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Abstract

Automating planning with LLMs presents
transformative opportunities for traditional in-
dustries, yet remains underexplored. In com-
mercial construction, the complexity of auto-
mated scheduling often requires manual in-
tervention to ensure precision. We propose
CONSTRUCTA, a novel framework leverag-
ing LLMs to optimize construction schedules
in complex projects like semiconductor fab-
rication. CONSTRUCTA addresses key chal-
lenges by: (1) integrating construction-specific
knowledge through static RAG; (2) employ-
ing context-sampling techniques inspired by
architectural expertise to provide relevant in-
put; and (3) deploying Construction DPO to
align schedules with expert preferences using
RLHF. Experiments on proprietary data demon-
strate performance improvements of +42.3%
in missing value prediction, +79.1% in depen-
dency analysis, and +28.9% in automated plan-
ning compared to baseline methods, showcas-
ing its potential to revolutionize construction
workflows and inspire domain-specific LLM
advancements.

1 Introduction

Automating construction schedules in large-scale
commercial projects, such as semiconductor fab-
rication, is an inherently complex task due to the
dynamic nature of project contexts, intricate depen-
dency structures, and the critical need for expert-
driven decision-making (Neelamkavil, 2009; Az-
imi et al., 2011). The difficulty lies in manag-
ing the vast number of interdependent activities,
each with unique resource requirements and con-
straints, while simultaneously adapting to real-time
changes and unforeseen disruptions (Zavadskas
et al., 2004). These factors necessitate seamless

†Work done during a GenAI research internship at Intel
Incubation and Disruptive Innovation (IDI) Group.

integration of domain knowledge and human exper-
tise to ensure project feasibility and efficiency. Tra-
ditional methods, relying on rigid rules and static
assumptions, often fail to adapt to the variability
and uncertainty inherent in large-scale construction
projects, leaving a critical need for more flexible
and context-aware approaches (Alegre et al., 2016;
Al Ali, 2020).

Despite recent advancements in machine learn-
ing, the potential of large language models (LLMs)
for construction scheduling remains underexplored
due to several limitations. LLMs, pretrained on
broad datasets, lack the domain-specific knowledge
needed for intricate project dependencies and con-
straints (Xu et al., 2024b; Banerjee et al., 2024).
Moreover, the size and complexity of construction
plans make it impractical to load entire projects into
LLMs for automation (Gidado, 1996). Instead, con-
struction scheduling demands dynamic handling of
real-time updates and evolving conditions. LLMs
face three key challenges: (1) capturingthe intri-
cate dependencies between construction activities,
(2) adapting to context-sensitive changes in task
priorities or resource availability, and (3) aligning
outputs with expert-driven preferences. These chal-
lenges highlight the need for tailored frameworks
to bridge the gap between LLM capabilities and
the demands of large-scale construction projects.

To address these limitations, we present CON-
STRUCTA1, a novel framework designed to opti-
mize construction schedules dynamically by lever-
aging LLMs with three key components: (1) Static
Retrieval-Augmented Generation (SRAG or Static
RAG), which introduces domain-specific construc-
tion knowledge, enabling LLMs to understand def-
initions, rules, and constraints critical to commer-
cial construction; (2) Contextualized Knowledge
RAG (Knowledge RAG or KRAG), which incor-

1CONSTRUCTA and Construction RLHF are used inter-
changeably in this paper.
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Figure 1: Overview of the CONSTRUCTA system. (a) The initial construction schedule is created by experts and
refined with contextual activity and site samples. (b) Contextualized activity aggregates hierarchical, first-order, and
sequential relations. (c) Knowledge vectorization embeds and retrieves construction knowledge for optimization.
(d) Construction preference alignment uses RLHF to align schedules with expert rules and preferences.

porates the expertise of architects by dynamically
sampling context-sensitive information, ensuring
the relevance of inputs to evolving project condi-
tions; and (3) Construction RLHF, which aligns
the outputs of LLMs with expert feedback to en-
hance their in-depth understanding and produce
human-aligned scheduling decisions.

We evaluate CONSTRUCTA on a proprietary
dataset comprising 4,340 semiconductor fabrica-
tion activities characterized by intricate dependen-
cies and constraints. CONSTRUCTA delivers sub-
stantial performance improvements, including a
42.3% boost in missing value prediction, 79.1%
in dependency analysis, and 28.9% in automated
planning compared to baseline methods. Further
analysis across levels and areas shows adaptabil-
ity, while Construction RLHF distills raw data into
actionable insights, demonstrating scalability and
robustness for complex construction tasks.

2 Methodology

Our methodology starts with an expert-provided
schedule (Figure 1, part (a)) and refines it using
Static RAG for retrieval, Knowledge RAG for de-
pendencies, and Construction RLHF for rule align-
ment (parts (c), (b), and (d)). The outputs, includ-
ing retrieved knowledge and preference-aligned
task relationships, are integrated into prompts for
dynamic, context-aware scheduling.

2.1 Static Retrieval-Augmented Generation

Static RAG equips LLMs with construction-
specific knowledge, as shown in part (c) of Figure 1.
It bridges the gap between general-purpose models
and scheduling needs by generating embeddings
for retrieval, with Local Static RAG providing pre-
cise definitions and Global Static RAG offering
broader domain knowledge.

Local Static RAG provides precise definitions
for construction-specific terms like Work Break-
down Structure (WBS) using curated online re-
sources. For each term t in the terminology set
T , its definition dt is retrieved and embedded as
et = fembed(dt) using an embedding model fembed.
These embeddings are stored for contextualizing
activities in schedule optimization.

