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Abstract

We introduce a novel method to enhance cross-
language code translation from Fortran to C++
by integrating task-specific embedding align-
ment into a Retrieval-Augmented Generation
(RAG) framework. Unlike conventional re-
trieval approaches that utilize generic embed-
dings agnostic to the downstream task, our
strategy aligns the retrieval model directly with
the objective of maximizing translation qual-
ity, as quantified by the CodeBLEU metric.
This alignment ensures that the embeddings
are semantically and syntactically meaning-
ful for the specific code translation task. Our
methodology involves constructing a dataset
of 25,000 Fortran code snippets sourced from
Stack-V2 dataset and generating their corre-
sponding C++ translations using the LLaMA
3.1-8B language model. We compute pairwise
CodeBLEU scores between the generated trans-
lations and ground truth examples to capture
fine-grained similarities. These scores serve
as supervision signals in a contrastive learn-
ing framework, where we optimize the em-
bedding model to retrieve Fortran-C++ pairs
that are most beneficial for improving the lan-
guage model’s translation performance. By in-
tegrating these CodeBLEU-optimized embed-
dings into the RAG framework, our approach
significantly enhances both retrieval accuracy
and code generation quality over methods em-
ploying generic embeddings. On the HPC For-
tran2C++ dataset, our method elevates the aver-
age CodeBLEU score from 0.64 to 0.73, achiev-
ing a 14% relative improvement. On the Nu-
merical Recipes dataset, we observe an increase
from 0.52 to 0.60, marking a 15% relative im-
provement. Importantly, these gains are real-
ized without any fine-tuning of the language
model, underscoring the efficiency and practi-
cality of our approach.

1 Introduction

Cross-language code translation is a critical task in
modern software development, especially as legacy

programming languages, such as Fortran, continue
to be prevalent in scientific computing, while more
contemporary languages like C++ are favored for
their performance and versatility in production en-
vironments. The goal of automatic translation from
Fortran to C++ is to preserve the functionality and
structure of legacy code while benefiting from the
optimizations and ecosystem of C++. However,
achieving high-quality translations that adhere to
the syntax and semantic norms of the target lan-
guage remains a challenging problem, particularly
when there is a lack of large, aligned datasets or
evaluation metrics that cover both source and target
languages effectively.

Traditional approaches to cross-language trans-
lation, such as Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) typically involve two
phases: first, retrieving relevant examples from a
database, followed by a language model generat-
ing code conditioned on both the query and the
retrieved examples. In prior efforts, the retrieval
models in RAG systems have relied on general-
purpose embedding models (Bhattarai et al., 2024;
Li et al.), which are not tailored to the specific nu-
ances of code translation. These embeddings aim
to retrieve relevant pairs from the source and tar-
get languages but do not directly optimize for the
quality of the generated code. As a result, while
the retrieved examples may be relevant in a broad
sense, they often fail to guide the language model
towards producing translations that maximize fi-
delity to the ground truth in the target language.

Given the scarcity of high-quality parallel For-
tran–C++ data, we generate synthetic C++ transla-
tions from abundant Fortran code using an LLM
to create a pseudo-parallel corpus. Although these
synthetic translations may not be flawless, they
provide a robust similarity signal that enables ef-
fective alignment of Fortran code embeddings.
This “pseudo-alignment” enhances the retrieval of
relevant examples in our RAG framework, lead-
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ing to significant improvements in downstream
translation quality as demonstrated by a consis-
tent 14–15% gain in CodeBLEU scores. We col-
lect a dataset of 25,000 Fortran code examples
from Stack V2 (Lozhkov et al., 2024) and use the
LLaMA 3.1-8B (Touvron et al., 2023) model to
generate corresponding C++ translations. In the
absence of ground truth C++ translations, we eval-
uate the quality of these translations using pairwise
CodeBLEU similarity scores. This metric captures
both syntactic correctness and semantic fidelity,
providing a robust signal for aligning the retrieval
model through contrastive learning.

The proposed approach aims to addresses the
shortcomings of general-purpose embedding mod-
els by integrating task-specific metrics into the re-
trieval optimization process. By aligning the re-
trieval model with the downstream task of produc-
ing high-quality C++ code, our method ensures that
the examples retrieved during inference are not just
broadly similar but are semantically and syntacti-
cally aligned in a way that enhances the LLM’s
generative performance. The result is a significant
improvement in translation quality, as measured by
CodeBLEU, over previous methods that lack such
alignment.

