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Abstract

This paper investigates the ability of large lan-
guage models (LLMs) to capture linguistic pat-
terns from unseen languages and apply them to
translation between the languages and English
within an in-context learning framework. In-
spired by the International Linguistic Olympiad
(IOL), we create test data consisting of trans-
lation puzzles between 40 low-resource lan-
guages and English. We test the LLMs in two
different strategies: direct prompting and step-
by-step prompting. In the latter, the puzzles are
manually decomposed into intermediate steps
to allow LLMs to learn and apply linguistic
rules incrementally. The results show that this
strategy can significantly improve the perfor-
mance of LLMs, achieving results comparable
or slightly superior to humans when translating
the unseen languages into English. However,
LLMs still struggle with translating English
into the unseen languages, typically with com-
plex syntactic rules. We further observe that
LLMs cannot deal with languages with object-
subject and noun-adjective word order com-
pared to others, reflecting the potential impact
imposed by typological features of languages
in training data. We have released our dataset
on a public repository (Appendix A).

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities for in-context and
few-shots learning tasks in natural language pro-
cessing (Brown, 2020). Furthermore, they seem to
exhibit reasoning abilities in areas such as mathe-
matics and coding (Ahn et al., 2024). Despite these
successes, LLMs still rely on large amounts of train-
ing data and computational resources to achieve
practical performance. Like many other NLP sys-
tems, their applications in low-resource (LR) lan-
guages have been limited due to the scarcity of
training data (Joshi et al., 2020). We are thus in-
terested in how we can leverage their in-context

learning and reasoning abilities to process LR lan-
guage with minimal data.

Existing studies have explored ways of teaching
LLMs to comprehend new languages through in-
context learning and prompt engineering by provid-
ing supplementary linguistic knowledge (Cahyaw-
ijaya et al., 2024; Zhang et al., 2024) or retriev-
ing extra examples from large corpora (Ginn et al.,
2024). However, these methods remain insufficient,
and LLMs still consistently underperform humans
in various tasks. In addition, there is no systematic
evaluation of how LLMs can generalize their lin-
guistic skills to LR languages that are absent and
typologically different from training data.

The current study investigates whether LLMs
can learn and apply different linguistic rules
(phonology, morpho-syntax, etc.) via in-context
learning, and assesses how well they perform on
translation tasks between English and LR lan-
guages with diverse typological features. LLMs
are expected to rely on their intrinsic linguistic rea-
soning abilities rather than external knowledge or
large corpora.

Inspired by the International Linguistics
Olympiad (IOL) and its regional variants, we
create a dataset covering 40 LR languages, which
contains 168 manually constructed puzzles. The
puzzles follow a "Rosetta Stone" format, where
test-takers are given 10-15 exemplar sentences in
a foreign language that is previously unknown to
them, along with corresponding translations in
their native language. Test-takers need to deduce
linguistic rules from the examples and apply them
by translating new ones.

Previous studies (Bean et al., 2024; Şahin et al.,
2020) have shown that these puzzles from IOL are
challenging for LLMs, and prompt engineering
techniques such as chain-of-thought provides lit-
tle improvement (Lin et al., 2023). We posit that
the original puzzles might be too complicated for
LLMs because several different rules are often in-
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volved in one puzzle, and the complexity prevents
LLMs from recognizing meaningful patterns. Such
complexity also limits detailed analysis of LLMs’
strengths and weaknesses in linguistic reasoning.

To mitigate that, we take a step-by-step approach
to let LLMs learn linguistic rules incrementally.
The original puzzles are broken down into a series
of smaller, more manageable ones, each targeting
one specific linguistic rule. The principle is to
start with simple sentences where LLMs can learn
vocabulary and basic syntax, which are followed
by sentences centering on morpho-syntax features
such as tense or agreement, and finally complicated
sentences where they need to combine all the rules
together. We evaluate five state-of-the-art LLMs
and compare their performance with that of 16
human testers with linguistic training.

LLMs have shown strong meta-linguistic com-
petence, defined by Chomsky et al. (1976) as ‘the
knowledge of the characteristics and structures of
language’ in the major languages that they are
trained in. However, it is not clear whether they can
transfer such linguistic knowledge to unseen lan-
guages, and our approach aims to address that. We
believe that our results can potentially facilitate re-
search in LLMs and LR languages. If humans can
benefit from meta-linguistic abilities when learn-
ing new languages, we shall expect the same for
LLMs when dealing with LR languages as well,
thus providing a future possibility of using LLMs
in research of LR languages, such as annotation of
LR data, producing glosses for linguists, develop-
ing machine translation systems, and so on.