Global Static RAG retrieves domain-specific
knowledge from resources like textbooks or man-
uals. Raw text D is cleaned and segmented
into chunks C = {c1, c2, . . . , cn}, each em-
bedded as eci = fembed(ci) and stored in a
database. For a query q, the system retrieves
the most relevant chunk c∗ by maximizing sim-
ilarity sim(eq, eci), where eq = fembed(q) and
c∗ = argmaxci∈C sim(eq, eci). Combining Lo-
cal and Global Static RAG ensures precise defini-
tions and broad domain knowledge for construction
scheduling.
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Figure 2: Illustration of the CPA-RLHF process. 1⃝ Raw contexts and rules are input for comprehension. 2⃝ The
Plan Agent refines these into filtered contexts and rules. 3⃝ Completions are evaluated and stored in the Preference
Database. 4⃝ The Expert Agent aligns outputs with project preferences. Part (a) collects data for preference model
training, and part (b) aligns preferences for accurate planning.

2.2 Contextual Knowledge RAG
Contextual Knowledge RAG samples task-specific
contexts from a dependency graph G = (V,E),
where V represents activities and E their depen-
dencies. As shown in part (b) of Figure 1, it aggre-
gates hierarchical, first-order, and sequential rela-
tionships, using the combined context to retrieve
relevant embeddings from the knowledge database
for construction scheduling.

Sequential Context captures predecessor and
successor activities up to three hops by traversing
the graph in both directions. Random paths are
sampled to reflect relevant sequential relationships
while avoiding revisits and cycles, ensuring the
selection of meaningful task flows.

Hierarchical Context retrieves nodes within the
same Work Breakdown Structure (WBS) up to two
levels. Tasks sharing WBS attributes are identified,
and bidirectional traversal ensures that hierarchi-
cally consistent nodes are included in the context.

First-Order Context includes direct predeces-
sors and successors of the target node, focusing on
immediate task dependencies critical for accurate
schedule representation.

Each task i is assigned a combined context Ci =
{FirstOrder(i),Hierarchical(i),Sequential(i)}, re-
flecting one-hop, two-hop, and three-hop con-
straints. Using the same embedding model as Static
RAG, embeddings for Ci retrieve local knowledge
and the top three global knowledge chunks from
books and references, balancing dependencies to
optimize rule generation and scheduling.

2.3 Construction RLHF
The Construction RLHF pipeline (Figure 2) refines
schedules by integrating expert feedback and dy-

namic adjustments. Starting with raw contexts and
rules ( 1⃝), the Plan Agent combines task-specific
details with context retrieved from SRAG and
KRAG ( 2⃝). Refined outputs, evaluated as positive
or negative completions, are stored in the Prefer-
ence Database ( 3⃝). The smaller Expert Agent2,
compared to the Plan Agent, utilizes this feedback
and memorized domain knowledge to ensure sched-
ules align with dynamic project requirements ( 4⃝),
supporting robust and adaptive scheduling.

CPA-RLHF acts as the overarching framework,
transforming the initial construction schedule into
a dynamic environment for offline reinforcement
learning. This is achieved by masking certain
ground-truth values to simulate real-world uncer-
tainties, effectively leveraging the expertise of ar-
chitects in providing feedback on schedule opti-
mization. The masked environment serves as a
feedback loop where evaluated completions in-
form the refinement of the preference model. This
process enables CPA-RLHF to address complex
scheduling requirements by integrating domain
knowledge, contextual adjustments, and expert
preferences.

Within this framework, CPA-DPO refines the
preference alignment process through supervised
fine-tuning (SFT) and direct preference opti-
mization. SFT establishes an initial alignment
by minimizing the cross-entropy loss LSFT =
− 1

N

∑N
i=1 yi log pi, grounding the model in expert-

labeled schedules to produce coherent and con-
textually relevant outputs. Building on this, the
preference alignment phase optimizes the total

2The dual-agent structure enables the smaller LLM to
memorize preferences while the larger LLM automates sched-
ules.
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loss Ltotal = LSFT + αLCR + βLPA, where α
and β balance contributions from Context-Rule
Interaction Loss (LCR) and Preference Align-
ment Loss (LPA). The latter, defined as LPA =
− 1

N

∑N
i=1 (yi log(pi) + (1− yi) log(1− pi)), en-

sures model outputs align with expert-defined pref-
erences while respecting project constraints. This
integrated approach enables the model to dynami-
cally adapt to construction complexities, improving
task prioritization and resource allocation.

3 Experimental Design

This section outlines the experimental configura-
tions for Static RAG, Knowledge RAG and Con-
struction RLHF, emphasizing embedding methods,
model configurations, and optimization strategies.

Static and Knowledge RAG The SRAG
setup used 500-token chunks for efficient
processing, with embeddings generated via
all-MiniLM-L6-v23. Static RAG focused on
terminologies and definitions, while Knowledge
RAG retrieved context from manuals and domain-
specific references.

Construction RLHF The Plan Agent used GPT-
4o (Islam and Moushi, 2024), and the Expert Agent
employed Llama3.2-3B model (Touvron et al.,
2023) for expert preference alignment. Training
involved 10 epochs of SFT for initialization, fol-
lowed by 10 epochs of CPA-DPO for preference
refinement. The trained Expert Agent supported
contextual refinements.

LLM Training Configuration Efficient train-
ing was achieved using 4-bit quantization, gradient
checkpointing, mixed precision training, and the
AdamW optimizer (Zhuang et al., 2022). Data
collection employed a random seed of 42, while
inference utilized a seed of 12345, ensuring the
generation of diverse datasets to enhance general-
izability.