Our contribution is twofold: first, we demon-
strate the effectiveness of contrastive learning for
fine-tuning retrieval models in the context of cross-
language code translation, using a task-specific
metric to guide alignment. Second, we show that
optimizing retrieval for downstream generation
tasks can lead to state-of-the-art results, particu-
larly in cases where aligned datasets are not readily
available for both source and target languages. This
work not only advances the field of code translation
but also opens up new possibilities for applying
similar techniques to other language pairs and do-
mains where task-specific evaluation metrics are
available for only one side of the translation.

2 Related Work

Historically, code translation strategies before the
advent of LLMs relied heavily on rule-based
and statistical machine translation (SMT) sys-
tems (Koehn, 2009). These systems used prede-
fined rules or statistical mappings between the
source and target programming languages, such as
tree-based translation approaches that mapped syn-
tax trees between languages. While these methods
provided structured and interpretable outputs, they

were limited in their ability to handle the semantic
complexities of different programming languages
and struggled with code diversity, edge cases, and
idiomatic translations.

With the rise of deep learning and LLMs, fine-
tuning models on large datasets became the go-
to method for improving code translation. Mod-
els like CodeBERT (Feng et al., 2020) and
Codex (Chen et al., 2021), when fine-tuned on spe-
cific language pairs, improved translation quality
by leveraging vast amounts of parallel code data.
However, the main limitation of LLM fine-tuning
lies in the resource-intensive process. Fine-tuning
requires substantial amounts of labeled data and
computational resources, making it impractical for
niche or legacy languages like Fortran, where par-
allel data may be scarce.

As a next step, task-specific alignment of LLMs
emerged to improve translation by better guiding
the model’s output. While alignment techniques
help improve output fidelity, they still necessitate
fine-tuning or explicit modification of the LLM
itself, which can be resource-intensive and may
still fall short of generalization when translating
between languages with significant structural dif-
ferences (Mishra et al., 2024).

RAG introduced a more flexible approach by
allowing LLMs to retrieve and condition their out-
puts on example pairs from a relevant dataset.
While RAG improves translation by augmenting
the model’s input, the effectiveness of this strat-
egy depends on the quality and relevance of the
retrieved examples. In an example case (Bhattarai
et al., 2024), the retrieval step relies on general-
purpose embeddings like Nomic-Embed or Code-
BERT, which, although effective at retrieving se-
mantically similar code, are not optimized for spe-
cific downstream metrics like CodeBLEU. As a
result, the LLM might not always retrieve the exam-
ples that would best assist in producing translations
aligned with target-specific quality metrics.

The approach we propose offers a significant
advantage by focusing on semantic alignment of
the retrieval mechanism without the need to fine-
tune the LLM itself. Through contrastive learn-
ing, we optimize the embedding model to retrieve
Fortran-C++ pairs that are more likely to maximize
the downstream metric (e.g., CodeBLEU) when
used by the LLM for generation. This strategy
ensures that the most relevant examples are re-
trieved for each translation task, improving the gen-
eration quality without requiring computationally
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expensive fine-tuning of the LLM. This retrieval
alignment makes RAG more efficient and better
suited for translating between languages where
high-quality paired datasets may not be available.
By concentrating on improving the quality of re-
trieved examples, our method achieves high-quality
translation with minimal additional model training,
leveraging existing LLM capabilities more effec-
tively.

3 Methods

This section provides the technical description of
our proposed method.

3.1 Problem setting

We consider the standard code translation scenario
leveraging a language model G, in which a tar-
get translated code ct of a query source code cs is
generated using G:

ct = G (cs) (1)

In practice, conditioning G on k example pairs of
source and target code D :=

{(
csi , c

t
i

)}k
i=1

, can sig-
nificantly enhance translation. This few-shot learn-
ing approach can be expressed as: ct = G (cs, D)

In a RAG framework, this process is further re-
fined by integrating a retrieval mechanism R that
identifies the most pertinent k example pairs from
a large corpus C based on the query cs. By ex-
pressing this retrieval step as D = R(cs, C), we
can describe the conventional translation scenario
leveraging G as

ct = G (cs, R(cs, C)) (2)

In practice, the input source code for the retrieval
are embedded using a neural network Ψ, which
are generally agnostic to the downstream task. We
denote csΨ as the embedding of the source code
cs under the embedding Ψ. Hence, Eq. 2 can be
expressed as

ct = G (cs, R(csΨ, CΨ)) (3)

under the usage of the embedding model Ψ. Here,
the notation CΨ refers to the fact that the embedding
is applied onto the corpus of cs.