In the following sections, we review previous
work on evaluating LLMs’ linguistic abilities and
their performance in LR languages. We then de-
scribe our dataset and experiments, followed by a
presentation and analysis of our results.

2 Related Works

One of the primary focuses of research in the field
of LLMs is concerned with their reasoning capabil-
ities. They have shown significant improvements
over earlier counterparts, achieving promising per-
formance on tasks such as mathematics (Yuan et al.,
2023), geometry (Chen et al., 2022), automated the-
orem proving (Wu et al., 2023), code generation
(Chen et al., 2021), and so on. In addition, they can
perform tasks that they are not explicitly trained
for, via in-context learning. This ability, first iden-
tified in GPT-3 (Brown, 2020), allows LLMs to

learn and execute new tasks with just a few exam-
ples. While some studies suggest that LLMs may
not truly "learn" and instead exploit superficial pat-
terns in input examples (Min et al., 2022; Mirzadeh
et al., 2024), the potential for generalizing beyond
training data presents a new possibility for process-
ing LR languages, where data scarcity has long
been a challenge.

In light of such abilities, recent studies have
explored the possibility of using LLMs as an al-
ternative to fine-tuned models for machine trans-
lation in LR languages. For example, Tanzer
et al. (2023) present Machine Translation from One
Book, where LLMs are tasked to translate between
English and Kalamang, an endangered language,
using a grammar book as the primary resource. The
authors show that LLMs can generate reasonable
translations given lexical and grammatical descrip-
tions, but are considerably inferior to humans in
terms of grammatical consistency.

Efforts to improve LLM performance in this area
are centered around prompt engineering techniques,
such as providing LLMs with external linguistic
knowledge. For example, when dealing with sev-
eral LR languages, Su et al. (2024) show that LLMs
prompted with grammatical description of the lan-
guages can sometimes outperform fine-tuned trans-
former models. Zhang et al. (2024) prompt LLMs
with extra morphological gloss information, a dic-
tionary, and a grammar book, when translating un-
seen LR languages to English, boosting the per-
formance in few-shots translation from near 0 to
around 10 in BLEU scores. More elaborate works
have attempted retrieval-based methods. Ginn et al.
(2024) use LLMs to produce interlinear gloss for
LR languages, with examples retrieved from a cor-
pus with carefully designed strategies. Although
LLMs have not beaten SOTA supervised methods,
they outperform basic fine-tuned transformer mod-
els. Similarly, Guo et al. (2024) build a framework
to construct dedicated textbooks for LLMs, and
retrieve vocabulary and syntactic patterns to teach
LLMs unseen LR languages, achieving notable im-
provements on translation tasks.

As LLMs are increasingly applied to LR lan-
guages, understanding how well they generalize
their meta-linguistic abilities becomes crucial, es-
pecially when dealing with languages that are ty-
pologically different from those in the training
data. Many recent studies are focused on evaluat-
ing LLMs’ linguistic skills across various phenom-
ena. For instance, Waldis et al. (2024) introduce
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the Holmes benchmark to assess language models’
understanding of syntax, morphology, semantics,
and discourse. However, the study only examines
English, leaving the question of how well LLMs
generalize in cross-lingual situations unanswered.

To address this gap, several researchers turn to
linguistic puzzles from IOL, which offer an op-
portunity to test LLMs’ ability to infer and apply
linguistic rules in unfamiliar languages. Şahin et al.
(2020) propose the PuzzLing Machines dataset,
with around 100 Rosetta Stone puzzles from IOL
covering 81 languages. While statistical and neural
models at the time scored near zero on these prob-
lems, GPT 3.5 achieved significantly better results.
Prompting strategies, such as tree of thought, pro-
vide little improvement (Lin et al., 2023). Chi et al.
(2024) create the MODELING dataset, featuring
48 puzzles across 19 LR languages. They handcraft
these puzzles instead of using puzzles from IOL.
Their problems focus on four features, namely ba-
sic word order, noun-adjective order, possession,
and mapping vocabulary. Bean et al. (2024) present
the LINGOLY benchmark with puzzles in diverse
formats and categories from the UK Linguistic
Olympiad, while Sánchez et al. (2024) introduce
Linguini, covering 75 LR languages with various
puzzle types collected from IOL. Results also show
that larger, proprietary models generally outper-
form smaller, open-source ones.

