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Abstract

Manual assignment of Anatomical Therapeutic
Chemical (ATC) codes to prescription records
is a significant bottleneck in healthcare research
and operations at Ontario Health and InterRAI
Canada, requiring extensive expert time and
effort. To automate this process while main-
taining data privacy, we develop a practical ap-
proach using locally deployable large language
models (LLMs). Inspired by recent advances
in automatic International Classification of Dis-
eases (ICD) coding, our method frames ATC
coding as a hierarchical information extraction
task, guiding LLMs through the ATC ontology
level by level. We evaluate our approach using
GPT-4o as an accuracy ceiling and focus de-
velopment on open-source Llama models suit-
able for privacy-sensitive deployment. Testing
across Health Canada drug product data, the
RABBITS benchmark, and real clinical notes
from Ontario Health, our method achieves 78%
exact match accuracy with GPT-4o and 60%
with Llama 3.1 70B. We investigate knowl-
edge grounding through drug definitions, find-
ing modest improvements in accuracy. Further,
we show that fine-tuned Llama 3.1 8B matches
zero-shot Llama 3.1 70B accuracy, suggest-
ing that effective ATC coding is feasible with
smaller models. Our results demonstrate the
feasibility of automatic ATC coding in privacy-
sensitive healthcare environments, providing a
foundation for future deployments.

1 Introduction

The Anatomical Therapeutic Chemical (ATC) clas-
sification system is a standardized drug ontol-
ogy maintained by the World Health Organization
(WHO). Assigning ATC codes to drug mentions
is essential for various healthcare operations, in-
cluding medication inventory management, drug
utilization research, and health insurance claims
processing. However, manual ATC coding is time-
consuming and requires expert knowledge, creating
a significant bottleneck in healthcare workflows.

Our work represents a collaboration between
computer scientists and public health researchers at
InterRAI,1 aimed at addressing this critical work-
flow challenge. InterRAI Canada receives assess-
ment data from Ontario Health,2 where clinical
experts must manually review each prescription
record and assign appropriate ATC codes before
any population-level analysis can begin. This man-
ual process substantially delays both operational
reporting and critical public health research, par-
ticularly studies on drug utilization patterns and
medical practice variations across care facilities.

The challenge is particularly acute in process-
ing unstructured clinical text, where drug mentions
may appear as brand names, generic names, or
various informal descriptions. While recent ad-
vances in large language models (LLMs) have
shown promise in medical coding tasks, deploy-
ing these solutions in healthcare settings raises im-
portant privacy concerns. Many state-of-the-art
models require data to be sent to proprietary APIs,
making them unsuitable for handling sensitive clin-
ical information.

To address these challenges, we present a prac-
tical approach to automatic ATC coding designed
specifically for deployment in privacy-sensitive
healthcare environments. Our method frames ATC
coding as a hierarchical information extraction task,
leveraging open-source LLMs to navigate the ATC
ontology level by level. We evaluate our approach
against GPT-4o as an accuracy ceiling while fo-
cusing development on locally deployable Llama
models, making a first attempt at automatic ATC
coding with LLMs.

In developing this solution for public health re-
searchers at Ontario Health and InterRAI Canada,
we make several key contributions:

• We present, to the best of our knowledge,
1https://interrai.org/
2https://www.ontariohealth.ca/
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the first attempt to automate ATC coding
using LLMs. Building on recent advances
in medical coding, we adapt level-by-level
prompting for drug coding with a focus on
privacy-preserving deployment using open-
source models, achieving 78% exact-matches
with GPT-4o and 60% with Llama 3.1 70B.

• We provide empirical evidence that fine-tuned
smaller models can match the accuracy of
larger models in zero-shot settings at auto-
matic ATC coding.

• We conduct an investigation of knowledge
grounding strategies and analyze their impact
on coding accuracy at different ATC levels.

• We create a gold-standard dataset of 200 real
clinical prescription-ATC pairs annotated by a
domain expert, which we hope to expand and
release to support further research.

Our results demonstrate the viability of automated
ATC coding in real-world healthcare settings while
highlighting important considerations for deploy-
ing LLM-based solutions in privacy-sensitive en-
vironments. This work provides a foundation for
healthcare researchers and organizations seeking to
automate their coding processes without compro-
mising data privacy or security.

2 Background and Related Work

The ATC Ontology. The ATC classification sys-
tem is the global standard for drug classification
maintained by the WHO. It organizes drugs into a
five-level hierarchical structure based on the organ
system they target and their therapeutic, pharmaco-
logical, and chemical properties.