Prompt Design Comprehensive prompt cate-
gories tailored for each task are provided in the ap-
pendix to address construction-specific challenges
effectively. Each result reflects the top-2 predic-
tions (k = 2) for enhanced accuracy, with Con-
struction RLHF ensembled with KRAG to combine
expert alignment and domain-specific knowledge
retrieval.

3https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

Model Config MVP (%) DA (%) AP (%) Avg (%)

GPT-4o (Basic Context) 14.6 3.1 8.4 8.7

+ Static RAG 11.6 1.6 12.5 8.6
+ Knowledge RAG 51.4 77.9 25.9 51.7
+ Construction RLHF 56.9 82.2 37.3 58.8

Gain (CONSTRUCTA vs. BC) +42.3 +79.1 +28.9 +50.1

Table 1: Performance comparison of pretraining config-
urations for construction schedule optimization. Basic
Context (BC) refers to GPT-4o without retrieval aug-
mentation or RLHF, relying only on general pretraining
knowledge by sampling random rows as context.

4 Result and Analysis

We evaluate CONSTRUCTA across key scheduling
tasks, highlighting its ability to address complex
dependencies, handle missing data, and align sched-
ules with expert-defined constraints.

4.1 Evaluation Metrics

CONSTRUCTA is evaluated using three key metrics
to assess its ability to predict missing elements
in construction schedules while ensuring logical
consistency and expert alignment.

Missing Value Prediction (MVP) measures the
model’s ability to reconstruct values from three ran-
domly removed columns. This tests its capability
to handle incomplete data while preserving sched-
ule coherence and minimizing disruptions caused
by missing information.

Dependency Analysis (DA) evaluates predic-
tion accuracy for relational columns, including Ac-
tivity Status, Level, Area, and Discipline. Since
these dependencies define task sequencing and
workflow constraints, this metric ensures that pre-
dicted schedules maintain logical task relationships
and prevent inconsistencies.

Automated Planning (AP) assesses the model’s
ability to predict Current Start and Current Finish
dates while considering real-world constraints. It
measures how well the generated schedules align
with expert workflows, resource availability, and
project feasibility to ensure practical execution.

4.2 Overall Performance Gains

Table 1 demonstrates the overall performance im-
provements of CONSTRUCTA across MVP, DA, and
AP tasks. Static RAG shows limited impact, with
marginal or decreased performance, as it provides
domain knowledge without contextual adaptation.
Knowledge RAG boosts MVP and DA by incor-
porating task-specific dependencies, improving in-
ference of missing values and logical sequencing.
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Group Discipline MVP (%) DA (%) AP (%)
BC SRAG KRAG RLHF BC SRAG KRAG RLHF BC SRAG KRAG RLHF

CSA CSA.Arch.Arch-D 5.6 4.4 23.3 25.6 1.7 2.5 39.2 43.3 0.8 5.0 15.0 19.2
CSA.Arch.CRCs-D 6.7 6.7 40.0 40.0 0.0 0.0 65.0 65.0 0.0 0.0 17.5 20.0
CSA.Arch.Metal 6.5 4.5 32.7 37.8 2.1 0.7 61.0 64.2 3.1 7.5 10.8 16.8
CSA.Arch.RF 9.5 6.3 38.1 42.9 0.9 0.6 49.7 53.3 2.1 6.0 8.0 17.3
CSA.Arch.WPRF 0.0 0.0 33.3 33.3 0.0 0.0 25.0 25.0 0.0 25.0 0.0 0.0
CSA.Civil.Earthwork 11.3 6.9 32.8 38.2 1.6 0.4 47.2 52.0 3.6 6.9 10.1 16.5
CSA.Struc.Concrete 8.8 7.4 29.2 33.0 1.1 1.3 35.5 39.1 4.6 6.7 12.9 20.0
CSA.Struc.Modules 6.2 5.6 37.1 41.7 2.7 0.5 61.8 66.5 3.8 6.9 11.6 19.7
CSA.Struc.Piers 7.5 6.7 30.0 36.7 0.0 0.0 45.0 47.5 7.5 5.0 22.5 32.5
CSA.Struc.Steel 8.0 7.8 30.8 34.0 1.7 1.0 50.3 53.6 3.5 7.4 15.4 21.6
CSA.Struc.Strut 9.0 5.6 33.5 37.9 1.8 0.8 60.1 64.9 6.5 5.8 18.2 27.1

MEP MEP.Mech.Dry 4.6 6.4 37.6 38.8 2.5 0.4 65.7 68.0 4.6 6.4 18.2 25.4
MEP.Mech.Wet 0.0 0.0 66.7 66.7 0.0 0.0 75.0 75.0 0.0 0.0 50.0 50.0
MEP.Proc.HP 3.2 5.4 33.3 40.8 1.4 0.2 61.5 66.5 3.2 5.4 14.0 23.7
MEP.Proc.LP 4.3 4.8 35.2 39.3 1.6 0.5 61.1 68.2 4.3 6.9 14.6 22.9
MEP.Proc.Vac 7.5 5.2 32.4 36.7 1.1 0.7 57.5 63.9 7.5 6.8 19.6 31.1
MEP.Proc.Waste 7.9 6.4 33.1 38.8 1.4 0.4 63.0 67.9 5.2 6.8 18.2 25.2
MEP.Proc.Water 5.7 6.4 37.6 38.8 3.0 0.5 65.7 70.5 3.8 7.6 14.8 23.2

Avg 6.2 5.2 36.4 40.2 1.5 0.6 55.8 59.2 3.7 6.6 17.4 24.3

Table 2: Grouped performance comparison across construction schedule optimization tasks. SRAG retrieves
domain-specific definitions, KRAG structures context using activity relationships, and RLHF aligns predictions
with expert feedback. Results show notable gains in MVP, DA, and AP, especially in CSA and MEP disciplines.