Prior in-context learning framework of LR lan-
guages have mostley relied on external knowledge
or corpora. Evaluation of intrinsic abilities of
LLMs using IOL puzzles consistently report a low
accuracy of 25-30% across all models, and prompt-
ing strageties show little improvements. These
IOL puzzles often involve linguistic features in one
puzzle, and models have to process semantic, mor-
phology and syntax patterns at the same time, Our
approach differs by decomposing such puzzles into
smaller, more manageable ones focusing one rule
at a time. We will show that by doing so, LLMs
can take better advantage of their in-context learn-
ing and reasoning abilities, and the performance
of translation tasks between unseen languages and
English can be significantly improved.

3 Data

Our study builds upon the previous efforts and is
aimed at addressing the limitations of existing ap-
proaches. We propose a step-by-step framework
for linguistic reasoning that where LLMs learn lin-

guistic rules one at a time over a multi-round con-
versation. Unlike the original IOL puzzles, which
involves processing multiple linguistic rules across
different levels (semantics, phonology, morphol-
ogy, syntax) at the same time, our framework is
built upon puzzles that focus on one rule at a time.
This allows LLMs to learn the patterns incremen-
tally and also allows for a more detailed analysis
of LLMs’ strengths and weaknesses in linguistic
reasoning for unseen LR languages.

3.1 Data Source

We collect language puzzles in "Rosetta Stone" for-
mat from IOL and its regional variants, including
the UK Linguistic Olympiads, the North Amer-
ica Computational Linguistics Open Competition,
and the Asia-Pacific Linguistics Olympiads. These
competitions are held annually for secondary stu-
dents around the world. They expose students to
a diverse range of rarely known languages and
linguistic phenomena with puzzles in various for-
mats. Their educational value in linguistics has
been widely appreciated (Derzhanski and Payne,
2010).

A typical Rosetta Stone puzzle provides test-
takers with 10-15 pairs of sentences in a foreign
language and their mother tongue. The task is to
observe these sentences, map the vocabulary, de-
rive grammar rules, and then apply these patterns
to translate new sentences (Bozhanov and Derzhan-
ski, 2013; Littell et al., 2013). A full example is
provided in Appendix B. These puzzles generally
adhere to a few design principles:

• Genuine: All puzzles use authentic linguistic
data from natural human languages.

• Self-contained: Each puzzle provides all the
necessary information, and only the necessary
information for solution.

• Reasoning: Solutions require at least one in-
termediate step of reasoning and cannot be
acquired by simple analogy or intuition alone.

The original dataset collected from the above
sources consist of 40 puzzles, representing 40 LR
languages from 20 language families. A compre-
hensive list of languages is provided in Appendix
D. The dataset includes a total of 525 training sen-
tences and 335 testing sentences.
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3.2 A step-by-step approach

Inspired by the chain-of-thought strategy (Wei
et al., 2022), we develop a step-by-step approach,
where LLMs learn one linguistic rule in one round
of conversation as a "step". In each step, LLMs re-
ceive a simplified version of Rosseta Stone puzzle,
and its training sentences are designed specifically
for this rule. For example, for a puzzle targeting
tense, the training sentences may describe the same
action occuring at different time. In a multi-round
conversation, LLMs go through many such steps to
learn a complex set of linguistic rules. These steps
follow a specific order described below:

1. Lexical semantics and word order: In the
first step, puzzles involve goals of develop-
ing a vocabulary of the given language and
understanding its basic syntax, such as word
order. The training sentences consist of sim-
ple subject-verb-object sentences, and avoid
variation in tense, person, etc. as much as
possible.

2. Phonology: The second step involves phono-
logical rules such as vowel harmony, tone
changes, and allomorph. We create training
examples consisting of base and derived forms
of words, and models must deduce the phono-
logical rules behind these derivations.

3. Morpho-syntax: This set of puzzles are con-
cerned with rules about person, number, gen-
der, agreement, tense, etc. Sentences are care-
fully constructed to provide sufficient infor-
mation to represent the rules. Each puzzle
focuses on only one particular rule or a few
closely related rules.

4. Syntax: This set consists of puzzles with
more complicated syntactic structures, includ-
ing negation, questions, and clauses. They
require the combination of all that have been
learned in the previous steps.

We decompose each original IOL puzzle into
4-5 smaller ones following this order and handcraft
new training sentences for them. Compared with
the original ones, they are equivalent in terms of lin-
guistic difficulty, but are significantly less complex.
They require LLMs to deduce the same set of rules
with a similar amount of limited samples (around 5-
6 sentences for each rule), but allow LLMs to learn
each one separately without interference from other

rules. Figure 1 illustrates the genral idea and a full
example is provided in Appendix C.