Each ATC code consists of seven characters en-
coding these five levels:

• Level 1: Main Anatomical/Pharmacological
Group

• Level 2: Pharmacological/Therapeutic Sub-
group

• Level 3: Chemical/Pharmacological/Thera-
peutic Subgroup

• Level 4: Finer Chemical/Pharmacologi-
cal/Therapeutic Subgroup

• Level 5: Chemical Substance

For instance, metformin’s ATC code A10BA02
indicates that it belongs to:

• A: Alimentary tract and metabolism (Level 1)

• A10: Diabetes medication (Level 2)

• A10B: Blood glucose lowering drug (Level 3)

• A10BA: Biguanides (Level 4)

• A10BA02: Metformin (Level 5)

ATC Coding. ATC coding refers to the task of
assigning correct ATC codes to drug mentions. In
this work, we specifically focus on assigning ATC
codes to concise drug descriptions—single terms
or brief phrases rather than full clinical narratives
or paragraphs; this aligns with the needs of Ontario
Health and InterRAI Canada. Automating this pro-
cess has diverse applications across healthcare and
pharmaceutical domains. In clinical settings, accu-
rate ATC coding can standardize electronic health
records (EHRs) by providing a consistent classifi-
cation system across different institutions that may
use varying drug nomenclature. For healthcare
administration, it can streamline insurance claims
processing and medical billing by automatically
mapping drug mentions to standardized codes. In
pharmacies and hospitals, automated coding can
enhance inventory management by organizing med-
ications according to their therapeutic categories,
facilitating efficient stock monitoring and procure-
ment planning. In research contexts, reliable auto-
matic ATC coding enables large-scale analysis of
medication data, systematic reviews of drug utiliza-
tion patterns, and comparative effectiveness studies
across different therapeutic categories.

Language Models in Medical Coding. The ap-
plication of language models in medical coding
has witnessed significant advancement in recent
years. This progress has been particularly evident
in the domain of International Classification of
Diseases (ICD) coding, where several pioneering
approaches have demonstrated promising results.
Huang et al. (2022) found success fine-tuning a pre-
trained language model for automatic ICD coding;
Yoon et al. (2024) developed innovative techniques
for translating medical information between dif-
ferent ontological frameworks; Boyle et al. (2023)
established state-of-the-art accuracy in automatic
ICD coding by zero-shot prompting LLMs in a
hierarchical fashion. Despite these advances in
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ICD coding, the ATC classification system has
received comparatively little attention in the con-
text of language model applications. Current ATC
coding practices rely predominantly on three ap-
proaches: manual coding by clinical experts, rule-
based systems utilizing string matching against
generic drug names, or hybrid systems combining
both approaches (Pang et al., 2015; Kellmann et al.,
2023). These existing methods, particularly the
manual processes, are not only time-intensive but
also susceptible to human error, highlighting the
need for more efficient and accurate solutions. To
address this gap in the literature, our study presents
the first investigation into utilizing LLMs for auto-
matic ATC coding, to the best of our knowledge.

3 Methods

3.1 Level-by-Level Prompting

Automatic ATC coding presents several significant
challenges. As of July 2024, the ATC ontology con-
sists of 6,807 distinct codes across 5 levels, with
levels 4 and 5—the most commonly used in clin-
ical practice—accounting for 6,428 codes. This
large label space makes accurate prediction particu-
larly challenging. Moreover, the scarcity of labeled
training data poses another significant issue. Due
to privacy concerns, datasets containing drug men-
tions from real clinical notes are rare and difficult
to access. When available, these datasets often ex-
hibit a long-tail distribution, with many ATC codes
having few or no examples.

While LLMs can potentially address these chal-
lenges through zero-shot learning by leveraging
their pre-trained knowledge, they face their own
limitations. Without task-specific supervision,
LLMs may generate plausible-looking but non-
existent codes. Indeed, Soroush et al. (2024)
demonstrated that even state-of-the-art models
achieve less than 50% accuracy when directly
prompted to generate ICD codes from unstructured
text descriptions.

To address these challenges, we follow Boyle
et al. (2023) in framing ATC coding as a hierarchi-
cal information extraction task rather than a gener-
ation task. Our approach guides the LLM through
the ATC hierarchy level-by-level. Given an unstruc-
tured drug description, we first prompt the LLM
to select the most appropriate level-1 code from
the 14 possible options. Based on this selection,
we then present the relevant level-2 codes associ-
ated with the chosen level-1 code, and continue this

Level-by-Level Prompting

SYSTEM: You are a pharmacology expert specializ-
ing in ATC classification.
USER: Classify the drug ‘{drug mention}’ into
one of the following ATC level {current level}
categories:

{atc code option 1}: {generic name 1}
{atc code option 2}: {generic name 2}
...
{atc code option N}: {generic name N}

Provide ONLY one of the options listed above that
best matches ‘{drug mention}’. Do not include any
description.

