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Abstract

Pretrained language models (PLMs) have trans-
formed natural language processing (NLP)
but tend to exacerbate linguistic disparities
in multilingual contexts. While earlier re-
search has primarily focused on transformer-
based models like BERT, this study shifts
attention to large language models (LLMs)
such as MISTRAL, TOWERINSTRUCT, OPEN-
HATHI, TAMIL-LLAMA, and KAN-LLAMA.
Through comprehensive evaluations across
eight languages—including high-resource ones
(English, German, French, Italian, Spanish)
and low-resource ones (Hindi, Tamil, Kan-
nada)—the research uncovers significant short-
comings in ensuring multilingual robustness
and adaptability. Employing frameworks like
“each language for itself”” (ELFI) and “each lan-
guage for others" (ELFO), the analysis reveals
that existing LL.Ms struggle to address linguis-
tic inequities. Even strategies like model merg-
ing fail to close these gaps, highlighting fun-
damental deficiencies. These findings under-
score the urgent need to redesign Al systems to
achieve genuine linguistic inclusivity and bal-
anced performance across diverse languages.

1 Introduction

Handling multilinguality in language models re-
mains a significant challenge, particularly when
models are prompted in languages other than En-
glish. Tasks such as question answering (Xu
et al., 2024a), addressing multilingual safety con-
cerns (Wang et al., 2024; Deng et al., 2024), or
performing knowledge edits (Hazra et al., 2024)
often reveal noticeable gaps in performance for
low-resource languages. Despite the advancements
in multilingual large language models (LLMs), dis-
parities persist, especially for languages with fewer
computational resources. A clear example of this
issue arises in knowledge editing (Sinitsin et al.,
2020; De Cao et al., 2021). For instance, when
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an LLM is updated to correct a factual statement,
“The PM of the UK is Rishi Sunak" to “The PM of
the UK is Keir Starmer" the model may apply the
update accurately in well-represented languages
like English or French (Qi et al., 2023; Xu et al.,
2023). However, the same edit often fails to propa-
gate when queried in low-resourced languages like
Tamil or Hindi. This inconsistency highlights a crit-
ical weakness in the ability of LLMs to transfer fac-
tual updates across languages. Even advanced mod-
els like MISTRAL and TOWERINSTRUCT, while
effective in European languages, struggle signifi-
cantly with low-resource languages. This limita-
tion undermines the broader goal of making lan-
guage technologies universally accessible and eq-
uitable (Wang et al., 2023).

This research aims to uncover the disparities in
cross-lingual performance of LLMs to promote
future linguistic inclusivity. While model edit-
ing techniques have advanced in monolingual set-
tings, ensuring that factual updates made in one
language are accurately reflected across others re-
mains a major challenge (Hazra et al., 2024; Baner-
jee et al., 2024). This issue is particularly severe
for low-resource languages, where models often
fail to maintain reliability and consistency after ed-
its. Such limitations reduce the utility of LLMs
for these languages and widen existing linguistic
inequities, leaving many communities underserved.
Our work highlights these gaps, showing how cur-
rent models struggle to manage multilingual up-
dates, especially in underrepresented languages.
By evaluating cross-lingual performance, we em-
phasize the need for more inclusive approaches to
ensure that LLMs benefit users of all languages,
not just those with abundant resources.

In this work, we conduct a comprehensive
evaluation of how factual knowledge is transferred
and maintained across eight linguistically diverse
languages. We examine established knowledge
editing techniques such as ROME (Meng et al.,

194

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Industry Track), pages 194-209
April 30, 2025 ©2025 Association for Computational Linguistics



2022) and MEMIT (Meng et al., 2023) to assess
their performance in multilingual contexts.
Our research utilizes two strategies (Das et al.,
2022)—*“each language for itself" (ELFI) and
“each language for others" (ELFO)—to rigorously
test the ability of LLMs to preserve cross-lingual
knowledge consistency. Through this evaluation,
we reveal current models’ limitations in maintain-
ing consistent cross-lingual edits, emphasizing
critical gaps to address for enhancing LLMs,
particularly in low-resource languages. Our key
contributions are as follows.

¢ We conduct extensive model editing experi-
ments across eight languages—English (En),
German (De), French (Fr), Italian (It), Span-
ish (Es), Hindi (Hi), Tamil (Ta), and Kan-
nada (Kn)—using ELFI and ELFO, focusing
on decoder-only models’ multilingual perfor-
mance.

o We evaluate 7B decoder-only models, in-
cluding MISTRAL, TOWERINSTRUCT, OPEN-
HATHI, TAMIL-LLAMA, and KAN-LLAMA,
with editing methods ROME and MEMIT,
advancing model editing research.

o This is the first of it’s kind work on LLM
to reveal that model merging improves capa-
bilities but struggles with cross-lingual consis-
tency after editing.

2 Related work

Targeted parameter editing modifies specific
model components to integrate new information.
(Dai et al., 2022) introduced adjustments to ‘knowl-
edge neurons’ in transformers, while ROME (Meng
et al., 2022) updated neural weights to refresh LLM
knowledge. MEMIT (Meng et al., 2023) expanded
ROME for simultaneous updates, with further vali-
dation by (Hase et al., 2023; Yao et al., 2023).

Multilingual knowledge editing remains limited,
focusing mainly on translating English prompts. X-
FACTR (Jiang et al., 2020) and M-LAMA (Kass-
ner et al., 2021) exposed large knowledge gaps
in non-English languages, often with < 10%
accuracy. GeoMLAMA (Yin et al., 2022) re-
vealed that native languages may not best access
national knowledge. We analyze cross-lingual

et al., 2023; Beniwal et al., 2024).

3 Task overview

Model editing: Given a language model 6, and
an edit descriptor <kn, apnew, Golg>, the model edit-
ing technique will create an edited model 6.4;;. So,
for an input prompt kn, 0, has the old prediction
a,1q and after editing 6., the edited model 6,4
has updated prediction a,e,, Without influencing
model behaviour on other samples. Thus, given
the edit input kn, 6, does not produce apeq; it is
Ocqi¢ that is designed to produce the output ayeq.

if kn € I(kn, anew)

if kn € O(kn,anew) (1)

Gnew
Beaie (k) = {e (kn)
pre

The scope of consideration, I(kn, anew ), includes
kn and similar versions of it. This means it covers
the original input and any rephrased versions of
it that still relate to the same topic. For example,
if kn is a question, this scope includes different
ways of asking the same question. However, the ex-
cluded scope, O (kn, anew ), refers to inputs that are
not related to the edit case provided. So, it leaves
out any inputs that do not have anything to do with
kn or its related versions. Along with the updated
information, the edited model should follow the
four properties: (i) reliability — 0.4;;, produces the
correct response for the specific edit scenario rep-
resented by (kn, anew), (i) generalization — the
edited model 6.4;; must uniformly apply edits to
both the designated edit case (kn, aney) and its
semantically equivalent variations, guaranteeing a
consistent output, a,e., across all rephrased iter-
ations of kn, (iii) locality — 0.4;; should not alter
the output for examples outside its intended scope
(O(kn, anew)), and (iv) portability — evaluates the
capacity of edited model 6.4;; for robust general-
ization, assessed through questions designed to test
the edited model’s reasoning with updated knowl-
edge.

Multilingual knowledge editing: Given a set of
languages £, we consider a language [ € L to edit
the model 0,,.. and obtain Qle 4it- We then test the
edited model Gé 4z With all the languages in £. In
the equations below, s is the source language, and
t is the target language. The conditions are as fol-
lows: if kng is in the inclusion scope I (kn, Gpew )s
the model should output a;.,,. Otherwise, if kng
is in the exclusion scope O(kn, anew ), the model
should output 6, (kn). For the target language,
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similar conditions apply with transformations 7.

if kZ’I’Ls € I(k'fh anew)

if kns S O(k”% anew) (2)

aflew
Ocaie(kns) = {9 (kns)
pre s

Tt (a'fr,ew)
Hwe(knt)

if kne € T(I(kn, anew))
if kny ¢ TH(O(kn, anew))
(3)
T(.) transforms the target output of the source lan-
guage to the target language with the same meaning.
Therefore, after editing the model in one language,
such as English, the effect of the edit should be re-
flected in other languages as well. This ensures that
the specific edit is consistent across all languages,
regardless of the language in which the edit was
made.
Model merging: In the specific case of Indic lan-
guages — Hindi, Tamil and Kannada — we have
specialized LLLMs for each unlike in the case of
Western languages where the models we have
used are known to be pretrained on all those
languages. We investigate if the three LLMs
for the Indic languages could be further uni-
fied to obtain a more powerful model 0,,crgeds
which dynamically harnesses the specialized lin-
guistic capabilities of each constituent models.
This involves extracting language-specific unique
task vectors from instruction-tuned models, i.e.,
ebaseinndi — 77Hindia ebasefTamil — 77Tamila
and Opgse— Kannada — UKannada fOT €ach respec-
tive language. These vectors are integrated using a
TIES (Yadav et al., 2023) merging technique to syn-
thesize 0perged- Subsequently, 0,,crgeq is edited in
the same process as above to obtain 6.4;; each time
adjusting its output specifically for inputs associ-
ated with the defined task and the language.

Ocait(kng) = {

4 Dataset

For our experiments, we use the popular Counter-
Fact (Meng et al., 2022) and ZsRE (Levy et al.,
2017) datasets. We uniformly sample ~ 550 edit
instances from each dataset. Each edit instance
in these datasets includes the actual edit case, the
reliability prompt, the generalization instances, the
locality prompt and its answer, portability and its
answer. Further we use google translator ! to trans-
late each edit instance into seven other languages
— German (De), French (Fr), Italian (It), Spanish
(Es), Hindi (Hi), Tamil (Ta) and Kannada (Kn). In
both the datasets, the actual portability prompt is

"https://translate.google.com/

an interrogative sentence (i.e., in the form of ques-
tion). However, when the question gets translated
to other languages, the translated question becomes
different from actual question format. For example,
when the actual portability prompt in English “To
which language family does the official language of
Sastamala belong?” is translated to French the new
prompt becomes “A quelle langue la famille appar-
tient la langue officielle de Sastamala?”’. However
when this is back-translated to English the prompt
means “Which family language does the official
language of Sastamala belong to?” which is not
the same as the original English prompt. We there-
fore employed GPT-42 to convert question in the
interrogative sentence into a task of sentence com-
pletion. Subsequently we translate this sentence
completion form to other languages to obtain the
corresponding portability prompt.