Construction RLHF achieves the highest gains, im-
proving MVP by +42.3%, DA by +79.1%, and
AP by +28.9%. These results highlight the effec-
tiveness of CONSTRUCTA in addressing complex
construction scheduling tasks.

4.3 Construction Disciplines, Levels, and
Areas in Evaluation

Effective construction scheduling depends on disci-
plines, structural levels, and spatial areas, each with
unique dependencies. We evaluate CONSTRUCTA

across these dimensions to ensure adaptability to
real-world constraints.

Disciplines Construction projects encompass
Civil, Structural, and Architectural (CSA) and Me-
chanical, Electrical, and Plumbing (MEP) disci-
plines. CSA tasks, such as structural assemblies
and load-bearing elements, require precise sequenc-
ing for stability. MEP tasks, including waste pro-
cessing and high-pressure systems, demand coordi-
nated integration for efficient infrastructure.

Levels Evaluation covers Equipment (EQ), Util-
ity Level (UL), Standard Floor (SF), and Roof
Floor (RF). SF and RF are the most complex, with
RF requiring detailed sequencing for reinforce-
ments and installations.

Areas Performance is analyzed in construction
zones such as 6E, 9E, and SU. High-complexity
areas like SU E and 10E have dense interdepen-
dencies, making effective scheduling essential for
coordination and resource optimization.

4.4 Performance by Discipline
The grouped results in Table 2 provide insights
into CONSTRUCTA’s performance across construc-
tion disciplines. For CSA disciplines, including
CSA.Struc.Modules and CSA.Struc.Piers, CON-
STRUCTA excels in accurately modeling depen-
dencies and generating optimized schedules, ef-
fectively addressing challenges such as sequenc-
ing structural assemblies, ensuring load-bearing
integrity, and maintaining alignment with construc-
tion constraints.

Similarly, for MEP disciplines, including
MEP.Proc.Waste and MEP.Proc.HP, significant im-
provements are observed in DA and AP, demon-
strating CONSTRUCTA’s ability to capture intricate
interdependencies between mechanical, electrical,
and plumbing systems. This highlights the model’s
robustness in specialized workflows where precise
coordination of installations and operational con-
straints is critical to overall project efficiency.

4.5 Performance by Level and Area
Figure 3 compares performance across construc-
tion levels (EQ, UL, SF, RF) and areas (6E, 9E,
SU). CONSTRUCTA consistently outperforms other
methods across all categories, demonstrating its
ability to adapt to varying spatial and structural
complexities.

For levels, the largest improvements are ob-
served in SF and RF, highlighting the model’s capa-
bility to handle complex roof-level dependencies,
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Figure 3: Performance Comparison Across Levels and Areas. This plot shows the performance of various metrics,
including Basic Context, Static RAG, Knowledge RAG, and Construction RLHF, for three tasks (Automated
Planning, Dependency Analysis, and Missing Value Prediction) across different levels and areas.
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Figure 4: Context length distributions for AP, DA, and MVP sources, highlighting reductions achieved through CPA-
DPO. The shorter contexts effectively maintain performance while improving efficiency in schedule optimization.

structural reinforcements, and standard floor op-
erations with greater accuracy. The gains in RF
indicate that CONSTRUCTA effectively accounts
for elevated sequencing constraints and installation
workflows that are more intricate at higher levels.

For areas, CONSTRUCTA achieves the high-
est gains in zones with high complexity, such as
SU E and 10E, where interdependencies between
tasks are more intricate. This suggests that CON-
STRUCTA effectively learns and adapts to local-
ized construction constraints, optimizing sequenc-
ing and resource allocation in highly constrained
or densely coordinated zones.

4.6 Knowledge Distillation and Observations

Figure 4 shows the reduced context length af-
ter CPA-DPO alignment, demonstrating effective
knowledge distillation from the Plan Agent to the
Expert Agent. By filtering out redundant details
and retaining only essential scheduling constraints,
CONSTRUCTA enhances efficiency while preserv-

ing decision-making accuracy. By prioritizing criti-
cal dependencies, it enables more precise schedul-
ing adjustments and minimizes the risk of mis-
aligned task sequencing.

Another key observation is that CONSTRUCTA

refines scheduling inputs by reducing context
length while preserving essential constraints. CPA-
DPO alignment streamlines DA and MVP, filtering
excess details that obscure dependencies. This dis-
tillation enhances adaptability by emphasizing key
relational structures, improving interpretability and
alignment with industry requirements.

5 Future Applications and Industry
Adoption

CONSTRUCTA presents strong potential for LLM
adoption in construction scheduling, improving au-
tomation, adaptability, and decision support. Tra-
ditional methods struggle with real-time changes,
while CONSTRUCTA continuously refines sched-
ules based on evolving constraints (Pan and Zhang,
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2021; Neelamkavil, 2009). By learning from his-
torical schedules and domain-specific constraints,
it optimizes resource allocation, mitigates conflicts,
and enhances project execution.

For broader adoption, CONSTRUCTA can inte-
grate with existing construction management soft-
ware as an intelligent planning tool. Its abil-
ity to handle dynamic scheduling and depen-
dency modeling makes it valuable for large-scale
projects. Future work will address deployment
challenges, including computational efficiency, la-
tency, and seamless integration with industry plat-
forms (Zhang et al., 2023; Amer et al., 2023), en-
suring scalability for commercial applications such
as semiconductor fabrication.