Some common embedding modules for the re-
trieval code translation are Nomic-Embed (Nuss-
baum et al., 2024), StarEncoder (Li et al., 2023),
and CodeBERT (Feng et al., 2020). However, as

the performance of the translation task heavily de-
pends on the relevance and the alignment of the
retrieved examples with respect to the query cs,
as we will show in the following discussion, it is
beneficial to optimize Ψ for better code translation
performance.

3.2 Task-Specific Embedding Alignment
Our method involves aligning the Fortran embed-
ding model Ψ using contrastive learning based on
CodeBLEU similarity scores, followed by apply-
ing this aligned model within a RAG framework
for improved cross-language code translation from
Fortran to C++, as shown in Figure 1I.

Embedding Similarity: We directly leverage
the CodeBLEU similarity computed from the lan-
guage model G to train an aligned embedding mod-
ule Ψ for the downstream code translation task.
The following discusses how to extract the Code-
BLEU similarity from G.

From a source dataset of Fortran code snippets
DF = {csi}Ni=1, we generate the corresponding
C++ translations DC = {cti}Ni=1 using G without
RAG retrieval:

cti = G(csi ), ∀i = 1, . . . , N (4)

Then, we compute the pairwise CodeBLEU sim-
ilarity scores (Ren et al., 2020) between all gener-
ated translation pairs (cti, c

t
j):

St
ij = CodeBLEU(cti, c

t
j) (5)

where the CodeBLEU score matrix St ∈
[0, 1]N×N is a weighted linear combination of
four components: the n-gram match Sn-gram, the
weighted n-gram match Sw-n-gram, the syntactic
AST match Ssyntax, and the semantic data flow
match Ssemantic. These components capture the
syntactic and semantic similarities between the
generated C++ translations: Sn-gram is the tradi-
tional BLEU score up to n-grams, Sw-n-gram as-
signs weights to n-grams based on their impor-
tance, Ssyntax measures the similarity between the
abstract syntax trees (AST) of the code snippets
and Ssemantic assesses the similarity in data flow
between code snippets.

Intuitively, a high value of St
ij indicates that the

source code snippets csi and csj , when translated
by G, produce similar target code, suggesting that
csi and csj are semantically similar with respect to
the translation task. Therefore, our approach aims
to learn a fine-tuned embedding module Ψ that
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Figure 1: Overview of the proposed pipeline. i) The LLM generates pairwise code translations, which are evaluated
using the CodeBLEU metric. ii) The resulting similarity scores are used to guide contrastive learning for semantic
alignment of the embedding model.

utilizes St
ij to enhance code embedding alignment.

The approach is expected to guide Ψ in a way that
enhances the code translation task leveraging G.

Embedding Alignment: To align the embed-
ding space of code snippets with the semantic simi-
larities measured by CodeBLEU, we propose the
Soft Information Noise-Contrastive Estimation (S-
InfoNCE) loss applied to the embeddings resulting
from the trainable embedding module Ψ. On a high
level, our proposed S-InfoNCE can be considered
a soft version of the InfoNCE loss proposed for
contrastive learning (van den Oord et al., 2018). In
the following, we provide the description for the
S-InfoNCE loss and Lemma 1 characterizing the
stationary condition resulting from the S-InfoNCE.
The result helps describing the influence of the loss
on the learnt representation.

Given a batch of N code snippets, we compute
their embeddings csΨi

= Ψ(csi ) and then calcu-
late the pairwise cosine similarities between those
embeddings, scaled by a temperature parameter
τ > 0:

Ss
Ψij

=
1

τ

csΨi
· csΨj

∥csΨi
∥∥csΨj

∥ (6)

Our proposed S-InfoNCE loss integrates these
continuous similarity scores to weigh the contribu-
tion of each pair. Specifically, the loss component

between code i with respect to code j is given as:

lS-InfoNCE
ij (Ψ) = −St

ij log

(
exp(Ss

Ψij
)

∑N
k=1 exp(S

s
Ψik

)

)

(7)
and the S-InfoNCE loss is the sum over all code
pairs:

LS-InfoNCE(Ψ) =

N∑

i=1

N∑

j=1

lS-InfoNCE
ij (Ψ) (8)

Finally, the embedding Ψ is optimized by minimiz-
ing LS-InfoNCE(Ψ) using gradient descent.