We also ensure that all the puzzles have only
one possible solution. Sentences that can be inter-
preted in more than one possible ways are either
not included or disambiguated. Since the original
puzzles are available online, all the sentences in
our constructed puzzles are different from those in
the original ones, just in case that they might be
present in LLMs’ training data.

In the constructed dataset, the original 40 IOL
puzzles are decomposed into 168 puzzles. Each
puzzle comes with its own training and testing sen-
tences and in total there are 1058 training sentences
and 379 test sentences. Table 1 is the statistical in-
formation of our constructed dataset.

Category Count
Lexical semantics and word order 40
Phonology 9
Morpho-syntax 93
Syntax 26

Table 1: The number of puzzles in our constructed
dataset under each category.

4 Experiments

4.1 Tested models
We test 5 state-of-the-art LLMs with our dataset,
including Claude 3.5 Sonnet (20240620), GPT-4o
(20240816), Llama 3.1 405B, Llama 3.2 90 B, and
Deepseek V2.5, covering both proprietary and open
source models. Each model is provided with an in-
troductory prompt explaining the task, as well as a
brief description of the language, which includes its
genealogical taxonomy, number of speakers and or-
thography explanations. The name of the language
is omitted to prevent data leakage.

The LLMs are tested in two different settings,
namely step-by-step and direct-inference. Let p and
t represent training and testing data of an original
IOL puzzle, and p1, . . . , pn and t1, . . . , tn stand for
the step-by-step puzzles corresponding to the same
original puzzle, the two experimental settings can
be described as:

• Direct-inference The original puzzle includ-
ing p and t are directly used as prompts for
the LLMs. This setting serves as a baseline
for comparison.

• Step-by-step For each original puzzle, the
training examples of the corresponding small
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Figure 1: Illustration of our step-by-step approach and experimental settings.

puzzles, p1, . . . , pn, are fed into the LLMs
one by one in different rounds of the same
session to let the LLMs learn patterns from
them. Finally, the testing sentences of the
original puzzle t are provided to test the LLMs
in the same session.

4.2 Human performance

To examine if LLMs can achieve comparable per-
formance to humans, we recruit 16 students with
linguistic training to complete the test. To qualify,
they must answer an example test puzzle correctly.
Human participants follow the same procedure as
the LLMs in the step-by-step setting.

4.3 Evaluation metrics

Since the performance is evaluated with translation
tasks, we use three metrics commonly applied in
machine translation evaluations:

• BLEU-2: We use bi-grams to calculate the
BLEU scores. It is computed at the corpus
level over the whole test set.

• ChrF: As many puzzles include morpholog-
ical and phonological variations, we include
ChrF as a character-level assessment. It is
computed at the corpus level for each lan-
guage and averaged across languages.

• Exact Match (EM) Exact matches are
counted when the two sentences are exactly
the same except for the punctuations and cases.
This metric serves as a straightforward mea-
sure of accuracy.

5 Results and Discussion

5.1 Performance on the original IOL test set

We compare the models’ performance in the two ex-
perimental settings on the original IOL test puzzles.
The results shown in Table 2 and Figure 2 indi-
cate that our step-by-step approach significantly
boosts the performance in both translation direc-
tions across all LLMs, support our hypothesis that
breaking down complex linguistic rules into steps
allows LLMs to acquire these rules more effec-
tively. Also, LLMs perform better in translating
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Setting Model To English To LR languages
BLEU ChrF EM (%) BLEU ChrF EM (%)

Step-by-step

Claude 3.5 Sonnet 76.374 82.010 41.493 62.352 77.238 27.463
GPT-4o 63.296 69.625 22.687 46.459 64.258 11.343
Llama 3.1 58.452 65.648 15.224 45.842 64.928 12.836
Llama 3.2 58.777 65.736 16.716 42.383 62.367 9.254
Deepseek V2.5 59.751 66.819 18.209 45.288 62.720 10.448
Human 68.351 73.608 35.220 54.605 68.289 21.590

Direct inference

Claude 3.5 Sonnet 66.825 73.715 26.866 60.665 57.227 11.343
GPT-4o 42.972 53.260 6.866 31.303 48.470 2.687
Llama 3.1 38.690 49.089 5.373 27.737 45.214 0.896
Llama 3.2 36.639 46.356 4.985 24.201 38.460 1.216
Deepseek V2.5 39.603 49.138 4.477 23.798 41.325 0.000

Table 2: LLM and human performance on the IOL puzzle test set in the two experimental settings.

