL_LM
Learning rate 1e-4
Batch size 32
Epoch 2
α, β in Algorithm 1 & 2 0.5,0.5

Table 9: Details of LLM LoRA training and zero-shot inference hyperparameters.

We use meta-llama/MetaLlama38BInstruct model for our CPT and zero-shot inferencing. We run all
the experiments in a single 80GB A100 GPU system. To preserve cost, we do all the experiments one
time, and to make them reproducible, we fix the seed value to 42. To run CPT with 30K data, it took
around 3 hours on a single 80GB A100 GPU. For Zero-shot testing, for each task, we select 100 random
instances for each language.

315

Figure 5: Details of the prompts used for each task.
316

Figure 6: Added vocabulary can help LLM generate more text compared to vanilla LLM, given the same output
generation limit. Here the summaries generated w/ and w/o additional vocabulary augmentation are shown in
Green and Red, respectively. We see that the summary generated w/ additional vocabulary contains more words
and information compared to w/o extra vocabulary augmented model.

317