Note to the choice of languages: The Western lan-
guages that we choose are based on their cultural,
economic and academic significance (Lobacheyv,
2008) and cover the Romance and the Germanic
families. In addition, we include three Indic lan-
guages that have far lesser resources compared to
their Western counterparts.

S Experimental setup

5.1 Selection of LLMs

We use the following multilingual LLMs for our
experiments:

Mistral-7B-Instruct-v0.2 (MISTRAL)*: A
multilingual causal language model (Jiang et al.,
2023), supporting diverse languages’.
TowerInstruct-7B-v0.2 (TOWERINSTRUCT)®:
Based on LLaMA?2 (Touvron et al., 2023), supports
multilinguality across 10 languages, including
English, German, and Chinese.
OpenHathi-7B-Hi-v0.1-Base (OPENHATHI):
Optimized for Indian languages like Hindi and
Tamil using a GPT-3-like transformer with hybrid
partitioned attention.

Tamil-llama-7b-base-v0.1  (TAMIL-LLAMA):
A bilingual Tamil-English model (Balachandran,
2023) using a 7B-parameter causal language
framework.

2openai.com/research/gpt-4, version: gpt-4-0125-preview
3https://preply.com/en/blog/most-important-languages/
*huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
>https://encord.com/blog/mistral-large-explained/
®huggingface.co/Unbabel/Towerlnstruct-7B-v0.2
"huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base
$huggingface.co/abhinand/tamil-llama-7b-base-v0.1
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Kan-LLaMA-7B-SFT (KAN-LLAMA): Special-
ized in Kannada with a 49,420-token vocabulary,
pre-trained on 600M tokens from CulturaX using
low-rank adaptation. More details on models are
in Appendix A.

CounterFact ZsRE
Languages | Models TOWERINSTRUCT | MISTRAL TOWERINSTRUCT _| MISTRAL
Metris | RO | ME | RO | ME RO | ME | RO | ME

Rel | 083096 073083 083096 073087 | 0480059 025030 0510062 038047
Gen | 027031 019022 028031 019022 | 033039 011012 035045 0.18/0.24
Loc 022/0.23  0.19/0.22 0.21/0.23 0.24/0.27 0.00/0.01 0.00/0.01 0.01/0.02  0.01/0.03
Port | 0.0L0.01 _ 0.01/001 _ 003/0.04 [000410.06 | 002002 0.000.00 [0080.10 0.02/0.04
Rel | 082092 0700080 081091  0.78/0.86 | 0.44/059 024034  0.49/0.61 037049
Gen | 033037 023027 028032 022027 | 030040 0.16020 035045 0.22/0.29
Loc 0.21/0.22 0.19/0.19 0.25/0.27  0:27./0.29 | 0.00/0.01 0.01/0.02 0.01/0.01  0.02/0.02
Port 0.00/0.00 0.00/0.00 0.03/0.03 0.03/0.04 0.02/0.02 0.01/0.02 0.03/0.07  0.03/0.04
Rel | [087/093 074078 [086/0.91 0.80/0.83 | [DS4/0.62 025029 |0S8J0.65 042/0.50

De

Es

It Gen | [038)038 025026 028030 024027 | 088043 016020 @048 025031
Loc | 0.18/0.19 0200020 026027 [027/0.28 | 0.00/0.00  0.00/0.01  0.00/0.02 0.01/0.02
Port | [0103)0.02 [@03)0.03  0.02/0.03  0.03/003 | 0.01/0.02  002/0.03  0.070.08 0.01/0.03

Rel | 0.83/090 065072 083089 0790085 | 051039 027/035 052063 0400050
Gen 0.31/0.33 0.22/0.24 0.29/0.30  0.24/0.25 0.28/0.35 0.14/0.17 0.40/0.50  0.19/0.27
Loc 0.21/0.22 0.17/0.19 0.20/0.22 0.24/0.25 0.00/0.01 0.00/0.02 0.01/0.02  0.01/0.02
Port | 0.00/0.01  0.00/0.00 0.03/0.03 003003 | [@080.05 [@08/0.03 006009 0.04/0.06

Fr

Table 1: Comparison of reliability, generalization, locality,
and portability scores across language models under Self edit
- self inference settings. The highest scores for individual
metrics in ROME and MEMIT are highlighted in magenta
for CounterFact and in cyan for ZSRE, with values shown as
Exact Match/Partial Match.

CounterFact ZsRE
Languages | Models | TOWERINSTRUCT _| MISTRAL TOWERINSTRUCT _| MISTRAL
Metis| RO | ME | RO | ME RO | ME | RO | ME
Rel | 048/0.53 040046 050056 0.54/0.61 | 024028 0.10/0.14 034045 014018
De Gen | 025027 013017 023027 022023 | [0A8/023 0.12/0.14 0260035 0.14/0.16

Loc | 020021 019022 023025 026028 | 000001 000002 001/0.02 0.01/0.03
Port | 0.00/0.00 0.00/0.00 0.03/0.03 0.03/0.04 | 0020.02 0.02/0.02 006007 _0.02/0.03
Rel | [051/0.56 0400048 [057/062 0.56/0.60 | [024J029 0.12/0.14 [0:390/0.48 0.19/0.26
Gen | 0260029 0.18022 025029 021026 | [0A8/025 009011 [038)0.41 0.14/021

Es Loc 0.22/0.24  0.17/0.17  0.24/0.27  0.25/0.27 | 0.00/0.01  0.01/0.02  0.01/0.02  0.02/0.02
Port 0.00/0.00  0.00/0.00  0.03/0.03  0.03/0.04 | 0.02/0.03 0.01/0.01  0.04/0.06 0.04/0.05
Rel 0.45/0.50  0.35/0.40  0.47/0.58  0.44/0.49 -/(]l‘) 0.12/0.14  0.31/0.34  0.23/0.27
It Gen 0.23/027  0.19/020  0.25/0.35  0.21/0.23 | 0.17/0.22  0.11/0.13  0.26/0.32  0.18/0.21
Loc 0.20/021  0.20/020  0.24/0.36  [0:28/0.29 | 0.00/0.00  0.00/0.01  0.00/0.02  0.01/0.02
Port 0.01/0.02  0.01/0.02  0.03/0.11  0.04/0.04 | 0.01/0.02 0.02/0.02  0.07/0.08  0.01/0.01
Rel 0.50/0.53  0.45/0.49  0.49/0.55  0.51/0.59 | 0.22/0.26  0.12/0.17  0.36/0.44  0.23/0.28
Fr Gen 0.28/0.31 0.19/022 [0:28/031 026/0.27 | 0.15/0.21 0.08/0.10 0.29/0.33  0.16/0.21

Loc 023/0.23 0.19/021  0.20/0.36  0.25/0.26 | 0.00/0.01  0.00/0.02 0.01/0.03  0.01/0.02
Port | 0.01/0.01 001001 0.01/0.12  0.03/0.04 | 0.02/0.02 0.02/0.02  0.06/0.09 0.04/0.05

Table 2: Comparison of reliability, generalization, locality,
and portability scores across language models under English
edit - self inference settings. The highest scores for individual
metrics in ROME and MEMIT are highlighted in magenta
for CounterFact and in cyan for ZSRE, with values shown as
Exact Match/Partial Match.

self edit - self inference (English edit - self inference)

Languages/

Models CounterFact ZsRE CounterFact | ZsRE
Metrics | RO | ME RO ME RO | ME | RO | ME
Rel | 0.020.02 0450.60 | 0.03/0.06 0.20/0.33 | 0.56/0.66 0.02/0.03 0.03/0.03 0.03/0.06
Hi/ Gen | 0.00/0.00 0.26/0.33 | 0.01/0.04 0.19/0.28 | 0.27/0.34 0.03/0.03 0.03/0.03 0.04/0.08
OPENHATHI | Loc | 031035 002003 | 0.01/001 000001 | 0.26/031 0.03/0.03 0.00/0.00 0.00/0.01
Port | 0.01/0.01 0.01/0.01 | 0.00/0.00 0.03/0.03 | 0.02/0.02 0.00/0.01 0.00/0.00 0.01/0.01
Rel | 0.12/0.15 0.48/0.59 | 0.06/0.08 0.16 0.00/0.00 0.01/0.01 0.00/0.00 0.01/0.01
T/ Gen | 0.03/0.04 021/0.25 | 0.03/0.04 0.00/0.00  0.00/0.00 0.00/0.00  0.00/0.00

TAMIL-LLAMA Loc 0.01/0.01  0.01/0.01 | 0.00/0.00 X 0.01/0.01  0.01/0.02  0.00/0.00  0.00/0.00
Port 0.01/0.01  0.01/0.01 | 0.00/0.00 0.01/0.01 | 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Rel 0.21/0.26  0.14/0.18 | 0.16/0.21  0.05/0.07 | 0.01/0.01  0.00/0.00 0.00/0.01  0.00/0.01

Kn/ Gen 0.07/0.08  0.04/0.05 | 0.08/0.17  0.05/0.05 | 0.00/0.01  0.00/0.00 0.00/0.00 ~0.00/0.00
KAN-LLAMA Loc 0.03/0.04  0.02/0.03 | 0.00/0.00 0.00/0.00 | 0.02/0.02 0.03/0.03 0.00/0.00 0.00/0.00
Port | 0.00/0.00 0.00/0.01 | 0.00/0.01 0.00/0.00 | 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Table 3: Comparison of scores in indic language models.
Highest scores are in bold, second-highest underlined, with
values shown as Exact Match/Partial Match.