Compared to the conventional InfoNCE loss for
contrastive learning (van den Oord et al., 2018), our
proposed loss differs in its usage of St

ij as a soft
indicator for encoding a continuous similarity be-
tween the pair (i, j), rather than a binary indicator
of class membership (same class or not). This gives
rise to the term soft InfoNCE, or S-InfoNCE. In the
typical InfoNCE loss, the term lij is included only
if the pair (i, j) belongs to the same class, assuming
discrete classes are available. However, since such
discrete class labels do not exist in the code trans-
lation task, we adopt St

ij as a soft version of this
indicator function, allowing for a more nuanced
representation of similarity between code pairs. To
further elaborate on the impact of S-InfoNCE, we
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provide Lemma 1 characterizing its stationary con-
ditions:

Lemma 1. The stationary points of the S-InfoNCE
loss (Equation 8) satisfy:

exp(Ss
Ψ∗

ij
)

∑N
k=1 exp(S

s
Ψ∗

ik
)
=

St
ij∑N

k=1 S
t
ik

, (9)

for all i, j ∈ {1, . . . , N}.
Furthermore, the optimal loss is the weighted

sum of the entropy of the CodeBLEU similarity
distribution for each input code i:

LS-InfoNCE(Ψ∗) =
N∑

i=1

(
N∑

k=1

St
ik

)
H(p∗

i ), (10)

where H is the entropy function and p∗
i is a proba-

bility vector whose j-th component is

p∗ij =
St
ij∑N

k=1 S
t
ik

. (11)

Proof. For brevity, let us define:

• αij = St
ij : the CodeBLEU similarity between

the target code translations cti and ctj .

• pij(Ψ) = exp(Ss
Ψij

)/Zi, where Zi =
∑N

k=1 exp(S
s
Ψik

): the normalized exponen-
tial of the cosine similarity between the em-
beddings of source code snippets csi and csj .

The S-InfoNCE loss can be rewritten as:

LS-InfoNCE(Ψ) = −
N∑

i=1

N∑

j=1

αij log pij(Ψ). (12)

The minimization of LS-InfoNCE(Ψ) can be
viewed as a constrained optimization problem over
the variables pij(Ψ), subject to the normalization
constraints:

N∑

j=1

pij(Ψ) = 1, ∀i ∈ {1, . . . , N}. (13)

Thus, we can formulate the Lagrangian L:

L = −
N∑

i=1

N∑

j=1

αij log pij(Ψ)

+
N∑

i=1

λi




N∑

j=1

pij(Ψ)− 1


 . (14)

To find the stationary points, we take the deriva-
tive of L with respect to pij(Ψ) and set it to zero:

∂L
∂pij(Ψ)

= − αij

pij(Ψ)
+ λi = 0. (15)

Solving for pij(Ψ), we get:

pij(Ψ) =
αij

λi
. (16)

Applying the normalization constraint gives us:

N∑

j=1

αij

λi
=

N∑

j=1

pij(Ψ) =
N∑

j=1

αij

λi
= 1 (17)

⇒λi =

N∑

j=1

αij . (18)

Substituting λi back into pij(Ψ), we obtain the
stationary condition:

p∗ij =
αij∑N
k=1 αik

=
St
ij∑N

k=1 S
t
ik

. (19)

Substituting pij(Ψ
∗) back into the loss function:

LS-InfoNCE(Ψ∗) = −
N∑

i=1

N∑

k=1

αik log

(
αik∑N
j=1 αij

)

=

N∑

i=1

(
N∑

k=1

St
ik

)
H(p∗

i ). (20)

From the lemma, we can see that minimizing the
S-InfoNCE loss encourages embeddings of seman-
tically similar code snippets, i.e., those with higher
target CodeBLEU score St

ij , to have higher cosine
similarities Ss

Ψij
, thereby aligning them closer in

the embedding space. The temperature parameter
τ controls the concentration of the distribution: a
lower τ sharpens the softmax distribution, mak-
ing the embedding model focus more on the most
similar pairs.

Retrieval-Augmented Generation with
Aligned Embeddings: After aligning the em-
bedding model Ψ, we integrate it into the RAG
framework to enhance the translation process
(Figure 1II). In particular, given a query Fortran
code snippet cs, we compute its embedding csΨ
then retrieve the top-k Fortran code snippets
{csr1 , csr2 , . . . , csrk} from the corpus C by maximiz-
ing the cosine similarity between embeddings. The
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corresponding C++ translations {ctr1 , ctr2 , . . . , ctrk}
are then retrieved alongside the source code
snippets. These retrieved pairs {(csrj , ctrj )}kj=1 are
used to augment the input to the language model
G, providing additional context:

ĉt = G
(
cs, {(csrj , ctrj )}kj=1

)
. (21)

By incorporating the optimized embedding func-
tion Ψ into the RAG setup, we enhance the perfor-
mance of the language model without the need for
fine-tuning. The retrieval mechanism now provides
more relevant examples that are closely aligned
with the translation task, leading to more accurate
and aligned translations as demonstrated in Ap-
pendix A.