6 Related Works

Research on LLM-powered construction schedul-
ing is limited, with prior work focusing on deter-
ministic methods and RL in other domains (Srivas-
tava et al., 2022; Dashti et al., 2021; Bademosi and
Issa, 2021; Pan and Zhang, 2021; Li et al., 2021).
This work pioneers construction automation using
RAG and RLHF.

6.1 Construction Automation

Traditional construction automation has predom-
inantly utilized deterministic scheduling algo-
rithms (Peiris et al., 2023; Khodabakhshian et al.,
2023; Peiris et al., 2023) and rule-based sys-
tems (Zhang et al., 2023; Amer et al., 2023; Ağar,
2024). While these methods are effective in static
environments, they often fail to adapt to the dy-
namic and complex nature of real-world construc-
tion projects, which involve evolving dependencies
and resource constraints (Xie et al., 2023; Al-Sinan
et al., 2024; Parekh, 2024; He et al., 2024; Huang
et al., 2024). Our approach addresses these limi-
tations by integrating domain-specific knowledge
and context, enabling more flexible and responsive
scheduling.

6.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) tech-
niques enhance language models by incorporat-
ing external knowledge sources, improving their
ability to generate contextually relevant informa-
tion (Gao et al., 2023; Chen et al., 2024; Jiang
et al., 2024; Li et al., 2024a; Acharya et al., 2025).
However, existing RAG methods may not effec-
tively retrieve and integrate the highly specialized

and structured information required for construc-
tion scheduling (Zhao et al., 2024; Fan et al., 2024;
Barnett et al., 2024). Our method overcomes this
challenge by employing a static RAG framework
tailored to the construction domain, ensuring the
retrieval of precise and pertinent information that
informs scheduling decisions.

6.3 Reinforcement Learning from Human
Feedback (RLHF)

Reinforcement Learning from Human Feedback
(RLHF), including Direct Preference Optimization
(DPO), aligns model outputs with human prefer-
ences through comparative feedback (Wang et al.,
2023; Yang et al., 2024; Dong et al., 2024; Xu et al.,
2024a; Saeidi et al., 2024). In software engineer-
ing, RLHF has been used to enhance model align-
ment with human reasoning, leveraging human at-
tention and feedback to improve code summariza-
tion, model focus, and explainability (Bansal et al.,
2023; Karas et al., 2024; Li et al., 2024b; Zhang
et al., 2024). Additionally, studies show that LLMs
can learn structured decision patterns from human-
provided code comments and summarization pat-
terns (Zhang et al., 2022; Zhang, 2022), demon-
strating RLHF’s potential for domains requiring
contextual understanding, such as construction.

However, applying RLHF in traditional indus-
tries like construction remains challenging due to
the need for domain-specific knowledge, complex
dependencies, and expert-driven priorities (Wang
et al., 2024; Xiao et al., 2024; Feng et al., 2024).
While RLHF has been applied in various domains,
its use in construction scheduling remains underex-
plored. Our approach extends DPO by incorporat-
ing construction-specific knowledge and structured
context, resulting in schedules that better reflect ex-
pert preferences and project-specific requirements.

7 Conclusion

In conclusion, we presented CONSTRUCTA, an ap-
proach for automating construction schedules by
integrating LLMs, contextualized knowledge RAG,
and RLHF to optimize workflows with expert in-
put. This framework advances traditional methods,
offering flexibility, scalability, and adaptability for
large-scale projects with complex dependencies.
Future work includes implementing the Construc-
tion DPO model, incorporating multimodal inputs,
and evolving CONSTRUCTA into a dynamic recom-
mender system for continuous project adaptation.
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Appendix: Additional Details

In this appendix, we provide comprehensive details
on the experiments conducted, including sensitivity
analysis on context embedding models, variations
of preference alignment strategies, the complexity
analysis of the construction dependency graph, and
the detailed design of context sampling methods,
prompt categories, and task-specific prompts.

A.1 Complexity of the Construction
Dependency Graph

Understanding the structural complexity of the de-
pendency graph is critical for automating construc-
tion schedules effectively. We analyzed two key
metrics to highlight the challenges posed by real-
world construction scenarios (Figure 5):

• Degree Distribution: This metric captures
the number of connections each activity node
has within the dependency graph. As shown
in Figure 5, the degree distribution exhibits a
mean value of 3.86, with some nodes having
as many as 20 connections. These values in-
dicate the extensive interdependencies among
activities, which require careful management
to maintain project feasibility and avoid re-
source bottlenecks.

0 2 4 6 8 10 12
Degree

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Degree Distribution
Degree

0 10 20 30 40
Maximal Hop

0

250

500

750

1000

1250

Fr
eq

ue
nc

y

Maximal Hop Distribution
Maximal Hop

Figure 5: Distribution of degree and maximal hop for
dependency graph nodes. The left plot shows the degree
distribution, reflecting task interconnectivity, while the
right plot presents the maximal hop distribution, high-
lighting long-range task dependencies.

• Maximal Hop Distribution: This measures
the farthest distance, in terms of hops, to de-
pendent nodes. The average maximal hop dis-
tance is 13.93, with the highest value reaching
73. These long-range dependencies demon-
strate the need for multi-level propagation
strategies to capture hierarchical and sequen-
tial task relationships effectively.

These metrics emphasize the intricate nature of
construction scheduling, with both high intercon-
nectivity and significant multi-level dependencies.
The insights derived from these analyses under-
line the importance of advanced frameworks like
CONSTRUCTA to manage such complexity in com-
mercial construction projects.