5.2 [Editing methods

We use ROME (Rank-One Model Editing) (Meng
et al., 2022) and MEMIT (Mass Editing Memory
in a Transformer) (Meng et al., 2023) which are
the state-of-the-art editing schemes and particularly

°huggingface.co/Tensoic/Kan-Llama-7B-SFT-v0.5

suitable for multilingual settings.

Rank-One Model Editing (ROME): This method
specifically alters the weights in the initial feed-
forward layers of a pretrained model. It identifies
factual associations through causal interventions,
enabling precise and effective modifications.
Mass Editing Memory in a Transformer
(MEMIT): MEMIT advances ROME, by extend-
ing its capabilities. While ROME applied a rank-
one modification to the MLP weights of a single
layer to embed a memory directly into the model,
MEMIT enhances this approach by adjusting the
MLP weights across multiple critical layers to in-
corporate numerous memories.

5.3 [Evaluation metric

We evaluate the edited models using two metrics:
Exact match: Here accuracy is determined by
checking if the ground truth is present in the
model’s output. Outputs containing the exact ex-
pected response are classified as correct, while oth-
ers are deemed incorrect, providing a binary mea-
sure of performance.

Partial match: The Levenshtein ratio (Levenshtein,
1965) measures textual similarity, calculated as the
Levenshtein distance divided by the maximum text
length. Outputs surpassing an 80% ratio but not
containing the ground truth as a substring are con-
sidered accurate, allowing for minor acceptable
deviations.

6 Results

6.1 Self edit - self inference perspective

In this setup we perform the edit in a particular
language (say German) and obtain the generated
output from the model in the same language (i.e.,
German itself).

CounterFact dataset: In our evaluations of the
model performance for the CounterFact dataset,
we observe marked variations across different lan-
guages and metrics in Table 1, illustrating signif-
icant challenges in multilingual adaptability and
contextual understanding. For instance, German
language tests show that models like TOWERIN-
STRUCT and MISTRAL achieve good reliability
scores (ROME at 0.83 and MEMIT at 0.73 for
TOWERINSTRUCT; the same scores are at 0.83 and
0.73 respectively for MISTRAL). These scores il-
lustrate good model performance in understanding
the contextual nuances of German. However, gen-
eralization and locality score are less impressive
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Dataset

CounterFact

ZsRE

En

Hi

Ta

Kn

En

Hi

Ta

Kn

Editing

Properties

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

ROME

MEMIT

En

Rel
Gen
Loc
Port

0.73/0.75
0.35/0.35
033/033
0.00/0.00

0.95/0.95
0.64/0.64
0.27/0.27
0.00/0.01

0.00/0.00
0.01/0.01
0.01/0.01
0.00/0.01

0.01/0.01
0.02/0.02
0.01/0.01
0.00/0.01

0.00/0.00
0.01/0.01
0.02/0.02
0.00/0.00

0.01/0.01
0.01/0.02
0.03/0.03
0.00/0.00

0.00/0.01
0.00/0.01
0.11/0.11
0.00/0.00

0.00/0.01
0.00/0.01
0.12/0.12
0.00/0.00

0.29/0.33
0.29/0.31
0.00/0.00
0.03/0.04

0.59/0.59
0.52/0.54
0.00/0.00
0.02/0.04

0.01/0.02
0.01/0.02
0.00/0.00
0.00/0.01

0.02/0.02
0.00/0.00
0.00/0.00
0.00/0.00

0.00/0.00
0.01/0.01
0.01/0.01
0.00/0.01

0.00/0.00
0.00/0.00
0.00/0.04
0.00/0.00

0.00/0.02
0.00/0.03
0.01/0.02
0.00/0.01

0.00/0.00
0.00/0.00
0.02/0.04
0.00/0.00

Hi

Rel
Gen
Loc
Port

0.00/0.01
0.00/0.00
0.35/0.35
0.00/0.00

0.01/0.01
0.01/0.01
0.35/0.36
0.00/0.00

0.01/0.03
0.02/0.03
0.01/0.01
0.01/0.01

0.07/0.09
0.03/0.04
0.01/0.01
0.00/0.00

0.00/0.00
0.00/0.00
0.03/0.03
0.00/0.00

0.01/0.01
0.01/0.01
0.03/0.03
0.00/0.00

0.00/0.01
0.00/0.01
0.12/0.12
0.00/0.00

0.00/0.01
0.00/0.01
0.13/0.13
0.00/0.00

0.00/0.00
0.00/0.00
0.00/0.00
0.07/0.08

0.00/0.00
0.01/0.01
0.00/0.00
0.00/0.00

0.01/0.03
0.01/0.03
0.00/0.00
0.00/0.01

0.05/0.05
0.02/0.03
0.00/0.00
0.00/0.01

0.00/0.00
0.01/0.02
0.01/0.01
0.00/0.01

0.00/0.00
0.01/0.02
0.01/0.01
0.00/0.01

0.00/0.02
0.00/0.03
0.01/0.01
0.00/0.01

0.00/0.01
0.00/0.02
0.01/0.01
0.00/0.01

Ta

Rel
Gen
Loc
Port

0.00/0.01
0.00/0.00
0.36/0.36
0.00/0.00

0.00/0.01
0.00/0.00
033/0.34
0.00/0.00

0.00/0.00
0.00/0.00
0.01/0.01
0.00/0.01

0.00/0.00
0.00/0.00
0.02/0.02
0.00/0.01

0.00/0.01
0.01/0.01
0.02/0.02
0.00/0.00

0.01/0.01
0.00/0.00
0.02/0.02
0.00/0.00

0.00/0.01
0.00/0.01
0.11/0.11
0.00/0.00

0.00/0.01
0.00/0.01
0.11/0.11
0.00/0.00

0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.00

0.01/0.01
0.01/0.01
0.00/0.00
0.00/0.00

0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.00

0.01/0.01
0.01/0.01
0.00/0.00
0.00/0.00

0.00/0.02
0.01/0.01
0.01/0.03
0.01/0.01

0.01/0.03
0.02/0.03
0.01/0.02
0.00/0.01

0.00/0.01
0.00/0.02
0.01/0.02
0.00/0.01

0.00/0.01
0.00/0.02
0.01/0.02
0.00/0.01

Kn

Rel
Gen
Loc
Port

0.00/0.01
0.00/0.00
0.35/0.35
0.00/0.00

0.00/0.01
0.00/0.00
0.34/0.34
0.00/0.00

0.00/0.00
0.00/0.00
0.01/0.01
0.00/0.01

0.00/0.00
0.00/0.00
0.02/0.02
0.00/0.01

0.00/0.00
0.00/0.01
0.03/0.03
0.00/0.00

0.00/0.00
0.00/0.00
0.03/0.03
0.00/0.00

0.00/0.01
0.00/0.01
0.12/0.12
0.00/0.00

0.00/0.01
0.00/0.01
0.12/0.12
0.00/0.00

0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.00

0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.00

0.00/0.01
0.00/0.01
0.01/0.01
0.00/0.01

0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.00

0.00/0.02
0.01/0.03
0.00/0.01
0.00/0.01

0.00/0.00
0.01/0.02
0.00/0.00
0.00/0.00

0.03/0.03
0.01/0.03
0.01/0.01
0.00/0.01

0.00/0.03
0.00/0.04
0.00/0.00
0.00/0.01

Table 4: Comparison of scores across the merged model for three Indic languages, evaluated using the CounterFact and ZsRE
datasets for each language and others. Highest scores are in bold, and second-highest are underlined. Values represent Exact

Match/Partial Match results.

(TOWERINSTRUCT at 0.27 and 0.22 on ROME
for generalization and locality respectively), indi-
cating difficulties in applying the learned informa-
tion across broader contexts and different locales
within the German language. Similar patterns are
observed in Spanish and Italian. In Spanish, TOw-
ERINSTRUCT reaches a reliability score of 0.82 for
ROME and 0.70 for MEMIT; for MISTRAL the
reliability scores are 0.81 for ROME and 0.78 for
MEMIT, suggesting decent grasp of Spanish con-
texts. However, the generalization scores remain
below 0.35 for ROME and locality scores do not ex-
ceed 0.29 for MEMIT for any model. Despite TOw-
ERINSTRUCT showing a relatively high reliability
in Italian with a ROME at 0.87 and MEMIT at 0.74,
the generalization and locality scores remain low
(highest being 0.35 on ROME and 0.28 on MEMIT
for MISTRAL). In case of the three Indic languages
the discrepancies become even more pronounced
(See Table 3). OPENHATHI, for example, shows
a drastic drop in Hindi, with a ROME reliability
of just 0.02 and a MEMIT of 0.45, indicating al-
most no comprehension of the language nuances.
TAMIL-LLAMA and KAN-LLAMA also display low
scores across all properties. The highest reliability
achieved is 0.21 for ROME for KAN-LLAMA and
0.48 for MEMIT in case of TAMIL-LLAMA, which
highlights the limitations in these language models.
Portability scores are consistently low across all
languages, models, and metrics, demonstrating a
significant gap in model training as it fails to effec-
tively account for diverse linguistic structures and
cultural contexts.