Figure 1: Prompt template used at each level of the ATC
hierarchy. The LLM is presented with all valid options
for the current level, based on the selection from the
previous level.

process through all five levels. More specifically,
Figure 1 presents the prompt we use at each level of
the hierarchy. To fully determine the level-5 ATC
code given a drug mention, we repeat the prompt 5
times, traversing through the ATC hierarchy.

This level-by-level information extraction ap-
proach offers two key advantages: it prevents code
fabrication by constraining the LLM to select from
valid options, and it reduces the size of the large
label space when making decisions by leveraging
the ATC hierarchy; at each level, the LLM chooses
from an average of just 5 options, with a maximum
of 37 options for any given parent code, making
the task more manageable than selecting from thou-
sands of possible codes simultaneously.

3.2 Knowledge Grounding

LLMs have demonstrated remarkable capabilities
in medical knowledge, achieving strong scores on
various medical licensing examinations (Clusmann
et al., 2023). While these models may have limited
exposure to the alphanumeric ATC codes during
training, they possess substantial understanding of
drugs, their mechanisms of action, and therapeutic
uses. This motivates an experiment: LLMs might
leverage their broader medical knowledge to make
more informed ATC coding decisions if provided
with appropriate context.

To test this hypothesis, we enhance our hierar-
chical extraction approach by grounding each can-
didate ATC code with definitions from the Unified
Medical Language System (UMLS) (Bodenreider,
2004). When presenting code options to the LLM,
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Figure 2: Examples of drug mentions and their corre-
sponding ATC codes at each level on the Health Canada
product names, RABBITS product names, and the On-
tario Health assessments. Each ATC code is followed
by its generic name, as in the “With Name” setting.

we augment each option with its corresponding
UMLS definition, providing rich context about the
therapeutic category or drug substance. For exam-
ple, when presenting the level-2 code “N02” as
an option, we include its UMLS definition “Anal-
gesics. compounds capable of relieving pain with-
out the loss of consciousness or without produc-
ing anesthesia”. This grounding approach aims to
bridge the gap between the comprehensive medical
knowledge in LLMs and the ATC coding task by
explicitly connecting alphanumeric codes to their
medical meanings.

4 Experimental Setup

4.1 Datasets
Health Canada Product Names. In clinical pre-
scriptions, healthcare providers typically specify
drugs by their brand names to facilitate patient pur-
chasing. To develop solutions for real-world drug
management and inventory control, we utilize the
Drug Product Database Data Extract from Health
Canada.3 This comprehensive dataset contains
3https://www.canada.ca/en/health-canada/services/drugs-
health-products/drug-products/drug-product-database/read-
file-drug-product-database-data-extract.html

5,744 pairs of product names and ATC codes repre-
senting drug products approved for use in Canada.
Examples can be found in Figure 2. We create
stratified train–test splits (90%/10%) based on the
14 level-1 ATC categories to ensure representative
evaluation across the entire hierarchy.

RABBITS Product Names. We further augment
our evaluation with the RABBITS dataset (Gal-
lifant et al., 2024), which provides 3,680 expert-
verified pairs of product names and ATC codes
sourced from RxNorm.4 The dataset was specifi-
cally designed to evaluate the robustness of LLMs
in handling equivalent brand and generic drug
names. Following our approach with the Health
Canada dataset, we create stratified 90%/10% train–
test splits based on level-1 ATC categories.

Ontario Health Assessments. We obtain 200
anonymous clinical prescription notes from Inter-
RAI Canada, sourced from Ontario Health. All
notes were verified by an expert to contain no per-
sonally identifiable information. Each note consists
of a concise, unstructured textual description of a
drug, such as “microlax miroenema”. Being free-
form clinical text, these descriptions are inherently
noisy, including misspellings and mixed instruc-
tions (e.g., “Senna, if no BM X 2 days”, “PEG
3350- mix with 100-250ml fluid of p”). A do-
main expert (JMG) manually assigned ATC codes
to these prescriptions to create gold-standard labels.
All 200 prescription notes are used for evaluation.

4.2 Evaluation Metrics
Correct Level. The ATC coding system uses a hi-
erarchical structure where each level is represented
by a specific number of characters: levels 1 to 5
use 1 character, 3 characters, 4 characters, 5 char-
acters, and 7 characters, respectively. For level
k ∈ {1, · · · , 5}, let ℓk denote the number of char-
acters used at level k. Then, given an unstructured
drug mention x, its gold label ATC code y, and a
predicted ATC code ŷ, we define the correct level
of the prediction as the maximum k ∈ {1, · · · , 5}
where y and ŷ have a common prefix of length ℓk.