Figure 2: ChrF scores on the original IOL puzzle test set in the two experimental settings. Left: translating to
English; right: translating to LR language

LR language to English than translation English to
the LR languages.

In the step-by-step setting, Claude 3.5-Sonnet
consistently outperforms other LLMs, and also sur-
passes human performance. Other models still lag
behind humans considerably. Performance under
the direct-inference setting is notably lower for all
models, especially in exact match scores. Claude
3.5 Sonnet shows the smallest performance gap
between the two settings and also the smallest gap
between the two translation directions. In the direct-
inference setting, while the performance of other
models drops to near zero in terms of accuracy,
Claude maintains scores comparable to other mod-
els in the step-by-step setting.

Among the LLMs, Claude 3.5 Sonnet demon-
strates the highest performance across all metrics,
followed by GPT-4o, which outperforms all the
open-source models. Llama 3.1 (405B) outper-
forms its smaller counterpart, Llama 3.2 (90B).
Deepseek V2.5, another open-source model, per-
forms similarly to Llama 3.1.

5.2 Performance on step-by-step test set
5.2.1 Overall performance
To better analyze the strengths and weaknesses of
LLMs on the task, we also report their performance
on the test set of the 168 decomposed puzzles. Ta-
ble 3 presents the overall performance of different
models and humans. Again, translation quality to
English consistently surpasses that of translation to
LR languages. The best-performing LLM, Claude
3.5 Sonnet, achieves comparable and even better
results compared to humans, while human testers
consistently outperform all other LLMs.

Figure 3 shows the performance of the models
and human with respect to each step in the rea-
soning task. As the number of steps increases,
both the context length of the conversation and the
complexity of the linguistic problem increase. For
LLMs, this seems to impact their linguistic abilities
more when translating English to the LR languages
(represented by dashed lines), where performance
declines as the steps increase. Conversely, when
translating LR languages into English (solid lines),
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Model To English To LR languages
BLEU ChrF EM (%) BLEU ChrF EM (%)

Claude 3.5 Sonnet 87.816 90.410 68.144 71.181 84.128 48.549
GPT-4o 81.447 85.464 56.510 65.128 78.301 38.522
Llama 3.1 405B 80.320 84.480 58.449 62.667 75.550 38.259
Llama 3.2 90B 73.785 80.189 51.801 53.692 68.345 31.398
Deepseek 2.5 80.007 84.200 55.679 61.977 73.311 35.620
Human 86.204 88.840 66.040 69.368 81.827 52.604

Table 3: Overall performance of models and humans on test set in our contracted step-by-step dataset

Figure 3: Average BLEU scores of humans and LLMs
on test sets of each step.

the models demonstrate more resilience, with per-
formance remaining relatively stable as complexity
increases. This difference implies that LLMs are
better equipped to handle familiar languages in lin-
guistic reasoning. For humans, though the ChrF
score generally decreases as complexity increases,
the overall trend seems to be more robust.

5.2.2 Performance on puzzles in different
categories

Figure 4 shows the ChrF scores of LLMs and hu-
mans across different categories of problems in our
dataset. Full performance table in available in ap-
pendix F. When translating to English (left), LLMs
generally perform well on simpler tasks like word
semantics, and they demonstrate stronger reasoning
abilities in morpho-syntax puzzles than in syntax
puzzles. Humans show better performance than
LLMs in syntax puzzles, and demonstrate similar
performance in morpho-syntax and syntax puzzles.

When translating English to LR languages
(right), both LLMs and humans achieve the highest
scores in semantic problems, followed by syntax
and morpho-syntax tasks, with phonological prob-
lems presenting the greatest challenge. Actually,
the best model, Claude, score the lowest in terms of
ChrF scores when dealing with phonological rules,

and other models also underperform humans. In
addition, LLM performance seems to show larger
variance compared to humans in both translation
directions.

Figure 4: ChrF scores on puzzles of different categories
in our test set. Up: to English, down: to LR languages

In terms of typological features, we discover
an interesting phenomenon that LLMs struggle in
certain word orders. Specifically, all models ex-
cept Claude perform significantly worse in Object-
Subject (O-S) languages than in Subject-Object (S-
O) languages (see Figure 5) when translating to En-
glish, and three of the models, GPT-4o, Llama 3.2,
and Deepseek also perform poorly when translat-
ing English to LR languages. Humans do not seem
to show the same discrepancy with different orders.
Additionally, both LLMs and humans tend to strug-
gle with languages that follow a Noun-Adjective
(N-A) order instead of an Adjective-Noun (A-N)
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Figure 5: ChrF scores in O-S and S-O order languages.
Up: to English; down: to LR languages

order, except for Claude when translating English
to LR languages (Figure 6). This difference indi-
cates a possible deficiency of processing certain
word orders in some LLMs when comprehending
LR languages.