4 Experiments and Results

In our study, we utilized three datasets to enhance
code translation through RAG and embedding
alignment. The HPC Fortran2CPP dataset (Lei
et al., 2023), comprising 315 Fortran-C++ code
pairs, and the Numerical Recipes dataset (Press
et al., 1988), containing 298 Fortran-C++ pairs,
were employed for RAG retrieval and evaluation
with LLMs. Additionally, we used the Stack-V2
dataset (Lozhkov et al., 2024), which includes over
500,000 Fortran code snippets, for RAG alignment.
From Stack-V2, we sampled 25,000 high-quality
and diverse Fortran code snippets by selecting files
larger than 500 bytes and prioritizing those with
the highest combined star and fork counts, indi-
cating relevance and popularity. Since Stack-V2
lacks Fortran-C++ pairs, we extracted files contain-
ing metadata, code, and comments, and utilized
the Llama 3.1-70B Instruct model to extract exe-
cutable Fortran code, discarding other metadata.
We selected the StarCoder model (Li et al., 2023)
with 125M parameters as the embedding backbone
for our RAG pipeline and aligned it using con-
trastive learning on the Stack-V2 dataset. Initially,
we use the LLaMA 3.1-8B model to translate the
cleaned Fortran code snippets into corresponding
C++ code. After code translaton, we computed
pairwise CodeBLEU scores between the generated
C++ code snippets to quantify the syntactic and
semantic similarities of their translations. Leverag-
ing these CodeBLEU metrics and the embeddings
from the Fortran codes, we employed the proposed
Soft-InfoNCE loss function with a temperature of
0.1 to align the embeddings, effectively training

the embedding model to map semantically similar
code snippets closer in the embedding space.

The embedding model was trained using the
Adam optimizer with a learning rate of 10−3 and
a batch size of 128 per GPU, sampling approxi-
mately 1,280,000 code pairs for alignment. This
training process was distributed across 256 GH200
GPUs to accelerate the process, though it can also
be performed on fewer GPUs at a significantly
slower pace. Training on 256 GH200 GPUs took
approximately 15 minutes per epoch, with early
stopping at epoch 20. This scales to around 60
minutes per epoch with 64 GPUs and 2 hours per
epoch with 32 GPUs. While training a RAG model
does incur computational overhead, it remains sig-
nificantly less expensive than fine-tuning a multi-
billion-parameter LLM. After alignment, we inte-
grated the embedding model into the RAG pipeline,
storing Fortran-C++ pairs along with their Fortran
embeddings in a vector database. We then eval-
uated the performance using the LLaMA 3.1-8B,
LLaMA 3.1-70B, Mistral123B, and Mixtral 8x22B
models—all instruct-tuned—under zero-shot, 1-
shot, 2-shot, and 3-shot settings. The evaluation
was conducted on the benchmark datasets HPC
Fortran2C++ and Numerical Recipes, following
the setup described by (Bhattarai et al., 2024).
The CodeBLEU scores for both the aligned and
unaligned models were obtained by comparing
the RAG-augmented generated C++ translations
against the ground truth C++ code.

Figure 2 shows scatter-plots of CodeBLEU
scores for code samples produced using RAG re-
trieval with aligned versus unaligned embeddings
derived from StarEncoder. Symbols crosses, pluses
and triangles respectively indicate whether the sam-
ple was evaluated using a 1-shot, 2-shot, or 3-shot
method. The red dashed lines delineates the bound-
ary where the aligned samples have the same Code-
BLEU score as the non-aligned ones, and across
all four tested datasets, we observed a majority
of samples above the red line, indicating that the
aligned model produces translated codes closer to
ground truth. In other words, the results in Figure 2
demonstrate that aligned embeddings significantly
improve translation quality for each Fortran-to-C++
code translation task. Specifically, on the HPC For-
tran2C++ dataset, averaged over all shot counts
and models, the aligned embeddings achieved an
average CodeBLEU score of 0.73, whereas un-
aligned embeddings achieve 0.64. On the Numer-
ical Recipes dataset, aligned embeddings yielded
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Figure 2: Scatter plots comparing the unaligned and aligned One-shot CodeBLEU scores across different shot
counts (1-shot, 2-shot, 3-shot) for two models (llama3.1 70b and llama3.1 8b) and two datasets (Numerical Recipe
and HPC Fortran2C++ Dataset). Each point represents a shot count, and the red dashed line represents the reference
where the unaligned and aligned scores are equal. The text box in each subplot displays the average CodeBLEU
performance and standard deviation for aligned vs. unaligned RAG translation across the few-shot configurations.