Granularity Level. Clinical prescriptions in the
Ontario Health dataset often contain inherent am-
biguities that make it challenging to confidently
assign exact level-5 ATC codes, even for domain
experts. To account for this uncertainty, we intro-
duce a granularity level annotation ranging from
4https://www.nlm.nih.gov/research/umls/rxnorm/index.html
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Correct Level
Health Canada RABBITS Ontario Health

Fine-tuned 8B* Llama 3.1 70B GPT-4o Fine-tuned 8B* Llama 3.1 70B GPT-4o Fine-tuned 8B* Llama 3.1 70B

≥ 5 60.5% 60.3% 78.4% 26.4% 19.8% 39.4% 53.1% 49.4%
≥ 4 67.7% 64.7% 79.1% 32.9% 32.1% 47.8% 68.3% 67.5%
≥ 3 78.3% 74.6% 84.3% 43.5% 43.5% 55.4% 85.2% 83.2%
≥ 2 84.7% 80.7% 87.3% 46.7% 52.7% 64.4% 88.3% 88.0%
≥ 1 90.3% 87.1% 90.3% 62.8% 71.2% 81.8% 91.2% 89.8%

Table 1: Accuracy at each ATC level (A@L1 through A@L5) for different LLMs, tested on Health Canada data,
RABBITS product names test sets, and the 166 Ontario Health Assessments with Level 5 granularity. Each row
shows the percentage of predictions at or above that correct level. Fine-tuned 8B* refers to our fine-tuned Llama 3.1
8B. Experiments here were conducted in the “With Name” setting.

Correct Level
Health Canada RABBITS

Code Only With Name With UMLS Code Only With Name With UMLS

≥ 5 40.0% 60.3% 61.2% 8.4% 19.8% 20.4%
≥ 4 55.3% 64.7% 65.2% 25.0% 32.1% 32.3%
≥ 3 68.7% 74.6% 74.3% 41.3% 43.5% 44.0%
≥ 2 81.4% 80.7% 80.3% 53.0% 52.7% 53.3%
≥ 1 89.2% 87.1% 87.1% 72.0% 71.2% 71.2%

Table 2: Comparison of cumulative correct prediction levels across different knowledge grounding settings using
Llama 3.1 70B. Each row shows the percentage of predictions at or above that level.

0 to 5 for each prescription text. This metric rep-
resents the deepest level in the ATC hierarchy that
can be confidently determined without ambiguity,
annotated by domain expert (JMG). For example,
the prescription text “digestive enzyme - 1 tablet”
can be classified as A09AA enzyme preparations
(level-4), but lacks sufficient detail to determine the
specific chemical substance (level-5), and therefore
has a granularity level of 4.

When evaluating predictions for a prescription
text with granularity level k, we consider the cor-
rect level to be at most k, as predictions beyond
this level cannot be reliably assessed.

This granularity annotation is unique to the On-
tario Health dataset, reflecting the real-world am-
biguity in clinical prescriptions. In contrast, the
Health Canada product names are all assigned com-
plete level-5 ATC codes, and the RABBITS dataset
has been curated by Gallifant et al. to only contain
unambiguous product names.

4.3 LLM Backbones

We evaluate two prominent LLMs in zero-shot
settings: GPT-4o representing proprietary mod-
els,5 and Llama 3.1 70B representing open-source
models.6 Additionally, to explore more resource-
efficient solutions, we fine-tune Llama 3.1 8B on

5https://openai.com/index/gpt-4o-system-card/
6https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct

the combined training sets from Health Canada
product names and RABBITS.7 We fine-tune at a
learning rate of 2e-5 over 3 epochs with batch size
4. All experiments maintain consistent parameters
with temperature 0.1 and random seed 42.

4.4 Knowledge Grounding Settings

We conduct ablation experiments across three
knowledge grounding settings to evaluate their im-
pact on coding accuracy, varying the context pro-
vided for each option in the level-by-level prompt
presented in Section 3.1:

• Code Only: LLMs select from options pre-
senting only the alphanumeric ATC codes
(e.g., “A12AA01”)

• With Name: Options include both the al-
phanumeric ATC code and its generic name
(e.g., “A12AA01: calcium phosphate”)

• With UMLS: Options include the alphanu-
meric ATC code augmented with its UMLS
definition, as detailed in Section 3.2

These ablation experiments are conducted with the
zero-shot models. The Llama 3.1 8B is fine-tuned
and evaluated only in the “With Name” setting to
maintain consistent training and testing conditions.