5.3 Discussion

Our experiments reveal key insights into the linguis-
tic reasoning capabilities of LLMs when dealing
with diverse linguistic structures. Firstly, larger and
proprietary models outperform smaller and open-
source models. Secondly, all their performances
decline as the complexity of the reasoning task
increases. Thirdly, translation of English to LR
languages presents a bigger challenge than the op-
posite direction. These findings are in line with
the findings of previous studies. A probable cause
of better performance in English is that LLMs are
always able to generate coherent English sentences,
regardless of whether they fully understand the
rules in LR languages, but it is not the case for LR
languages.

Overall, our step-by-step approach significantly
enhances LLM performance in translating unseen
LR languages to English. We show that they can in-
fer linguistic rules from carefully constructed data
with their intrinsic meta-linguistic abilities. In fact,
the best model, Claude, even slightly surpasses hu-

Figure 6: ChrF scores in N-A and A-N order languages.
Up: to English; down: to LR languages

man performance. Currently our approach relies
on human-curated data, and this process might be
automated in the future by formally describing the
linguistic rules and the .

It is also shown that LLMs have different
strengths and weaknesses compared to humans in
terms of dealing with different categories of linguis-
tic features. When translating to English, LLMs
perform relatively well on simpler tasks such as
word semantics, and they handle morpho-syntactic
tasks more effectively than syntax. When trans-
lating to LR languages, both LLMs and humans
achieve their highest scores on lexical semantic
tasks, followed by syntax and morpho-syntax, with
the worst performance on phonological tasks. An
intriguing bias of LLMs is also revealed in our
study, that they seem to have trouble processing
O-S order and N-A order. The deficiency in pro-
cessing O-S language is possibly attributed to a
bias in the training data. However, the training data
in fact contain N-A languages, like French, which
are able to provide experience with this feature.
This deficiency in N-A languages will need future
investigations.

6 Conclusion

In general, this paper presents an evaluation of
LLMs’ ability to learn and apply complex linguis-
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tic rules across diverse language structures. In-
spired by linguistic puzzles from IOL, we design a
step-by-step approach for LLMs to learn linguistic
rules in-context with their intrinsic meta-linguistic
abilities. It involves creating a series of puzzles
that allows LLMs to learn complex linguistic rules
incrementally. The results show that our approach
significantly boosts model performance in transla-
tion tasks, and the best model can match human
level performance. We hope our dataset provides a
starting point for future studies to further improve
LLM performance and promote LLM applications
in LR languages.

Limitations

While our approach provides insights into the lin-
guistic reasoning capabilities of LLMs when deal-
ing with unseen LR languages, several limitations
may require further investigations. First, we have
not conducted a systematic examination of how
specific typological features affect model perfor-
mance. We report preliminary findings with certain
word orders, but further studies are needed to under-
stand these biases, potentially using a wider variety
of typological features. Also, a more detailed er-
ror analysis of the models’ reasoning processes
and translation results might further provide in-
sights into their performance. We have relied on
automatic evaluation metrics for measuring perfor-
mance. If the translation results could be further
annotated for types of different errors, it might be
able to discover recurring patterns in these errors,
thus revealing specific weaknesses in LLMs’ lin-
guistic reasoning abilities. Our results will also
benefit from more extensive human testing and
comparison with traditional machine translation
systems, generic chain-of-thought prompting, or
LLMs specifically desgined for reasoning, such as
the O1 model.
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A Data release

Our constructed dataset is available at URL:
https://github.com/Zhurp2020/LR_LLM_Eval

B Example of a Rosetta Stone puzzle

Below you see romanised sentences in the Lakhota
language and their English translations:

Lakhota English
akhota ki wičhakte The Indian killed

them.
matho ki wakte I killed the bear.
lakhota ki mačho The Indian called me.
tuwa ničho he Who called you?
wičhaša ki tuwa kte The person killed

someone.
tuwa hi he Who came?
matho ki wičhačho He called the bears.
yahi čha hi You came, and he

came.
matho ki hipi ną
lakhota ki čhopi

The bears came and
called the Indian.

yahi čha hokšila ki
nikte

You came, and the boy
killed you.

lakhota ki wačho ną
hokšila ki wakte

I called the Indian and
killed the boy.

hokšila ki wakte
čha tuwa lakhota ki
wičhačho

I killed the boy, and
someone called the In-
dians.