Table 1: Delta in Mean CodeBLEU scores between Zero- and Few-Shot prompts. The values are presented as
Unaligned/Aligned scores.

∆ in CodeBLEU scores (Unaligned / Aligned)

Dataset Model Zero-shot 1-shot 2-shot 3-shot

HPC Fortran2++ llama3.1 70b 0.364 +0.262/+0.346 +0.275/+0.371 +0.281/+0.377
llama3.1 8b 0.342 +0.237/+0.346 +0.261/+0.376 +0.252/+0.374
mistral123b 0.367 +0.197/+0.241 +0.210/+0.265 +0.215/+0.271
mixtral-8x22b 0.376 +0.237/+0.273 +0.261/+0.344 +0.233/+0.304

numerical_receipe llama3.1 70b 0.280 +0.232/+0.313 +0.243/+0.329 +0.243/+0.317
llama3.1 8b 0.276 +0.181/+0.268 +0.195/+0.292 +0.201/+0.289
mistral123b 0.281 +0.138/+0.169 +0.132/+0.183 +0.135/+0.211
mixtral-8x22b 0.280 +0.200/+0.245 +0.228/+0.296 +0.232/+0.312

an average CodeBLEU score of 0.60, outperform-
ing the unaligned case at 0.52. These substantial
improvements highlight the effectiveness of our
method in enhancing translation accuracy.

Figure 3 further corroborates these findings by
presenting the distribution of CodeBLEU scores
across various experimental configurations. The
box plots reveal that aligned embeddings not only
increase the median scores but also reduce perfor-
mance variability. This indicates that our approach

consistently enhances translation quality and leads
to more reliable code translations. The consistent
improvements across different model sizes (8B and
70B parameters) and datasets demonstrate the ro-
bustness and scalability of our method.

Table 1 presents the mean CodeBLEU scores
for zero-shot and few-shot prompting strategies
using both unaligned and aligned embedding mod-
els across different language models and datasets.
A key observation is that the aligned embedding
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Figure 3: Box plots illustrating the distribution of Code-
BLEU scores across various shot counts (1-shot, 2-shot,
3-shot) for both unaligned and aligned models. The
results are presented for two models (llama3.1 70b and
llama3.1 8b) across two datasets (Numerical Recipe and
HPC Fortran2C++ Dataset)

models consistently achieve higher CodeBLEU
scores compared to unaligned models when tran-
sitioning from zero-shot to few-shot settings. For
instance, on the HPC Fortran2C++ dataset with
the LLaMA3.1 70B model, the aligned model im-
proves from 0.364 to 0.710 (+0.346) in the 1-
shot setting, surpassing the unaligned model’s im-
provement from 0.364 to 0.626 (+0.262). Sim-
ilar trends are observed with the LLaMA3.1 8B
model, where the aligned model increases from
0.342 to 0.688 (+0.346), compared to the unaligned
model’s increase from 0.342 to 0.579 (+0.237).
The Mistral 13B and Mixtral 8x22B models
also exhibit greater improvements with aligned
embeddings in few-shot settings, confirming the
benefit of embedding alignment across different
architectures. On the Numerical Recipes dataset,
the aligned models again demonstrate superior im-
provements over unaligned models. For example,
the LLaMA3.1 70B aligned model improves from
0.280 to 0.593 (+0.313) in the 1-shot setting, ex-
ceeding the unaligned model’s increase from 0.280
to 0.512 (+0.232). This consistent pattern across
datasets reinforces the advantage of embedding
alignment in enhancing code translation perfor-
mance. We acknowledge that CodeBLEU may
not capture all functional nuances. Therefore, we
performed a small-scale manual check (Appendix
A) on a subset of translations. While we observed
that a majority compiled and produced the expected
outputs, further large-scale functional evaluation
remains an important future direction.