7https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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5 Results and Discussion

Zero-shot Effectiveness. Table 1 presents our
models’ effectiveness across the three datasets, in
the “With Name” setting. On the Health Canada
product names, GPT-4o demonstrates strong zero-
shot effectiveness, achieving 78.4% accuracy at
level 5 (exact ATC code matches), while open-
source Llama 3.1 70B achieves 60.3% zero-shot.
This effectiveness gap narrows at level 4—a granu-
larity level still commonly used in clinical research.

However, on the RABBITS dataset, while the
relative effectiveness between models remains, the
overall accuracy decreases by approximately 40%
compared to Health Canada results. This effective-
ness gap can be attributed to string similarity differ-
ences between product names and their correspond-
ing generic names. In the Health Canada dataset,
43.0% of product names are either substrings of
their generic names or vice versa, compared to only
1.4% in RABBITS. This disparity reveals that the
zero-shot ability in LLMs to code product names
stems from pre-trained knowledge of generic drug
names rather than understanding of product names
themselves. When product names share less lexi-
cal similarity with their generic counterparts, the
models’ effectiveness degrades significantly.

For the Ontario Health assessments, among the
200 clinical prescription notes, 166 (83%) are as-
signed granularity level 5, indicating that a precise
level-5 ATC code can be deduced with confidence.
The remaining 34 notes are distributed across other
granularity levels: 20 at level 0, 0 at level 1, 2 at
level 2, 2 at level 3, and 10 at level 4. We evalu-
ate the open-source Llama 3.1 models (excluding
GPT-4o due to privacy constraints) on the 166 un-
ambiguous samples. The results are on par with the
Health Canada product names, particularly at cor-
rect level ≥ 4. This validates our hypothesis that
real-world drug prescriptions are often variations
of product names, and suggests that GPT-4o would
likely achieve similar zero-shot effectiveness on
the Ontario Health assessments as observed with
the Health Canada product names.

Fine-tuning Effectiveness Notably, when fine-
tuned on the Health Canada and RABBITS training
sets, Llama 3.1 8B consistently surpasses the zero-
shot accuracy of the larger Llama 3.1 70B model
across all three datasets. This demonstrates that ef-
fective ATC coding is possible with smaller, locally
deployable models when task-specific training data
is available.

Knowledge Grounding Effectiveness. Table 2
illustrates the effect of different knowledge ground-
ing settings using Llama 3.1 70B on the two prod-
uct names datasets. We observe two phenomena:
(1) Though below the “With Name” setting, the
“Code Only” setting achieves meaningful accuracy,
indicating pre-existing knowledge of ATC codes in
LLMs. (2) UMLS definition grounding provides
modest improvements over generic name ground-
ing, particularly at level 5, suggesting that the ad-
ditional contextual information enable the LLM to
make finer decisions deeper in the ATC hierarchy,
where the possible ATC codes are very similar.

6 Conclusion

In this work, we present a practical approach to
automatic ATC coding using LLMs, demonstrat-
ing meaningful zero-shot effectiveness on both
curated product-name datasets and real clinical
prescriptions. Further, we show that fine-tuned
smaller models can achieve comparable effective-
ness, showcasing the potential of automated ATC
coding with limited computational resources.

Our analysis reveals several important insights
for real-world deployment. First, the similarity
in effectiveness between Ontario Health prescrip-
tions and Health Canada product names suggests
that drug mentions in prescription settings often
appear as variations of product names, where our
approach demonstrates strong zero-shot accuracy.
Second, our investigation of knowledge ground-
ing demonstrates that while additional context can
improve fine-grained classification at deeper lev-
els, the improvements are modest overall. Finally,
the effectiveness gap between Health Canada and
RABBITS datasets highlights a key limitation: cur-
rent LLMs rely heavily on string similarity between
product names and their generic counterparts, sug-
gesting an area for future improvement.

Looking ahead, in addition to addressing the
string similarity challenge, several directions could
enhance the practical utility of our system. Devel-
oping more efficient knowledge grounding strate-
gies could improve accuracy without sacrificing
speed, and exploring hybrid approaches that com-
bine LLM-based classification with traditional rule-
based systems might provide more robust solutions
for healthcare organizations.

To conclude, our work demonstrates the feasi-
bility of automated ATC coding with LLMs, while
also setting the groundwork for building careful
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systems that balance accuracy, privacy, and compu-
tational requirements in healthcare settings.
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