A.2 Correlation and Similarity Analysis of
Project Attributes

Understanding relationships among project at-
tributes is essential for optimizing construction
scheduling and dependency management. We con-
ducted two types of analyses to capture both linear
correlations and deeper semantic relationships:

• Correlation Analysis (Encoded Data): We
examined linear dependencies between at-
tributes by encoding categorical data as nu-
meric codes and calculating Pearson correla-
tion coefficients across project attributes. This
method identifies direct dependencies that im-
pact the project timeline and resource allo-
cation, revealing structural insights into task
sequences.

• Cosine Similarity Analysis (Embed-
dings): Using embeddings generated from
the distilbert-base-uncased6

pre-trained language model, we captured
semantic relationships among attributes

6https://huggingface.co/
distilbert-base-uncased
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that linear correlations might miss. This
analysis highlights implicit, context-driven
dependencies such as role interactions and
spatial relationships, providing a nuanced
view of project structure.

Figure 6 displays the results from both analyses,
each providing unique insights:

Correlation Matrix (Encoded Data): The left
heatmap highlights linear relationships among at-
tributes, with several notable correlations:

• Current Start and Current Finish: The high
correlation here reflects the dependency be-
tween start and finish dates, a foundational
aspect of project scheduling.

• Activity Status and Project Phase: Correla-
tions between activity status and project phase
suggest that certain statuses align with spe-
cific phases, informing phase-based schedul-
ing prompts.

• Predecessor and Successor: Strong correla-
tion indicates that tasks have sequential depen-
dencies, essential for creating an accurate task
sequence.

In summary, these correlations reveal structural
dependencies in project attributes, assisting in iden-
tifying key points in the scheduling and sequencing
workflow. These insights enable more effective
scheduling strategies by understanding which at-
tributes inherently impact each other.

Cosine Similarity Matrix (Embeddings): The
right heatmap reveals semantic relationships be-
tween attributes, which help identify context-based
dependencies:

• Subcontractor and Superintendent: High
similarity implies overlapping responsibilities
between these roles, which can guide role-
based dependencies in scheduling.

• Discipline and Zone: This similarity reflects
the association between certain disciplines
and zones, useful for location-based depen-
dency prompts.

• Project Phase and Activity Status: Seman-
tic alignment between phases and statuses pro-
vides a structured basis for task progression,
useful for designing prompts that ensure co-
herent task sequences.

Overall, these embedding-based relationships
uncover context-driven dependencies beyond sim-
ple correlations, offering a richer view of the
project structure. Such insights are critical for tasks
involving nuanced scheduling needs, as they reveal
role interactions and locational dependencies that
direct scheduling and resource assignment deci-
sions.

A.3 Unified Context Sampling Visualization
To support effective construction scheduling, we
employ a unified sampling method that extracts
three distinct types of contextual information from
project activities: Sequential Context, Hierarchical
Context, and First-Order Context. Each method
offers a unique approach to capturing dependen-
cies and relationships among construction activi-
ties, facilitating comprehensive schedule optimiza-
tion. Figures 7, 8, and 9 illustrate the structure and
details of each context sampling method.

In Figure 7, Sequential Context Subgraph 1 (left)
shows a network of activities where nodes repre-
sent individual tasks required for project comple-
tion, connected by directed edges that denote task
dependencies. Each node connects to predecessors
and successors up to three hops away, capturing
dependencies such as Finish-to-Start (FS), Finish-
to-Finish (FF), Start-to-Start (SS), and, though less
common, Start-to-Finish (SF) relationships. This
structure is critical for visualizing the overall task
flow, identifying critical paths, and highlighting po-
tential bottlenecks that could delay project delivery.
Sequential Context Subgraph 2 (right) extends this
by including a larger set of interconnected nodes,
where tasks are annotated with additional details
such as task duration, resource requirements, and
start or finish times. This dense layout offers a com-
prehensive view of task sequences, helping project
managers forecast delays, pinpoint bottlenecks, and
dynamically adjust schedules to accommodate un-
foreseen changes.

Figure 8 shows the Hierarchical Context Sam-
pling. Hierarchical Context Subgraph 1 (left)
presents nodes representing major project phases or
milestones and their sub-tasks, organized within a
structured hierarchy. Starting from a root node that
signifies the overall project, dependencies cascade
down through the graph, capturing relationships
such as Start-to-Start and Finish-to-Start within
a single WBS segment. This layout allows for
visualizing dependencies specific to each phase,
which is crucial for managing resources and time
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correlation matrix based on encoded project data, highlighting linear relationships among attributes. The right plot
presents the cosine similarity matrix based on embeddings, revealing deeper semantic associations among attributes.

within discrete project stages. Hierarchical Context
Subgraph 2 (right) shows a more streamlined ar-
rangement, where tasks follow a linear progression,
emphasizing phase-aligned scheduling adjustments.
This structure helps project managers identify the
critical path within each phase and adjust schedul-
ing as needed to optimize workflow and resource
allocation, while ensuring flexibility to adapt to
phase-specific constraints and objectives.

Figure 9 illustrates the First-Order Context Sam-
pling. First-Order Context Subgraph 1 (left) shows
a minimal structure with only one dependency, rep-
resenting a direct, Finish-to-Start relationship be-
tween two tasks. This sparse setup allows for fo-
cused adjustments on critical dependencies with-
out the complexity of additional nodes, making it
ideal for high-priority scheduling where immedi-
ate, direct task relationships are paramount. First-
Order Context Subgraph 2 (right) presents a more
intricate structure with multiple tasks directly con-
nected to a central node. This setup captures im-
mediate predecessors and successors, including
Start-to-Start (SS) and Finish-to-Finish (FF) de-
pendencies, providing a concise overview of key
relationships around the central task. Such a layout
enables project managers to address dependencies
that directly impact the timing and prioritization of
essential tasks, helping maintain schedule adher-
ence while focusing on high-impact areas of the
project.