These results indicate that embedding align-

ment significantly enhances the models’ capacity
to exploit few-shot prompts, leading to superior
code translation performance as measured by Code-
BLEU scores. Alignment optimizes the embedding
space to better capture the syntactic and seman-
tic nuances of code translation tasks, thereby aug-
menting the models’ few-shot learning capabili-
ties. Additionally, larger models tend to outper-
form smaller ones. The LLaMA3.1 70B model con-
sistently achieves higher CodeBLEU scores than
the LLaMA3.1 8B model across both datasets and
embedding types. The strong performance of the
Mixtral 8x22B model, which combines multiple
experts, highlights the benefits of increased model
capacity. Furthermore, diminishing marginal gains
are observed when increasing the number of shots
beyond two, suggesting that the majority of per-
formance improvements are realized with just one
or two examples. This indicates that while few-
shot examples are beneficial, adding more beyond
a certain point yields limited additional gains.

5 Conclusion

We introduced a novel method for enhancing cross-
language code translation from Fortran to C++ by
aligning embeddings within a RAG framework.
By leveraging contrastive learning based on Code-
BLEU similarity scores, we aligned the Fortran em-
bedding model so that code snippets yielding high-
quality translations are positioned closer in the em-
bedding space. This alignment enables the RAG
system to retrieve semantically meaningful exam-
ples that effectively guide th LLM during code gen-
eration. Our experimental results demonstrate sub-
stantial improvements in translation quality with-
out the need for fine-tuning the LLM. Specifically,
using aligned embeddings increased the average
CodeBLEU score from 0.64 to 0.73 on the HPC
Fortran2C++ dataset and from 0.52 to 0.60 on
the Numerical Recipes dataset, representing rel-
ative improvements of approximately 14% and
15%, respectively. The larger model (llama3.1
70b) consistently outperformed the smaller model
(llama3.1 8b), indicating that increased model ca-
pacity enhances the effectiveness of our approach.
Additionally, we observed diminishing returns be-
yond two-shot prompting, suggesting that most per-
formance gains are achieved with just one or two
examples. Thus, our approach significantly im-
proves code translation performance by optimizing
the retrieval mechanism through task-specific em-
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bedding alignment, rather than relying on compu-
tationally expensive fine-tuning of the LLM. This
method is computationally efficient, scalable, and
adaptable to other code translation tasks, particu-
larly when aligned datasets are scarce or evaluation
metrics like CodeBLEU are critical. Future work
could extend this alignment strategy to additional
programming languages and explore integrating
other evaluation metrics to further enhance transla-
tion quality.

6 Limitations

Our approach leverages CodeBLEU as a task-
specific metric for performing contrastive learning
via a custom Soft-InfoNCE loss in the alignment of
embedding models for code translation. While this
approach introduces several improvements, it also
brings specific limitations. First, using CodeBLEU
as the basis for contrastive learning focuses pri-
marily on syntactic and semantic alignment, which
may not always translate into functional equiva-
lence. CodeBLEU, while effective at evaluating
linguistic features of generated code, does not fully
capture the functional behavior of code, meaning
that two semantically similar snippets could still
behave differently at runtime (Ren et al., 2020).
This limitation can lead to cases where the retrieval
mechanism selects semantically similar but func-
tionally incorrect examples, impacting the over-
all quality of the translation task. Second, con-
trastive learning, particularly with InfoNCE loss,
relies heavily on the assumption that maximizing
the similarity between pairs (based on CodeBLEU)
leads to better downstream performance. However,
InfoNCE loss is limited by its focus on pulling
positive samples closer while pushing away neg-
ative ones, which in the case of code translation,
does not always capture the subtle nuances of code
equivalence across languages (Khosla et al., 2020).
Code snippets with different syntactic structures
but similar functionality may be treated as nega-
tive examples, leading to a misaligned embedding
space and suboptimal retrieval. Third, the granu-
larity of the CodeBLEU score presents an inherent
challenge. Since CodeBLEU provides a continu-
ous similarity metric (between 0 and 1), aligning
embeddings through InfoNCE loss may not fully
capture the wide range of functional similarities or
dissimilarities between code snippets. This results
in an embedding space that reflects linguistic rather
than purely functional similarity, which can lead

to errors in retrieval when applied to real-world
translation tasks where functional correctness is
paramount (Feng et al., 2020). Additionally, the
use of CodeBLEU as a basis for contrastive learn-
ing is highly dependent on the quality of the gener-
ated code samples and their reference translations.
Any noise or imperfections in the training data
(e.g., low-quality code or inconsistent style) may
degrade the alignment process. Since InfoNCE
relies on subtle positive and negative distinctions,
noisy CodeBLEU scores can introduce ambiguity,
further distorting the learning process and leading
to poorer retrievals during generation (Wang and
Liu, 2021).
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A Demonstration: Enhancing
Fortran-to-C++ Translation Using
Aligned RAG on LLaMa3.1 70b Model