ZsRE dataset: In case of ZsRE dataset (see Ta-
ble 1) German shows moderate performance in reli-
ability with scores like 0.48 on ROME and 0.25 on
MEMIT for TOWERINSTRUCT. The generalization
(0.33 for ROME) and locality scores (~ 0) are also

very poor. These results indicate substantial defi-
ciencies in capturing language-specific details and
generalizing learned information. Spanish fares
slightly better in reliability, achieving up to 0.49 on
ROME with TOWERINSTRUCT and MISTRAL, but
like German, faces challenges in generalization and
locality, with the best generality reaching only 0.35
and locality remaining near zero. Italian (It) gen-
erally scores higher in reliability, particularly with
MISTRAL reaching 0.58 on ROME, though it too
struggles with generality and locality. French ex-
hibits a similar trend, with reliability scores reach-
ing up to 0.52 for ROME with MISTRAL and both
generalization and locality scores remaining low.
Performance markedly drops for the three Indic lan-
guages (See Table 3). For instance, Hindi’s highest
reliability is just 0.03 for ROME, while Tamil and
Kannada only achieve maximum reliability scores
of 0.06 and 0.16 respectively for ROME. Across all
languages, portability scores are low, reflecting lim-
ited adaptability and the challenge of transferring
learned capabilities from one linguistic context to
another.

6.2 English edit - self inference perspective

In this setup we perform the edit in a English and
obtain the generated output from the model in other
languages (e.g., German, Italian etc.).

CounterFact dataset: In German, the reliability
scores for models such as TOWERINSTRUCT and
MISTRAL suggest moderate effectiveness, with
ROME around 0.48 and MEMIT around 0.40 (see
Table 2). However, their generalization and locality
scores reveal limitations in the models’ ability to
generalize and localize content effectively with
scores not exceeding 0.25 and 0.26 respectively.
For Spanish, there is a noticeable improvement
in reliability, with ROME scores for MISTRAL
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Category Examples

Possible solution

Lexical iguil . .
exical ambiguity French: ‘Livre’ can refer to a book or to the weight measure pound.

English: ‘Fair’ can mean a carnival, treating someone right, or having light skin and/or hair

Context-aware models

Syntactic ambiguity

English: “Visiting relatives can be boring.” (Ambiguous: Visiting them, or the relatives who visit, can be boring.)
German: “Er sah den Mann mit dem Fernglas.” (He saw the man with the binoculars. Ambiguous: Who has the binoculars?)
Italian: “Ho visto I’'uomo con il binocolo.” (I saw the man with the binocular. Ambiguous similar to German.)

Better parsing

Semantic ambiguity started in a particular region)

from a particular family)

French: “Mexx, ¢a a commencé en” (Mexx, that was started in. Ambiguous: started means founded or

Spanish: “Spike Hughes se origina de” (Spike Hughes originates from. Ambiguous: originates from a place or

Incorporation of additional semantic cues

Cultural ambiguity

English: “Arrow of Time/The Cycle of Time” (Is an album of Peter Michael Hamel. But it could also mean the flow of time)
French: “Ce n’est pas ma tasse de thé.” (It’s not my cup of tea. Ambiguous without understanding the idiom.)
Italian: “In bocca al lupo.” (In the wolf’s mouth, means good luck. Could be confusing without cultural context.)

Deeper multi-cultural context

English: “In which country’s capital city would you most likely
Translation errors

hear Faithless™ original language spoken?” translated into French and back to English becomes “In which
country’s capital would you most likely hear the original language of the original spoken”

Reinterpretation of the translation in target language

English: “The Little Match Girl” could be a literary fairy tale.

NER errors . L . . N .
Spanish: ‘Rio’ can mean a river or refer to the city Rio de Janeiro.

Integration of knowledge graphs

Idioms Lo PR N
a situation from a mar; or di perspective.)

German: “Der Blick von unten” (Literally: Seeing things from a low physical position. Meaning: Considering

Maintain exception lists

English: ‘Their’ vs. ‘There’ vs. ‘They’re’

Phonetic/orthographic errors Spanish: ‘Vino’ (came) vs. ‘Vino’ (wine)

Context-sensitive correction of word forms

Morphological errors

Italian: Confusion between " iato" (eaten) and "

German: The misuse of gender-specific articles "der" (masculine), "die" (feminine), "das" (neuter) can lead to confusion
iando" (eating) can change the temporal context of a sentence.

Integration of specialised morphological rules

Pragmatic errors

French: Using ‘tu’ (informal you) instead of ‘vous’ (formal or plural you) in a formal context can be seen as rude or too casual. | U

cultural norms

Table 5: Categorization of multilingual knowledge editing errors, including lexical, syntactic, semantic, cultural, and
contextual ambiguities, with examples from English, French, German, Italian, and Spanish, highlighting challenges

in cross-lingual consistency and accuracy.

reaching 0.57, and a slight improvement in
generalization and locality metrics compared to
German. Italian and French show similar trends,
with reliability scores peaking at 0.47 for MISTRAL
in Italian and 0.49 in French; the generalization
and locality scores are still lower. For Tamil and
Kannada the reliability are exceptionally low (See
Table 3). In fact, in case of Tamil this score is
0 for ROME and 0.01 for MEMIT. Compara-
tively for Hindi the reliability scores are quite
good with 0.56 for ROME. However the porta-
bility and generalization scores are again very poor.

& Models like TOWERINSTRUCT and MISTRAL excel
in context-specific reliability but falter in generalization
and locality.

¥ Indic languages exhibit larger gaps, reflecting lim-
ited linguistic diversity in training.

¥ Cross-lingual edits expose critical weaknesses, with
performance dropping across linguistic boundaries, and
model merging fails to enhance reliability, locality, or
generalization on either dataset.

ZsRE dataset: For languages such as German and
Spanish, the models display moderate reliability
with MISTRAL, achieving ROME scores up to 0.34
and 0.39 respectively, and MEMIT scores of 0.14
and 0.19 respectively (see Table 2). However, the
scores significantly drop for locality and portabil-
ity, showing that while the models can identify
relevant relationships, they struggle to generalize
and adapt to the specific linguistic nuances of these
languages. The trends are similar in Italian and
French, where reliability scores are moderate while

locality and generalization scores are poor. Further,
for the Indic languages, the score are exceedingly
low for all the properties indicating the stark gap
in performance highly resource scarce languages.

6.3 Merged model perspective

Table 4 presents performance metrics for the
merged model, with columns representing infer-
encing languages and rows indicating editing lan-
guages. Editing and inferencing in English yield
high reliability scores on the CounterFact dataset
(ROME: 0.73, MEMIT: 0.95). However, perfor-
mance drops to near zero when editing in English
and inferencing in Hindi, Tamil, or Kannada, expos-
ing the model’s cross-lingual limitations. Editing
in Hindi, Tamil, or Kannada consistently results
in poor outcomes across all properties, regardless
of the inferencing language. This highlights the
model’s inability to generalize across linguistic
barriers and underscores the need for improved
multilingual adaptability. The findings reveal that
while the model performs well within the same lin-
guistic environment, its performance deteriorates
significantly across lesser-resourced languages, ne-
cessitating enhanced training approaches for robust
multilingual support.

7 Error analysis

In Table 5 we show the different types of linguistic
errors encountered during the translation and edit-
ing process. The errors are categorised based on
the different types of ambiguities and sheds light
on how future models should strengthened by care-
fully harnessing techniques to tackle these errors.
More details are available in Appendix B.
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8 Discussion

Here we discuss two important questions — How do
multilingual LLMs handle cross-lingual knowledge
edits? and What steps can industry practitioners
take to address cross-lingual disparities?

How do multilingual LLMs handle
cross-lingual knowledge edits?

Modern LLMs often fail to propagate fac-
tual updates consistently across languages.
While languages like English, French, and
German benefit from extensive corpora (Xu
et al., 2024b), those like Hindi, Tamil, and
Kannada suffer from data scarcity, causing
unstable knowledge transfer (Qi et al., 2023).
Further, editing methods ROME and MEMIT
encounter problems with highly agglutinative
or morphologically rich languages.

Key observations

» Data scarcity: Inadequate corpora pro-
duce sparse embeddings, disrupting the
model’s ability to adapt newly introduced
facts (Das et al., 2022).

 Architectural bias: LLM pipelines typi-
cally prioritize English, overlooking mor-
phological idiosyncrasies in languages
like Tamil or Kannada.

* Complex linguistic features: Idiomatic
expressions and cultural references can
invalidate edits that were accurate in En-
glish (Beniwal et al., 2024); merging
specialized models can exacerbate diver-
gences if representations are misaligned
(Yadav et al., 2023).

What steps can industry practitioners take to
address cross-lingual disparities?

A holistic approach is needed to ensure con-
sistent, multi-lingual fact-editing. Below are
five key strategies:
* Expand low-resource corpora:
Rationale: Larger, more representative
datasets address embedding sparsity;

Implementation: Generate crowd-
sourced/synthetic data (Hazra et al.,
2024).

¢ Continuous model editing:

Rationale: Iterative edits balance new
knowledge with existing facts?; primarily
important for industries dealing with fi-
nance, healthcare, and law (e.g., updating
a multilingual LLM to reflect new data
privacy laws (GDPR, CPRA) in different
regions without retraining from scratch).
Case study: Microsoft’s lifelong editing
merges local patches with broader retrain-
ing (Cao et al., 2021).

» Alignment-focused architectures:
Rationale: Combine morphological anal-
ysis, advanced NER, & cross-lingual pa-
rameter sharing;

Benefit: Stable knowledge propagation
in structurally diverse languages (Wang
et al., 2023).

* Dedicated edit modules:

Rationale: Log each update & validate
in all languages to avoid accidental over-
writes;

Implementation: Use an “edit ledger” in
attention layers (Hase et al., 2023).

* Rigorous multilingual testing:
Rationale: Systematic checks prevent
bias & misinformation from creeping in;
Tools: Curated test suites for reliability,
cultural fitness, and domain-specific ac-
curacy (Hazra et al., 2024).