lakhota ki hipi čha
mayačho

The Indians came, and
you called me.

https://github.com/Zhurp2020/LR_LLM_Eval
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Assignment 1. Translate into English:

1. wahi čha lakhota ki matho ki wičhačhopi

2. wičhaša ki nikte ną mačho

3. wičhaša ki nikte čha mačho

4. nikte

Assignment 2. Translate into English in all pos-
sible ways:

1. tuwa kte he

Assignment 3. Translate into Lakhota:

1. The Indians killed the boy, and the bear came.

2. You came and killed the Indian.

3. Whom did I call?

4. The people came, and someone killed them.

Note. The Lakhota (Dakota) language is of the
Sioux family. It is spoken by 6000 people in the
Midwest of the USA. š, č, h, y, w, ą are specific
sounds of the Lakhota language.

C Example of puzzles in our step-by-step
approach

Lakhota English
train 1 (semantics)

lakhota ki matho ki
kte

The Indian killed the
bear.

wičhaša ki hokšila ki
kte

The man killed the
boy.

lakhota ki hokšila ki
čho

The Indian called the
boy.

wičhaša ki hi The man came.
test 1

matho ki hokšila ki
čho

The bear called the
boy.

hokšila ki matho ki
čho

The boy called the
bear.

train 2 (morpho-syntax/object agreement)
ma-kte He killed me.
ni-kte He killed you.
matho ki čho He called the bear.
matho ki wičha-čho He called the bears.

test 2
ma-čho He called me.
ni-čho He called you.
matho ki kte He killed the bear.
matho ki wičha-kte He killed the bears.

train 3 (morpho-syntax/subject agreement)
wa-kte I killed him.
ya-kte You killed him.
matho ki čho-pi They called the bear.

test 3
wa-čho I called him.
ya-čho You called him.
matho ki kte-pi They killed the bear.

train 4(morpho-syntax/subject and object
agreement)
ma-ya-kte You killed me.
ma-kte-pi They killed me.
matho ki wičha-wa-
kte

I killed the bears.

matho ki wičha-kte-
pi

They killed the bears.

test 4
ni-wa-kte I killed you.
ni-kte-pi They killed you.
matho ki wičha-ya-
kte

You killed the bears.

matho ki wičha-kte He killed the bears.

train 5 (syntax/interrogative and clause)
ya-hi čha matho ki
kte

You came, and he
killed the bear.

ya-hi čha ma-čho You came, and he
called me.

matho ki ya-kte ną
ma-ya-čho

You killed the bear and
called me.

tuwa matho ki kte ną
ma-čho

Someone killed the
bear and called me.

tuwa ni-čho he Who called you?
tuwa ya-čho he Whom did you call?

test 5
wa-čho čha hi I called him and he

came.
ma-čho ną hi He called me and

came.
tuwa kte-pi he? Whom did they kill?
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D Language list

See Table 4.

Language Language family
Adyghe Northwest Caucasian
Ainu Isolate
Apurinã Arawakan
Coastal Marind Anim
Dyirbal Pama–Nyungan
Engenni Niger–Congo
Gilbertese Austronesian
Hakhun Sino-Tibetan
Inanwatan Trans–New Guinea
Inuktitut Eskaleut
Jarawara Arawakan
K’iche’ Mayan
Kayapo Macro-Jê
Kilivila Austronesian
Kimbundu Niger–Congo
Kombai Trans–New Guinea
Kunuz Nubian Nilo-Saharan
Lakhota Siouan
Mairasi Mairasi
Mee Trans–New Guinea
Miskito Misumalpan
Muklom Sino-Tibetan
Muna Austronesian
Nuuki Tuu
Nahuatl Uto-Aztecan
Niuean Austronesian
Nooni Niger–Congo
Panará Macro-Jê
Pitjantjatjara Pama–Nyungan
Sandawe isolate
Taa Tuu
Teop Austronesian
Tutuba Austronesian
Tzotzil Mayan
Walman Torricelli
Wambaya Mirndi
Yonggom Trans–New Guinea
Zou Sino-Tibetan

Table 4: The list of 40 languages in our dataset

Category Linguistic feature Count
word order 40
Phonology allomorph 6

vowel harmony 3
tone change 7

Morpho-syntax alignment 15
indirect object 7
noun class 5
noun gender 6
noun number 11
animate 2
definitiveness 1
proper name 1
subject agreement 28
object agreement 16
focus 5
possessive 19
tense 25
mood 2
word derivation 6
demonstrative 3
causative 2
locative 3
reflective 3
case 2
adverb 6
adjective 9

Syntax interrogative 14
negative 11
expletive 3
clause 5
conjunction 2
secondary order 1

Table 5: The list of 33 linguistic features covered in our
data

E List of linguistic features covered in our
data

See Table 5.