Each sampling method uniquely extracts rele-
vant information from the project table, allowing
the model to adaptively balance broad, phase-level

dependencies with immediate task relationships.
This unified approach to context sampling is instru-
mental in generating a well-rounded understanding
of the construction schedule, enabling dynamic and
context-aware adjustments.

A.4 General Predefined Prompt Categories
and Context Mapping

The prompt system utilizes predefined categories
and context mappings to structure data collection
for various tasks in construction scheduling. Each
category aligns with specific aspects of project anal-
ysis, guiding the language model to interpret con-
text effectively. This design ensures the capture of
dependencies, durations, and resource-based rela-
tionships essential for scheduling.

• Activity Sequence and Timing: This prompt
helps the model list construction activities
based on ’Current Start’ and ’Current Fin-
ish’ dates, following dependencies defined by
’Predecessor Details’ and ’Successor Details’.
This captures the linear progression of tasks,
aiding structured timeline generation.

• Calculate Activity Duration: Focusing on
each activity’s duration based on start and fin-
ish dates, this prompt aids in establishing a
timeline for the project. The model uses these
durations to enhance scheduling precision and
identify critical periods in the workflow.

• Hierarchical Tree Structure: By organizing
tasks according to the Work Breakdown Struc-
ture (WBS), this prompt helps arrange tasks
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hierarchically and identify sequential require-
ments, essential for maintaining the logical
flow within each project phase.

• Assess Sequence Reconstruction: This
prompt directs the model to assess if task se-
quences can be reconstructed from available
data, highlighting missing elements. Such
reconstruction ensures dependencies are re-
spected, crucial for seamless project continu-
ity.

• Analyze Time Relationships: By analyz-
ing time-based dependencies (e.g., FS, SS),
this prompt helps identify parallel tasks and
branches in dependency graphs, enabling ef-
fective time management across activities.

• Overlapping Disciplines and Inter-
Disciplinary Dependencies: These prompts
capture dependencies across overlapping
and interconnected disciplines, facilitating
resource alignment and identifying areas
where interdisciplinary coordination is
needed.

• Area-Based Dependencies: This prompt
encourages the model to examine how de-
pendencies align with specific areas, ensur-
ing location-based planning aligns with the
project’s spatial organization.

A.5 Task-Specific Prompts for Data Collection
For each specific task (Automated Planning (AP),
Missing Value Prediction (MVP), Dependency
Analysis (DA), and Construction Preference Align-
ment Direct Preference Optimization (CPA-DPO)),
dedicated prompts have been designed to guide
the language model in generating relevant outputs.
Here’s an outline of each task-specific prompt:

• Prompt for AP: This prompt instructs the
model to focus on scheduling tasks based on
’Current Start’ and ’Current Finish’ dates, en-
suring that task sequences respect dependen-
cies. By using rules for sequencing and tim-
ing, the AP prompt facilitates logical task pro-
gression, essential for maintaining project co-
herence.

• Prompt for MVP: This prompt guides the
model to predict missing values using both
context and generated rules. It emphasizes
the identification of critical data points for
completion, enhancing data quality and com-
pleteness in project tables.

• Prompt for DA: Instructing the model to
examine dependencies based on ’Predeces-
sor Details’ and ’Successor Details,’ the DA
prompt helps the model identify crucial task
interactions. This supports dependency map-
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Figure 8: Hierarchical Context Sampling: This sampling focuses on capturing nodes within the same Work
Breakdown Structure (WBS) up to two hops. Hierarchical context provides insights into tasks grouped by project
phases, illustrating how dependencies within each WBS segment affect the schedule’s progression.

ping, crucial for understanding the ripple ef-
fects of scheduling changes.

• Context Polishing for CPA-DPO: This
prompt refines the generated output, ensur-
ing it aligns with expert standards. The model
adjusts for adherence to preferences, depen-
dencies, and task prioritization, essential for
optimized scheduling.

Each prompt targets specific construction
scheduling needs, aligning outputs with project
management best practices and dynamically ad-
dressing task complexities.

A.6 Industry Relevance and Considerations
The automation of construction scheduling has
long been an industry challenge due to the dy-
namic nature of project constraints, interdependent
tasks, and expert-driven decision-making. While
traditional methods rely on predefined heuristics
and rule-based scheduling, they struggle to adapt
to unexpected changes in workforce availability,
material delays, or regulatory shifts. Large-scale
projects, such as semiconductor fabrication, further
complicate scheduling due to high coordination
demands across multiple disciplines. Addressing
these challenges requires an intelligent, adaptive
system capable of learning from past schedules
and dynamically updating plans based on new con-
straints.

A major consideration in adopting LLM-driven
solutions for construction is their real-world inte-
gration and deployment feasibility. Existing project
management software, such as Primavera P6 and
BIM-based scheduling tools, is widely used by in-
dustry professionals. For AI-driven scheduling
to be effective, it must complement these tools
rather than replace them. The ability of retrieval-
augmented models to incorporate structured indus-
try knowledge and expert-aligned reinforcement
learning provides a pathway for seamless integra-
tion, allowing construction professionals to lever-
age AI insights while maintaining human oversight
in critical decision-making.