“https://www.microsoft.com/en-
us/research/blog/lifelong-model-editing-in-large-
language-models-balancing-low-cost-targeted-edits-
and-catastrophic-forgetting/

9 Conclusion

In this study, we investigated the impact of knowl-
edge editing across different languages based on
the CounterFact and ZsRE datasets along with
their translations. Our extensive experiments em-
ploying a variety of knowledge editing techniques
on an array of multilingual LLMs resulted in vari-
ous crucial observations. We discovered that varia-
tions in language-specific model architecture signif-
icantly affect the success of knowledge edits, that
current editing methods often fail to seamlessly
transfer alterations from one language to another,
and that modifications made in one language might
unexpectedly alter model behavior in another lan-
guage. This study lays the groundwork for future
innovations that could lead to more sophisticated
and linguistically inclusive Al technologies.
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10 Limitations

Despite the promising results, our study has several
limitations. The variability in performance across
different languages highlights the inherent chal-
lenges in achieving true multilingual consistency,
with models exhibiting substantial difficulties in
generalizing and localizing edits, particularly in
low-resourced languages such as Hindi, Tamil, and
Kannada. This discrepancy indicates a need for
more inclusive and representative training datasets
that encompass a wider range of linguistic and cul-
tural contexts. Additionally, our focus on decoder-
only models limits the generalizability of our find-
ings to other types of language models, such as
encoder-decoder architectures. The relatively low
portability scores across all languages further indi-
cate that current models struggle to transfer learned
knowledge effectively from one linguistic context
to another, especially in cross-lingual edits where
modifications in one language often fail to trans-
late accurately into another. Moreover, the merging
of models, while showing some promise, does not
consistently improve reliability, locality, or gener-
alization metrics, suggesting that further research
is needed to optimize these approaches.

11 Ethical consideration

Our research raises ethical concerns regarding lin-
guistic equity and cultural sensitivity. Disparities in
model performance could reinforce existing linguis-
tic inequities, limiting access to Al technologies
for speakers of low-resourced languages. Future
model development must include diverse languages
and dialects to promote equity. Additionally, er-
rors related to cultural ambiguity and idiomatic
expressions can lead to misinterpretations or offen-
sive content, necessitating robust evaluation frame-
works to ensure cultural sensitivity. Privacy and
security risks are also significant, as models may
inadvertently reveal sensitive information during
knowledge editing processes. Researchers must pri-
oritize user privacy and implement stringent data
protection measures to prevent misuse of personal
data, ensuring Al technologies are effective and
equitable for all users.

12 Potential risk

LLMSs can be used for harmful content generation
and misinformation spread. The prompts used and
generated in this work can be misused to generate
harmful content.
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A Model selection

Mistral-7B-Instruct-v0.2'?: The model was devel-
oped by (Jiang et al., 2023) and supports multilin-
guality'!. It is designed around the causal language
modeling framework. We shall refer to this model
as MISTRAL.

TowerInstruct-7B-v0.2'2: This model (Alves
et al.,, 2024) has been developed on top of
LLaMA2 (Touvron et al., 2023) architecture and
supports multilinguality including English, Ger-
man, French, Spanish, Chinese, Portuguese, Italian,
Russian, Korean, and Dutch. We shall refer to this
model as TOWERINSTRUCT.
OpenHathi-7B-Hi-v0.1-Base'?: The model is de-
signed to optimize multilingual interactions with
a special focus on Indian languages. It uses a
transformer-based architecture similar to GPT-3
but introduces hybrid partitioned attention to ef-
ficiently manage computational resources and en-
hance responsiveness across languages like Hindi,
Tamil, and Bengali. We shall refer to this model as
OPENHATHI.

Tamil-llama-7b-base-v0.1!#: This is a sophis-
ticated model (Balachandran, 2023) developed
specifically for bilingual tasks in Tamil and English,
leveraging a 7 billion parameter causal language
modeling framework. We shall refer to this model
as TAMIL-LLAMA.

Kan-LLaMA-7B-SFT'3: This model is tailored
for efficient Kannada text processing with an ex-
panded 49,420-token vocabulary, enhancing its lan-
guage handling capabilities. Pre-trained on 600
million Kannada tokens from the CulturaX dataset,
it employs a low-rank adaptation technique to min-
imize computational costs while preserving the

https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

https://encord.com/blog/mistral-large-explained/

https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2

Bhttps://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-
Base

*https://huggingface.co/abhinand/tamil-llama-7b-base-
v0.1

Bhttps://huggingface.co/Tensoic/Kan-Llama-7B-SFT-
v0.5

model’s integrity. We shall refer to this model as
KAN-LLAMA.

B Error analysis

Lexical ambiguity Lexical ambiguity occurs when
a word has multiple meanings, leading to confusion
without context. For instance, the English word
"crane" can refer to a bird or construction equip-
ment, a distinction crucial for accurate knowledge
representation.

Syntactic ambiguity Syntactic ambiguity arises
from sentence structures that can be interpreted in
multiple ways. An example is the English sentence
"Visiting relatives can be boring," which could im-
ply either the act of visiting relatives is boring or
that the relatives being visited are boring. Resolv-
ing these ambiguities requires advanced parsing
techniques and an understanding of the specific
language’s syntax to ensure accurate interpretation.
Semantic ambiguity errors Semantic ambiguity
pertains to the uncertainty of meaning within a
sentence or phrase. For example, "He gave her a
ring" could mean a telephone call or presenting
a piece of jewelry. Multilingual systems need to
discern the intended meaning based on semantic
cues and the broader context, a challenging task
given the subtlety of cues and cultural specificities
in language use.

Cultural and contextual errors These errors oc-
cur when language processing fails to account
for cultural idioms or context-specific meanings.
Phrases like "Piece of cake" in English, meaning
something easy, can be misunderstood if taken lit-
erally or translated directly into another language
without considering idiomatic expressions. Han-
dling these requires deep cultural knowledge and
contextual understanding beyond linguistic analy-
sis.

Translation errors Translation errors emerge
when converting text from one language to another,
often leading to loss of meaning or inaccuracies.
These can be particularly problematic in knowl-
edge editing, where precision is paramount. For
example, translating idiomatic expressions or cul-
turally specific terms often requires not just a direct
translation but a reinterpretation in the target lan-
guage.

Named entity recognition (NER) errors NER
errors involve the incorrect identification or clas-
sification of proper nouns in text. For instance,
distinguishing between "Rio" as a river or the city
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of Rio de Janeiro in Spanish requires contextual
analysis. Accurate NER is essential for knowledge
databases to correctly link information to entities,
demanding sophisticated language models that can
navigate these nuances.

Idiomatic expression errors Errors in understand-
ing or translating idiomatic expressions can signif-
icantly alter the intended meaning. For example,
the Italian idiom "Tra il dire e il fare c’¢ di mezzo
il mare" illustrates the difference between saying
and doing, a concept that might be lost if translated
literally. Addressing these requires an in-depth un-
derstanding of both the source and target languages’
idioms.

Phonetic and orthographic errors These errors
occur with words that sound similar (homophones)
or are spelt similarly (homographs) but have dif-
ferent meanings. For instance, "their," "there," and
"they’re" in English. Multilingual systems must ac-
curately identify and apply the correct form based
on context, a challenging task that often requires
human-like understanding of language.

Morphological errors Morphological errors refer
to the misuse of word forms, affecting the grammat-
ical structure and potentially changing the mean-
ing of sentences. German’s gender-specific arti-
cles—der, die, das—offer a prime example, where
incorrect usage can confuse readers and misrep-
resent information. Overcoming these demands a
robust grasp of linguistic rules and the flexibility to
apply them in diverse contexts.

Pragmatic errors Pragmatic errors involve the mis-
use or misunderstanding of language in social con-
text, such as politeness or formality levels. An
example is the inappropriate use of "tu" (informal)
and "vous" (formal or plural) in French, which
can significantly affect the tone and perceived re-
spectfulness of an interaction. Addressing these
requires sensitivity to cultural norms and the social
dynamics of language, highlighting the complex-
ity of human communication and the challenges in
replicating these nuances in Al systems.

C Hyperparameters

We adopt all essential parameter values from the
ROME and MEMIT study for all the LLMs. The
details of these hyperparameters are provided in
Table 6.

Hyperparameter values
layers [5]
fact_token subject_last

v_num_grad_steps 25

v_Ir Se-1
v_loss_layer 31
v_weight_decay le-3
clamp_norm_factor 4

kl_factor 0.0625
mom?2_adjustment false
context_template_length_params | [[5, 10], [10, 10]]

rewrite_module_tmp
layer_module_tmp
mlp_module_tmp
attn_module_tmp
In_f_module model.norm
Im_head_module Im_head
model_parallel true

model.layers.{ }.mlp.down_proj
model.layers.{ }

model.layers.{ }.mlp
model.layers.{ }.self_attn

Table 6: Hyperparameter values (most of the default
values extend from ROME and MEMIT setup).

D Worked-out Example

For instance, a model’s recognition of “Dent Is-
land Light, located in: Belgium” (Post Edit) (see
Figure 2 should be consistent, irrespective of the
language employed. Such consistency is crucial
for ensuring a uniform user experience across dif-
ferent languages, thereby democratizing access to
information and technology.

E Exact vs partial match

We showcase plot correlations in Figures 2 and 3.

F Romance and Germanic languages

F.1 Language perspective
F.1.1 CounterFact

In case of CounterFact dataset, significant dis-
parities are observed in edited model performance
across different languages. Edits done with En
and tested on En consistently showed high reli-
ability scores across all models, with MISTRAL
achieving nearly perfect reliability at 0.994 and
TOWERINSTRUCT at 0.996 (for ROME). However,
performances while testing with De, It, Fr, and Es
were notably lower, particularly in generalisation
(in between ~0.21-0.28 for MISTRAL) and locality
(0.20-0.28 for MISTRAL) metrics, indicating chal-
lenges in generalization and nuanced information
processing in non-English contexts. The portability
scores were modest across the board, underscor-
ing a pronounced need for enhanced multilingual
model adaptability.

When the edit is conducted with De and tested on
De reliability scores for TOWERINSTRUCT (0.828)
and MISTRAL (0.834) (for ROME) are reasonably
high indicating strong contextual understanding.
However, testing with other languages like It, Fr,
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Figure 1: Edited knowledge conflict across various languages for TowerlInstruct.

and Es exhibit lower scores, reflecting challenges
in language-specific processing.