F Model performance in different
categories of puzzles and word orders

See Table 6 and Table 7.
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Category Model
To English To LR languages

BLEU ChrF EM (%) BLEU ChrF EM (%)

Semantics

Claude 3.5 Sonnet 94.164 95.414 81.707 83.640 90.261 67.073
GPT-4o 89.801 91.139 69.512 82.120 87.146 65.854
Llama 3.1 86.542 87.435 67.073 76.803 83.011 59.756
Llama 3.2 74.506 79.208 57.317 71.888 78.222 56.098
Deepseek V2.5 88.690 88.676 67.073 77.022 79.366 53.659
Human 92.008 89.981 82.927 91.221 93.691 82.927

Phonology

Claude 3.5 Sonnet 32.763 61.370 38.889
GPT-4o 0.000 65.411 33.333
Llama 3.1 29.369 69.233 50.000
Llama 3.2 21.508 65.306 55.556
Deepseek V2.5 0.000 76.377 50.000
Human 35.355 78.774 55.556

Morphosyntax

Claude 3.5 Sonnet 86.020 89.277 66.063 65.962 81.718 42.986
GPT-4o 79.594 84.179 57.014 59.602 76.592 33.484
Llama 3.1 77.772 84.131 58.371 55.472 71.749 31.674
Llama 3.2 74.857 81.362 54.299 45.086 63.433 21.267
Deepseek V2.5 77.004 83.047 54.751 55.769 70.634 29.412
Human 84.508 86.347 63.793 62.185 76.416 42.857

Syntax

Claude 3.5 Sonnet 83.844 86.859 56.897 74.530 86.357 46.552
GPT-4o 76.986 80.354 36.207 64.772 74.105 20.690
Llama 3.1 79.059 82.927 46.552 67.999 76.447 29.310
Llama 3.2 69.738 75.865 34.483 60.532 66.880 27.586
Deepseek V2.5 77.995 82.106 44.828 65.305 73.939 29.310
Human 82.871 83.349 53.333 67.142 76.345 42.857

Table 6: Model performance in different categories of linguistic rules.

Word order Model
To English To LR languages

BLEU ChrF EM (%) BLEU ChrF EM (%)

O-S

Claude 3.5 Sonnet 83.161 87.8183 45.255 58.201 80.75 32.374
GPT-4o 66.923 75.2078 21.168 42.145 72.613 8.6331
Llama 3.1 70.126 79.2061 26.277 46.778 77.108 15.108
Llama 3.2 53.758 66.6992 19.708 33.551 66.089 11.511
Deepseek V2.5 66.346 74.8481 18.248 37.049 67.133 11.511
Human 77.622 84.323 39.583 61.863 77.413 30.612

S-O

Claude 3.5 Sonnet 88.52 90.3878 46.197 73.442 84.236 29.56
GPT-4o 84.093 86.2946 30.649 69.09 78.575 19.89
Llama 3.1 82.474 84.7276 27.293 65.392 74.817 18.681
Llama 3.2 78.264 81.2239 25.889 57.364 68.052 15.265
Deepseek V2.5 82.686 85.0603 28.3 66.445 73.62 16.923
Human 87.832 86.726 54.027 70.747 82.004 39.185

A-N

Claude 3.5 Sonnet 91.591 94.4654 44.444 55.572 71.852 9.2593
GPT-4o 88.059 90.9486 29.63 89.466 87.798 25.926
Llama 3.1 88.614 91.7183 25.926 88.842 88.751 29.63
Llama 3.2 84.38 86.9885 22.222 68.275 74.687 18.519
Deepseek V2.5 80.042 83.6529 18.519 87.105 87.066 25.926
Human 97.068 97.0304 50 89.789 95.678 38.889

N-A

Claude 3.5 Sonnet 85.774 88.3955 35.583 62.677 80.932 19.76
GPT-4o 71.255 77.8957 15.951 50.399 71.962 8.3832
Llama 3.1 69.977 77.8152 13.497 44.762 68.747 6.5868
Llama 3.2 63.232 72.295 9.816 41.489 63.298 7.1856
Deepseek V2.5 69.312 74.1964 14.724 46.202 64.639 6.5868
Human 75.273 78.6403 25 64.186 82.652 26.667

Table 7: Model performance in different word orders.
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