A.1 Fortran Code to be Translated
Below is the original Fortran code that needs to be
translated into C++:

1 program DRB011_minusminus_orig_yes
2 use omp_lib
3 implicit none
4

5 integer :: i, len , numNodes ,
numNodes2

6 integer :: x(100)
7

8 len = 100
9 numNodes = len

10 numNodes2 = 0
11

12 do i = 1, len
13 if (MOD(i,2) == 0) then
14 x(i) = 5
15 else
16 x(i) = -5
17 end if
18 end do
19

20 !$omp parallel do
21 do i = numNodes , 1, -1
22 if (x(i) <= 0) then
23 numNodes2 = numNodes2 - 1
24 end if
25 end do
26 !$omp end parallel do
27

28 print*, "numNodes2 =", numNodes2
29 end program

Listing 1: Fortran Code

A.2 Ground Truth
Below is the human-generated ground truth Fortran-
to-C++ translation, which serves as the baseline:

1 #include <stdlib.h>
2 #include <stdio.h>
3 int main(int argc , char* argv []) {
4 int i;
5 int len = 100;
6 int numNodes = len;
7 int numNodes2 = 0;
8 int x[100];
9

10 // initialize x[]
11 for (i = 0; i < len; i++) {
12 if (i % 2 == 0)
13 x[i] = 5;
14 else
15 x[i] = -5;
16 }
17

18 #pragma omp parallel for
19 for (i = numNodes - 1; i > -1; --i)

{
20 if (x[i] <= 0) {
21 numNodes2 --;
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22 }
23 }
24

25 printf("numNodes2 = %d\n", numNodes2
);

26 return 0;
27 }

Listing 2: Ground Truth

A.3 Zero-shot Translation
The zero-shot output from the LLM demonstrates
basic translation abilities but with structural issues:

1 #include <iostream >
2 #include <omp.h>
3

4 int main() {
5 const int len = 100;
6 int numNodes = len;
7 int numNodes2 = 0;
8 int x[len];
9

10 for (int i = 1; i <= len; i++) {
11 if (i % 2 == 0) {
12 x[i - 1] = 5;
13 } else {
14 x[i - 1] = -5;
15 }
16 }
17

18 #pragma omp parallel for reduction
(-:numNodes2)

19 for (int i = numNodes; i >= 1; i--)
{

20 if (x[i - 1] <= 0) {
21 numNodes2 --;
22 }
23 }
24

25 std::cout << "numNodes2 = " <<
numNodes2 << std::endl;

26

27 return 0;
28 }

Listing 3: Zero-shot Translation

A.4 Unaligned RAG One-shot Translation
The one-shot output improves the translation, but
some structural issues still remain. Specifically,
the initialization of variables and handling of array
indices are slightly different:

1 #include <stdio.h>
2

3 int main() {
4 int i, len , numNodes , numNodes2;
5 int x[100];
6

7 len = 100;
8 numNodes = len;
9 numNodes2 = 0;

10

11 for (i = 0; i < len; i++) {
12 if ((i + 1) % 2 == 0) {
13 x[i] = 5;

14 } else {
15 x[i] = -5;
16 }
17 }
18

19 #pragma omp parallel for reduction(-:
numNodes2)

20 for (i = numNodes - 1; i >= 0; i--)
{

21 if (x[i] <= 0) {
22 numNodes2 --;
23 }
24 }
25

26 printf("numNodes2 = %d\n", numNodes2
);

27

28 return 0;
29 }

Listing 4: One-shot Translation

A.5 Aligned RAG Translation
By aligning the retrieval process to the context
of the task, the translation becomes much more
accurate, closely matching the ground truth:

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main(int argc , char* argv []) {
5 int i;
6 int len = 100;
7 int numNodes = len;
8 int numNodes2 = 0;
9 int x[100];

10

11 for (i = 0; i < len; i++) {
12 if ((i % 2) == 0) {
13 x[i] = 5;
14 } else {
15 x[i] = -5;
16 }
17 }
18

19 #pragma omp parallel for
20 for (i = numNodes - 1; i >= 0; i--)

{
21 if (x[i] <= 0) {
22 numNodes2 --;
23 }
24 }
25

26 printf("numNodes2 = %d\n", numNodes2
);

27 return 0;
28 }

Listing 5: Aligned RAG-based Translation
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