After editing the model with It the edited model
achieved the highest reliability score with TOW-
ERINSTRUCT for test language It (0.871) (for
ROME). However, the reliability scores for other
test languages were lower, with En at 0.535, De at
0.398, Fr at 0.490, and Es at 0.488, reflecting the
challenge of extending training efficiencies beyond
Italian. The highest portability score was seen in
It with MISTRAL and TOWERINSTRUCT at 0.095
(for ROME), the scores were significantly lower in
other languages.

In case of edit with Fr, test language Fr achieved
the highest scores (0.832), with TOWERINSTRUCT
where it reached 0.454, compared to model’s per-
formance in other languages like En (0.519), De
(0.417), It (0.509), and Es (0.511). This high score
in Fr for TOWERINSTRUCT, however, suggests
that certain models can still effectively align with
training data even in non-primary languages. In
case generality and locality, the scores were uni-
versally lower across all models and languages,
indicating a struggle in generalizing the Fr editing.
Locality scores also pointed to difficulties in identi-
fying language-specific nuances, with TOWERIN-
STRUCT showing a modestly better understanding
in It (0.189) and Fr (0.214), yet still remaining
low.

After editing with Es, En (0.555) consistently
demonstrated superior reliability score for TOW-
ERINSTRUCT, compared to other languages such as

De (0.391) and It (0.451) (excluding Es). However,
Es exhibited notably high reliability scores, with
TOWERINSTRUCT achieving 0.822 and MISTRAL
0.812, indicating these models’ effective adaptation
to Spanish linguistic features. Generality and local-
ity metrics, which measure a model’s ability to gen-
eralize training and identify language-specific in-
formation, respectively, showed universally lower
scores across all languages, highlighting challenges
in cross-lingual applicability.

F.1.2 ZsRE

After editing with En language, the reliability score
for MISTRAL model in En was remarkably high at
0.929. However, this contrasts sharply with its per-
formance in other languages such as De (0.344)
and It (0.312), suggesting a significant drop in
model effectiveness when transitioning from En.
Similarly, the TOWERINSTRUCT model showed a
strong performance when the test langauage was
En with a relevance score of 0.875, yet scores in
other languages like De (0.236) and Fr (0.221)
were markedly lower, highlighting the challenges
in maintaining model performance across linguistic
boundaries (for ROME). In case of generalization
and locality, the scores also emphasize the dispar-
ity. While MISTRAL displayed a good generality
in Eng (0.812), its scores in languages such as
De and It were only around 0.260. This trend of
decreased performance is echoed in the locality
scores, where MISTRAL exhibited almost no abil-
ity to identify language-specific nuances in It and
Fr. TOWERINSTRUCT’s portability score for En
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Figure 2: Each metric on the z-axis is represented by two bars: the left bar indicates an exact match, while the right
bar indicates a partial match. For each bar, the divisions along the y-axis reflect the average values of the metric,
aggregated across Romance and Germanic languages evaluated. These subdivisions are color-coded to denote the

editing language, as specified in the legend.

was 0.097, which, although not very high, still out-
performs its De and Fr counterparts, suggesting a
somewhat better but still limited ability to adapt
training across languages (for ROME).

After editing with De, the TOWERINSTRUCT
model exhibited significant variations in reliabil-
ity scores, achieving its highest in De (0.480) but
only 0.157 in En, indicating a substantial challenge
in adapting to De compared to other languages.
Similarly, MISTRAL displayed relatively better rel-
evance in De at 0.513, but this still fell short com-
pared to its performance in It (0.257), suggesting
a consistent trend of models performing better in
Romance languages. Further examination of gen-
eralization and locality metrics highlights these
disparities even more. For instance, generalization
scores for MISTRAL in De stood at 0.349, yet local-
ity scores were nearly zero across the board, show-
ing a significant deficiency in capturing language-
specific details. Portability scores also reflect lim-
ited adaptability, with MISTRAL scoring only 0.079
for De compared to a slightly better performance in
It (0.066), underscoring the need for model train-
ing approaches that better address and bridge these
linguistic gaps to enhance overall performance and
applicability across diverse linguistic datasets (for
ROME).

After editing with It, TOWERINSTRUCT model
exhibited a disparity in reliability scores, achieving
a high value of 0.537 in It but only 0.185 in De,

underscoring a significant challenge in adapting to
De compared to other Romance languages. Simi-
larly, MISTRAL demonstrated better reliability in
It (0.575), further indicating that models tend to
align more effectively with training data in certain
languages over others. In terms of generality and
locality, the scores further emphasize these chal-
lenges.

After editing with Fr, the TOWERINSTRUCT
demonstrated a stronger performance in Fr with
a reliability score of 0.507 and a generality score
of 0.281, compared to its performance in Es (Rel:
0.138, Gen: 0.113) and It (Rel: 0.197, Gen: 0.167).
This indicates a more robust alignment with Fr
linguistic features. On the other hand, MISTRAL
also exhibited its highest reliability in Fr (0.517)
but struggled in De (0.298) and It (0.272), fur-
ther underscoring the varying model efficiencies
across languages. These findings highlight signifi-
cant challenges in model training, where improve-
ments are needed to enhance language-specific un-
derstanding and adaptability, ensuring that models
perform consistently well across a diverse linguis-
tic spectrum.

After editing with Es, TOWERINSTRUCT
achieved a high reliability score of 0.443 for Es, sig-
nificantly surpassing its scores in other languages
such as En (0.232) and De (0.148). This trend sug-
gests a stronger model alignment with the linguistic
properties of Es. In generality, TOWERINSTRUCT

206



RO openhathi ROME|counterfact|tamil-llama ROME|counterfact|kan-llama R ROME|zsre[tamil-lama ROME|zsrelkan-llama

~ _ 1 q n 2001 = I
3 5 B so{ Jo J q J
! b N _ 5] b ﬁ
b 4 o 175{ |9 3 o 20 [
30 N| — Ne E
B o L o b 150 o
A 50 B w0 KL sl PR A A N ]
d b
2 d
P 125 P
8 8 g0 ¢ 8 o ¢ el
32 °l = 3 2 100 1= 100 b 3 ’»4
s £ s B S S (] s (]
15 X 2 X
I 15 2 75 75 0 (]
0 o
10 10 5.0 50 X 10 'M
. ¥ i
s s 25 25
B Y ) o 0
| | ) | | =l o : A } —
Rel Gen Loc Port Rel Gen Loc Port Rel Gen Loc Port Rel Gen Loc Port Rel Gen Loc Port Rel Gen Loc Port
Metrics Metrics Metrics Metrics Metrics Metrics
MEMIT|counterfactjopenhathi MEMIT|counterfact|tamil-llama MEMIT|counterfact|kan-llama MEMIT]zsrelopenathi MEMIT|zsre|tamil-lama MEMIT|zsre|kan-lama
E P — — — 30—
3 B g B 0] [4 E|
o ~ >y e
o 704 o o o _ o
o 40 q 354 Np 25 >7"
o 0 [Py o b o
60 & < b
o o o b 304 | .
s0 so el 5 30 30 o
@ @ 7l 0 @ 0 025 @
g | 8 b g g |0 NI 8 g
Sl EPS E] 3 2 S5
2 N) 2 % £ £ M S g
30 b 30 D 15
‘ 10
%
2 ’§ 2 q B . w
| d s
10 ’h 10 Q s
k I k I = H gﬁ b =] i ; = 74
Rel Gen Loc Port. Rel Gen Loc Port. Rel Port Rel Gen Loc Port Rel Gen Loc Port. Rel Gen Loc Port.
Metrics Metrics Metrics Metrics Metrics Metrics

Z3 en (exact match) =3 hi (exact match) 3 ta (exact match) =3 kn (exact match)
BZ3 en (partial match) Loal hi (partial match) bod ta (partial match) Eodl kn (partial match)
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highlights better performance in Es with a score of
0.305, contrasted with lower scores in It (0.202)
and Fr (0.182). The locality scores were generally
low across all languages.
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Datasets/ Score Mistral TowerInstruct
L En De It Fr Es En De It Fr Es