Additionally, concerns about data dependency
and scalability must be addressed for broader indus-
try adoption. While proprietary datasets are nec-
essary for high-fidelity scheduling predictions, fu-
ture research could explore the use of open-source
construction datasets or synthetic data generation
techniques to improve model robustness across di-
verse projects. Furthermore, factors such as com-
putational overhead, latency, and cost must be con-
sidered in deployment, ensuring that AI-powered
scheduling remains practical for real-world appli-
cations. By tackling these challenges, LLM-driven
scheduling can move from a research prototype
to a reliable industry tool that enhances efficiency,
reduces project risks, and scales across complex
construction environments.
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Figure 9: First-Order Context Sampling: This method captures only direct predecessors and successors for each
selected activity. First-order context highlights immediate task dependencies, providing a concise view of direct
task relationships essential for high-priority scheduling adjustments.

Sequential Context (Context 1)

Activity Sequence and Timing
List the sequence of construction activities based on the ’Current Start’ and ’Current Finish’ dates,
ensuring they follow the correct order as indicated by ’Predecessor Details’ and ’Successor Details’.

Calculate Activity Duration
Based on the ’Current Start’ and ’Current Finish’ dates, calculate the duration for each activity and
establish the step-by-step timeline for the project.

The Sequential Context prompt is designed to capture the linear progression of activities in construction.
By focusing on the order and duration of activities, this context prompt aids in generating structured
timelines, enabling the model to outline a clear sequence and allocate resources efficiently.

First-Order Context (Context 2)

Analyze Time Relationships
Analyze the ’Predecessor Details’ and ’Successor Details’ to determine the time domain relationship
between activities. Identify which activities are in parallel and the number of branches in the
dependency graph.

Area-Based Dependencies
Using the ’Area’ column, analyze area-based dependencies and how they affect the sequence of
construction activities.

The First-Order Context prompt focuses on immediate dependencies and relationships between tasks. By
analyzing time, disciplinary overlaps, and area-based dependencies, this prompt enables the model to
capture critical dependencies that could impact the flow of work and resource allocation across parallel
activities.
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Hierarchical Context (Context 3)

Hierarchical Tree Structure
Organize the activities into a hierarchical tree structure based on their WBS and identify any activities
that should be sequential but are not currently listed as such.

Assess Sequence Reconstruction
For each activity, determine if the sequence can be recovered from the given data. If not, specify what
critical information is missing and suggest how to bridge the identified gaps.

The Hierarchical Context prompt helps the model understand hierarchical structures in project planning.
By focusing on organizing tasks based on work breakdown structure (WBS), this context prompt aids in
identifying gaps in sequencing and structuring project phases logically.

Automated Planning (AP) Prompts

AP - Part 1
You are a virtual construction expert collaborating with a larger LLM to automate the construction
schedule. Use the ’Current Start’ and ’Current Finish’ dates in the context to ensure tasks are
scheduled based on their dependencies. Explain how the selected rules help guide the automation of
task sequencing and timing.

AP - Part 2
Justify why these specific rules and context elements are crucial for automating the schedule. Describe
the connection between the context and rules, and provide logical reasoning for why these choices
will result in a successful automation process.

The AP prompt focuses on scheduling construction activities based on start and finish dates, with an
emphasis on the rules that support task sequencing and timing. This prompt aims to ensure coherent
automation logic while aligning with project constraints and expert expectations.

Missing Value Prediction (MVP) Prompts

MVP - Part 1
Based on the following information, choose the correct values for the missing columns. Return the
values as a list, separated by commas, with each value enclosed within [Value] and [/Value] tags. The
list should contain exactly three values, corresponding to the columns listed in the same order.

MVP - Part 2
This part provides the row input, static knowledge, and context information that the model will use to
identify missing values and fill them accurately.

The MVP prompt is essential for accurately predicting missing data in construction tables, using both
static knowledge and contextual details. This prompt is designed to help the model make accurate value
predictions, enhancing data completeness and reliability.
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Dependency Analysis (DA) Prompts

DA - Part 1
You are a virtual construction expert collaborating with a larger LLM to analyze dependencies
between construction activities. Focus on identifying key dependencies using the ’Predecessor
Details’ and ’Successor Details’ in the context. Explain how and why the selected rules are relevant
for understanding the dependencies between activities.

DA - Part 2
Connect these rules to specific parts of the context. Ensure that the relationship between the context
and rules is clearly articulated, showing logical reasoning behind the choices made for this analysis.

The DA prompt guides the model in identifying and explaining dependencies between construction
activities, with emphasis on critical tasks and their interactions. This prompt supports dependency
mapping, which is crucial for project planning and risk management.

Context Polishing for CPA-DPO Prompts

Context Polishing for CPA-DPO - Part 1
As a virtual construction scheduling expert, refine the following output to ensure it aligns with expert
expectations. Your role involves guiding a larger LLM by providing clear context, expert rules, and
structured instructions for three primary tasks:

• Missing Value Prediction: Select and explain relevant context elements crucial for filling in
missing values. Use expert rules to guide predictions and clarify their connection to the context.

• Dependency Analysis: Analyze and explain activity dependencies using ’Predecessor Details’
and ’Successor Details.’ Highlight how the rules inform these relationships.

• Schedule Automation: Automate task scheduling using ’Current Start’ and ’Current Finish’
dates, prioritizing based on criticality and dependencies. Apply rules to ensure task order and
dependencies are respected.

Context Polishing for CPA-DPO - Part 2
The output should provide coherent and contextually relevant responses to scheduling needs, integrat-
ing expert rules and project-specific knowledge seamlessly. Emphasize adherence to preferences and
explain any dependencies or task prioritizations that support an optimized construction schedule.

The Context Polishing prompt ensures that responses align with expert preferences, providing clear,
structured guidance for missing value prediction, dependency analysis, and schedule automation. It
supports the Direct Preference Optimization (DPO) process by enhancing the alignment of generated
content with real-world project standards and expectations.
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