Rel 0.994/0.994 | 0.498/0.560 | 0.469/0.578 | 0.487/0.548 | 0.571/0.617 | 0.996/0.996 | 0.482/0.529 | 0.455/0.500 | 0.498/0.527 | 0.511/0.562
Gen | 0.512/0.529 | 0.233/0.269 | 0.246/0.346 | 0.279/0.305 | 0.252/0.294 | 0.522/0.538 | 0.245/0.273 | 0.231/0.267 | 0.280/0.309 | 0.256/0.291
Loc | 0.327/0.338 | 0.227/0.250 | 0.240/0.358 | 0.200/0.362 | 0.244/0.265 | 0.307/0.315 | 0.196/0.207 | 0.204/0.209 | 0.225/0.235 | 0.224/0.238
Port | 0.133/0.144 | 0.029/0.033 | 0.027/0.111 | 0.013/0.119 | 0.027/0.035 | 0.005/0.013 | 0.000/0.004 | 0.011/0.018 | 0.005/0.005 | 0.002/0.004
Rel 0.558/0.591 | 0.834/0.961 | 0.471/0.506 | 0.423/0.471 | 0.446/0.500 | 0.589/0.614 | 0.828/0.959 | 0.431/0.489 | 0.439/0.481 | 0.429/0.497
Gen | 0.355/0.394 | 0.284/0.313 | 0.266/0.303 | 0.255/0.286 | 0.245/0.282 | 0.322/0.345 | 0.271/0.314 | 0.211/0.246 | 0.224/0.246 | 0.224/0.255
Loc | 0.365/0.376 | 0.208/0.228 | 0.251/0.264 | 0.193/0.207 | 0.263/0.280 | 0.287/0.292 | 0.222/0.232 | 0.212/0.216 | 0.214/0.224 | 0.211/0.224
Port | 0.114/0.133 | 0.029/0.039 | 0.025/0.027 | 0.023/0.023 | 0.033/0.037 | 0.004/0.014 | 0.008/0.008 | 0.004/0.006 | 0.006/0.012 | 0.000/0.002
Rel 0.541/0.578 | 0.422/0.477 | 0.860/0.914 | 0.502/0.542 | 0.519/0.582 | 0.535/0.564 | 0.398/0.450 | 0.871/0.932 | 0.490/0.535 | 0.488/0.556
Gen | 0.319/0.346 | 0.202/0.218 | 0.278/0.296 | 0.235/0.239 | 0.235/0.267 | 0.330/0.349 | 0.226/0.253 | 0.346/0.376 | 0.263/0.290 | 0.268/0.311
Loc | 0.350/0.358 | 0.230/0.251 | 0.257/0.270 | 0.210/0.264 | 0.253/0.265 | 0.293/0.301 | 0.199/0.205 | 0.185/0.189 | 0.214/0.222 | 0.203/0.216
Port | 0.095/0.111 | 0.031/0.045 | 0.021/0.031 | 0.012/0.023 | 0.019/0.031 | 0.008/0.010 | 0.004/0.004 | 0.019/0.021 | 0.010/0.012 | 0.006/0.006
Rel 0.519/0.548 | 0.417/0.485 | 0.509/0.542 | 0.832/0.890 | 0.511/0.566 | 0.530/0.550 | 0.383/0.440 | 0.454/0.501 | 0.827/0.898 | 0.458/0.506
Gen | 0.282/0.305 | 0.190/0.215 | 0.219/0.239 | 0.294/0.297 | 0.252/0.268 | 0.281/0.297 | 0.200/0.222 | 0.208/0.230 | 0.308/0.330 | 0.234/0.281
Loc | 0.350/0.362 | 0.243/0.256 | 0.249/0.264 | 0.204/0.217 | 0.276/0.294 | 0.303/0.316 | 0.204/0.214 | 0.189/0.198 | 0.214/0.220 | 0.224/0.208
Port | 0.106/0.119 | 0.020/0.025 | 0.022/0.023 | 0.029/0.033 | 0.023/0.029 | 0.006/0.018 | 0.010/0.016 | 0.010/0.012 | 0.004/0.006 | 0.002/0.008
Rel 0.528/0.548 | 0.409/0.458 | 0.483/0.542 | 0.489/0.544 | 0.812/0.908 | 0.555/0.581 | 0.391/0.429 | 0.451/0.516 | 0.466/0.554 | 0.822/0.921
Gen | 0.297/0.321 | 0.194/0.217 | 0.241/0.272 | 0.231/0.252 | 0.280/0.315 | 0.318/0.340 | 0.184/0.219 | 0.233/0.251 | 0.265/0.263 | 0.330/0.372
Loc | 0.346/0.358 | 0.235/0.250 | 0.249/0.262 | 0.209/0.223 | 0.254/0.268 | 0.294/0.300 | 0.211/0.217 | 0.186/0.188 | 0.200/0.238 | 0.211/0.223
Port | 0.106/0.123 | 0.022/0.023 | 0.035/0.037 | 0.023/0.025 | 0.029/0.033 | 0.008/0.014 | 0.002/0.002 | 0.008/0.014 | 0.010/0.020 | 0.000/0.002

En

De

It

CounterFact | Fr

Table 7: Comparison of reliability (Rel), generalization (Gen), locality (Loc), and portability (Port) scores for
multiple language models evaluated using the CounterFact dataset and the ROME editing method. The second
column indicates the language in which each model was edited.

Datasets/ Score Mistral TowerlInstruct
Languages En De It Fr Es En De It Fr Es
Rel 0.929/0.981 | 0.344/0.448 | 0.312/0.344 | 0.364/0.442 | 0.390/0.481 | 0.875/0.928 | 0.236/0.279 | 0.240/0.293 | 0.221/0.260 | 0.240/0.288
Gen | 0.812/0.851 | 0.260/0.351 | 0.260/0.325 | 0.292/0.331 | 0.331/0.409 | 0.620/0.683 | 0.183/0.226 | 0.168/0.216 | 0.149/0.207 | 0.183/0.255
En Loc 0.000/0.006 | 0.013/0.019 | 0.000/0.019 | 0.013/0.026 | 0.013/0.019 | 0.010/0.019 | 0.000/0.010 | 0.000/0.005 | 0.000/0.014 | 0.005/0.010
Port | 0.097/0.136 | 0.065/0.071 | 0.071/0.078 | 0.058/0.091 | 0.039/0.058 | 0.053/0.062 | 0.019/0.019 | 0.010/0.024 | 0.019/0.019 | 0.019/0.034
Rel 0.382/0.474 | 0.513/0.625 | 0.257/0.336 | 0.289/0.349 | 0.270/0.355 | 0.157/0.216 | 0.480/0.593 | 0.221/0.260 | 0.211/0.240 | 0.176/0.211
Gen | 0.342/0.428 | 0.349/0.454 | 0.237/0.309 | 0.237/0.289 | 0.217/0.289 | 0.152/0.196 | 0.333/0.387 | 0.162/0.201 | 0.142/0.172 | 0.132/0.167
De Loc 0.000/0.007 | 0.013/0.020 | 0.000/0.013 | 0.013/0.020 | 0.013/0.020 | 0.010/0.020 | 0.000/0.010 | 0.000/0.005 | 0.000/0.015 | 0.005/0.010
Port | 0.079/0.092 | 0.079/0.099 | 0.066/0.079 | 0.072/0.099 | 0.053/0.086 | 0.010/0.020 | 0.025/0.025 | 0.010/0.015 | 0.020/0.020 | 0.010/0.015
Rel 0.314/0.386 | 0.288/0.340 | 0.575/0.654 | 0.333/0.399 | 0.281/0.366 | 0.176/0.224 | 0.185/0.215 | 0.537/0.624 | 0.210/0.268 | 0.229/0.340
Gen | 0.340/0.405 | 0.242/0.281 | 0.418/0.484 | 0.294/0.373 | 0.222/0.327 | 0.161/0.200 | 0.137/0.185 | 0.346/0.429 | 0.180/0.239 | 0.122/0.271
It Loc 0.000/0.007 | 0.013/0.020 | 0.000/0.020 | 0.013/0.020 | 0.013/0.020 | 0.010/0.015 | 0.000/0.010 | 0.000/0.005 | 0.000/0.015 | 0.005/0.005
Port | 0.059/0.085 | 0.072/0.078 | 0.072/0.085 | 0.078/0.105 | 0.039/0.072 | 0.029/0.029 | 0.029/0.029 | 0.015/0.020 | 0.029/0.034 | 0.020/0.030
Rel 0.424/0.477 | 0.298/0.344 | 0.272/0.391 | 0.517/0.629 | 0.331/0.444 | 0.143/0.177 | 0.153/0.187 | 0.197/0.256 | 0.507/0.591 | 0.138/0.167
Gen | 0.371/0.424 | 0.285/0.325 | 0.245/0.325 | 0.404/0.503 | 0.245/0.351 | 0.138/0.177 | 0.133/0.167 | 0.167/0.192 | 0.281/0.350 | 0.113/0.163
ZSRE | Fr Loc 0.000/0.007 | 0.013/0.020 | 0.000/0.020 | 0.013/0.020 | 0.013/0.020 | 0.010/0.020 | 0.000/0.010 | 0.000/0.005 | 0.005/0.015 | 0.005/0.010
Port | 0.132/0.159 | 0.066/0.066 | 0.073/0.086 | 0.060/0.093 | 0.040/0.060 | 0.015/0.025 | 0.025/0.025 | 0.010/0.020 | 0.034/0.054 | 0.005/0.020
Rel 0.367/0.440 | 0.260/0.320 | 0.360/0.433 | 0.307/0.400 | 0.487/0.607 | 0.232/0.232 | 0.148/0.158 | 0.241/0.340 | 0.182/0.236 | 0.443/0.591
Gen | 0.287/0.367 | 0.227/0.280 | 0.247/0.313 | 0.333/0.387 | 0.353/0.453 | 0.153/0.177 | 0.094/0.118 | 0.202/0.271 | 0.182/0.241 | 0.305/0.404
Es Loc 0.000/0.007 | 0.013/0.020 | 0.000/0.020 | 0.013/0.020 | 0.007/0.013 | 0.010/0.010 | 0.000/0.005 | 0.000/0.005 | 0.000/0.010 | 0.005/0.010
Port | 0.060/0.080 | 0.040/0.060 | 0.033/0.060 | 0.047/0.080 | 0.033/0.067 | 0.000/0.000 | 0.010/0.010 | 0.015/0.030 | 0.010/0.020 | 0.020/0.020

Table 8: Comparison of reliability (Rel), generalization (Gen), locality (Loc), and portability (Port) scores for
multiple language models evaluated using the ZsRE dataset and the ROME editing method. The second column
indicates the language in which each model was edited.

Datasets/ Score Mistral TowerlInstruct
Languages En De It Fr Es En De It Fr Es

Rel 0.988/0.988 | 0.537/0.606 | 0.438/0.494 | 0.506/0.588 | 0.562/0.600 | 0.954/0.963 | 0.404/0.459 | 0.349/0.404 | 0.450/0.486 | 0.404/0.477
Gen | 0.444/0.456 | 0.219/0.225 | 0.212/0.225 | 0.263/0.269 | 0.212/0.263 | 0.431/0.431 | 0.128/0.174 | 0.193/0.202 | 0.193/0.220 | 0.183/0.220
Loc 0.381/0.388 | 0.256/0.281 | 0.275/0.287 | 0.250/0.263 | 0.250/0.269 | 0.275/0.294 | 0.193/0.220 | 0.202/0.202 | 0.193/0.211 | 0.165/0.165
Port | 0.156/0.188 | 0.025/0.037 | 0.037/0.037 | 0.031/0.037 | 0.025/0.037 | 0.000/0.000 | 0.000/0.000 | 0.009/0.018 | 0.009/0.009 | 0.000/0.000
Rel 0.439/0.484 | 0.726/0.866 | 0.376/0.420 | 0.350/0.369 | 0.363/0.414 | 0.355/0.391 | 0.727/0.827 | 0.282/0.380 | 0.309/0.309 | 0.255/0.300
Gen | 0.242/0.280 | 0.191/0.223 | 0.185/0.191 | 0.185/0.217 | 0.178/0.210 | 0.227/0.236 | 0.191/0.218 | 0.136/0.176 | 0.182/0.209 | 0.145/0.164
Loc 0.376/0.389 | 0.242/0.268 | 0.280/0.293 | 0.229/0.242 | 0.274/0.280 | 0.264/0.282 | 0.191/0.218 | 0.200/0.231 | 0.209/0.227 | 0.200/0.200
Port | 0.108/0.134 | 0.045/0.064 | 0.025/0.025 | 0.013/0.025 | 0.032/0.051 | 0.000/0.000 | 0.009/0.009 | 0.009/0.009 | 0.009/0.009 | 0.000/0.000
Rel 0.372/0.404 | 0.353/0.410 | 0.801/0.878 | 0.455/0.526 | 0.449/0.526 | 0.407/0.444 | 0.361/0.380 | 0.741/0.778 | 0.389/0.417 | 0.426/0.454
Gen | 0.256/0.263 | 0.141/0.167 | 0.237/0.269 | 0.192/0.231 | 0.179/0.212 | 0.315/0.315 | 0.139/0.176 | 0.250/0.259 | 0.204/0.213 | 0.185/0.213
Loc 0.385/0.397 | 0.263/0.288 | 0.269/0.282 | 0.250/0.263 | 0.276/0.282 | 0.269/0.287 | 0.204/0.231 | 0.204/0.204 | 0.194/0.213 | 0.176/0.176
Port | 0.122/0.147 | 0.013/0.032 | 0.026/0.026 | 0.013/0.019 | 0.019/0.045 | 0.009/0.009 | 0.009/0.009 | 0.019/0.028 | 0.009/0.009 | 0.000/0.000
Rel 0.439/0.459 | 0.395/0.471 | 0.401/0.433 | 0.790/0.847 | 0.446/0.478 | 0.468/0.477 | 0.330/0.385 | 0.330/0.376 | 0.651/0.716 | 0.330/0.367
Gen | 0.229/0.268 | 0.153/0.166 | 0.159/0.172 | 0.236/0.255 | 0.153/0.172 | 0.294/0.312 | 0.128/0.147 | 0.183/0.183 | 0.220/0.239 | 0.174/0.193
Loc 0.389/0.401 | 0.268/0.293 | 0.280/0.293 | 0.242/0.255 | 0.274/0.280 | 0.248/0.266 | 0.183/0.211 | 0.183/0.183 | 0.174/0.193 | 0.174/0.174
Port | 0.089/0.115 | 0.019/0.032 | 0.019/0.019 | 0.025/0.032 | 0.013/0.025 | 0.000/0.000 | 0.009/0.009 | 0.009/0.018 | 0.000/0.000 | 0.000/0.000
Rel 0.433/0.465 | 0.338/0.382 | 0.401/0.452 | 0.471/0.522 | 0.777/0.860 | 0.435/0.463 | 0.306/0.324 | 0.370/0.398 | 0.380/0.398 | 0.704/0.796
Gen | 0.210/0.229 | 0.127/0.159 | 0.121/0.134 | 0.185/0.217 | 0.223/0.274 | 0.241/0.250 | 0.148/0.157 | 0.194/0.204 | 0.213/0.213 | 0.231/0.269
Loc 0.395/0.408 | 0.274/0.306 | 0.268/0.287 | 0.242/0.255 | 0.274/0.287 | 0.259/0.278 | 0.194/0.222 | 0.185/0.185 | 0.176/0.194 | 0.185/0.185
Port | 0.108/0.134 | 0.025/0.051 | 0.006/0.006 | 0.013/0.013 | 0.025/0.045 | 0.009/0.009 | 0.000/0.009 | 0.009/0.019 | 0.019/0.019 | 0.000/0.000

En

It

CounterFact | Fr

Es

Table 9: Comparison of reliability (Rel), generalization (Gen), locality (Loc), and portability (Port) scores for
multiple language models evaluated using the CounterFact dataset and the MEMIT editing method. The second
column indicates the language in which each model was edited.
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Datasets/ Score Mistral TowerlInstruct
Languages En De It Fr Es En De It Fr Es
Rel 0.786/0.812 | 0.136/0.182 | 0.227/0.266 | 0.227/0.279 | 0.188/0.260 | 0.528/0.538 | 0.104/0.142 | 0.123/0.142 | 0.123/0.170 | 0.123/0.142
Gen | 0.513/0.545 | 0.136/0.162 | 0.175/0.208 | 0.156/0.208 | 0.136/0.208 | 0.321/0.330 | 0.123/0.142 | 0.113/0.132 | 0.075/0.104 | 0.094/0.113
En Loc 0.019/0.026 | 0.013/0.032 | 0.013/0.019 | 0.013/0.019 | 0.019/0.019 | 0.019/0.038 | 0.000/0.019 | 0.000/0.009 | 0.000/0.019 | 0.009/0.019
Port | 0.039/0.065 | 0.019/0.032 | 0.006/0.006 | 0.039/0.052 | 0.039/0.045 | 0.019/0.028 | 0.019/0.019 | 0.019/0.019 | 0.019/0.019 | 0.009/0.009
Rel 0.158/0.204 | 0.382/0.474 | 0.138/0.178 | 0.112/0.132 | 0.118/0.164 | 0.029/0.077 | 0.250/0.298 | 0.048/0.067 | 0.038/0.058 | 0.048/0.048
Gen | 0.125/0.171 | 0.184/0.243 | 0.138/0.164 | 0.105/0.118 | 0.086/0.125 | 0.058/0.067 | 0.106/0.115 | 0.048/0.067 | 0.038/0.048 | 0.038/0.058
De Loc 0.020/0.026 | 0.007/0.026 | 0.013/0.020 | 0.013/0.020 | 0.020/0.020 | 0.019/0.029 | 0.000/0.010 | 0.000/0.010 | 0.000/0.019 | 0.010/0.019
Port | 0.039/0.066 | 0.020/0.039 | 0.013/0.013 | 0.007/0.020 | 0.020/0.033 | 0.010/0.019 | 0.000/0.000 | 0.000/0.000 | 0.010/0.010 | 0.000/0.000
Rel 0.144/0.176 | 0.157/0.196 | 0.425/0.503 | 0.144/0.183 | 0.163/0.216 | 0.019/0.038 | 0.038/0.067 | 0.248/0.286 | 0.067/0.086 | 0.095/0.124
Gen | 0.105/0.150 | 0.085/0.118 | 0.255/0.307 | 0.144/0.183 | 0.105/0.157 | 0.029/0.067 | 0.048/0.076 | 0.162/0.200 | 0.038/0.057 | 0.048/0.067
It Loc 0.020/0.026 | 0.007/0.026 | 0.013/0.020 | 0.013/0.020 | 0.020/0.020 | 0.019/0.029 | 0.000/0.019 | 0.000/0.010 | 0.000/0.029 | 0.010/0.019
Port | 0.046/0.072 | 0.007/0.033 | 0.013/0.033 | 0.020/0.033 | 0.020/0.033 | 0.000/0.010 | 0.010/0.019 | 0.019/0.029 | 0.010/0.010 | 0.000/0.000
Rel 0.139/0.172 | 0.099/0.152 | 0.166/0.238 | 0.397/0.497 | 0.119/0.166 | 0.048/0.077 | 0.048/0.067 | 0.038/0.077 | 0.269/0.346 | 0.019/0.058
Gen | 0.152/0.212 | 0.079/0.139 | 0.139/0.185 | 0.185/0.272 | 0.093/0.139 | 0.019/0.038 | 0.029/0.048 | 0.048/0.077 | 0.144/0.173 | 0.010/0.019
ZSRE | Fr Loc 0.020/0.026 | 0.013/0.033 | 0.013/0.020 | 0.013/0.020 | 0.020/0.020 | 0.019/0.029 | 0.000/0.019 | 0.000/0.010 | 0.000/0.019 | 0.010/0.010
Port | 0.060/0.079 | 0.020/0.033 | 0.020/0.020 | 0.040/0.060 | 0.040/0.053 | 0.019/0.019 | 0.010/0.010 | 0.000/0.010 | 0.029/0.029 | 0.000/0.000
Rel 0.107/0.153 | 0.073/0.106 | 0.166/0.213 | 0.147/0.186 | 0.373/0.493 | 0.058/0.087 | 0.038/0.058 | 0.087/0.115 | 0.058/0.106 | 0.240/0.337
Gen | 0.087/0.256 | 0.087/0.106 | 0.140/0.173 | 0.093/0.146 | 0.220/0.286 | 0.048/0.087 | 0.058/0.087 | 0.087/0.115 | 0.058/0.087 | 0.163/0.202
Es Loc 0.020/0.026 | 0.007/0.026 | 0.013/0.020 | 0.013/0.020 | 0.020/0.020 | 0.019/0.029 | 0.000/0.019 | 0.000/0.010 | 0.000/0.019 | 0.010/0.019
Port | 0.033/0.060 | 0.007/0.013 | 0.027/0.033 | 0.033/0.046 | 0.027/0.040 | 0.010/0.010 | 0.000/0.000 | 0.010/0.010 | 0.019/0.019 | 0.010/0.019

Table 10: Comparison of reliability (Rel), generalization (Gen), locality (Loc), and portability (Port) scores for
multiple language models evaluated using the ZsRE dataset and the MEMIT editing method. The second column
indicates the language in which each model was edited.
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