ELECTRA and GPT-40:
Cost-Effective Partners for Sentiment Analysis

James P. Beno
Stanford Engineering CGOE

Jim@jimbeno.net

Abstract

Bidirectional transformers excel at sentiment
analysis, and Large Language Models (LLM)
are effective zero-shot learners. Might they per-
form better as a team? This paper explores col-
laborative approaches between ELECTRA and
GPT-4o for three-way sentiment classification.
We fine-tuned (FT) four models (ELECTRA
Base/Large, GPT-40/40-mini) using a mix of re-
views from Stanford Sentiment Treebank (SST)
and DynaSent. We provided input from ELEC-
TRA to GPT as: predicted label, probabilities,
and retrieved examples. Sharing ELECTRA
Base FT predictions with GPT-40-mini signifi-
cantly improved performance over either model
alone (82.50 macro F1 vs. 79.14 ELECTRA
Base FT, 79.41 GPT-40-mini) and yielded the
lowest cost/performance ratio ($0.12/F1 point).
However, when GPT models were fine-tuned,
including predictions decreased performance.
GPT-40 FT-M was the top performer (86.99),
with GPT-40-mini FT close behind (86.70) at
much less cost ($0.38 vs. $1.59/F1 point). Our
results show that augmenting prompts with pre-
dictions from fine-tuned encoders is an efficient
way to boost performance, and a fine-tuned
GPT-40-mini is nearly as good as GPT-40 FT
at 76% less cost. Both are affordable options
for projects with limited resources.

1 Introduction

Sentiment analysis—the computational study of
opinions, attitudes, and emotions in text (Medhat
et al., 2014)—has seen major advances from trans-
former architectures (Vaswani et al., 2017). Bidi-
rectional encoders like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020) excel at sentiment analysis when fine-
tuned, and Large Language Models (LLM) like
GPT (Radford et al., 2018) are strong zero-shot
and few-shot learners (Kheiri and Karimi, 2023).
Recent work has explored collaboration between
these models, such as using GPT to augment data of
minority classes before fine-tuning with RoBERTa

18

(Kok-Shun et al., 2023), using GPT for aspect
extraction and RoBERTa for sentiment scoring
(Qian et al., 2024), and escalating to LLMs when
RoBERTa classification confidence was low (An-
drade et al., 2024). However, leveraging external
knowledge of sentiment from fine-tuned encoders
to enhance LL.Ms remains under-explored.

This research investigates collaborative ap-
proaches between ELECTRA and GPT-40 models
(OpenAl, 2024b,c) for three-way sentiment clas-
sification (negative, neutral, positive) of reviews.
Our research focused on the following hypotheses:
Providing predictions from a fine-tuned ELECTRA
as context to a GPT model will improve classi-
fication performance (H1). The improvement in
performance will be less for a fine-tuned GPT (H2).
The format of predictions in the prompt will affect
performance (H3). Including similar examples in
the prompt will improve performance (H4).

These hypotheses build on ELECTRA’s strength
in capturing nuanced sentiment patterns when fine-
tuned (Clark et al., 2020; Potts et al., 2021; B
et al., 2023), and GPT’s versatility through in-
context learning (Radford et al., 2019; Liu et al.,
2019; Kocon et al., 2023; OpenAl, 2024a)—they
can perform well across diverse tasks when given
the appropriate context through prompting (Liu
et al., 2023; Khattab et al., 2024). Although they
may struggle with emotion and nuance (Kocon
et al., 2023), retrieved examples can improve per-
formance (Zhang et al., 2023).

To test these hypotheses, we established four
baselines and conducted 28 experiments across
three sentiment classification datasets: Stanford
Sentiment Treebank (SST), and DynaSent Rounds
1 and 2. We used ELECTRA Base/Large and GPT-
40/40-mini, each of which were fine-tuned (FT) on
a merge of SST and DynaSent reviews.

We investigated the effects of different prompt
augmentation scenarios using Declarative Self-
improving Python (DSPy) (Khattab et al., 2024),

Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing (KnowledgeNLP’25), pages 18-36

May 3, 2025 ©2025 Association for Computational Linguistics

a framework for programming language models.
We started with a prompt to classify a review, and
augmented it with knowledge from ELECTRA in
the form of: the predicted class label, the probabili-
ties of each class, similar reviews with their class
labels, and combinations. We evaluated classifica-
tion performance with the macro average F1 score,
and cost-effectiveness by dividing total fine-tuning
costs by the F1. Our key insights are the following.
Sharing predictions boosted performance.
Augmenting GPT-40-mini (not fine-tuned) with
predictions from ELECTRA Base FT significantly
improved performance over either model alone. It
also yielded the lowest cost/performance ratio.
Adding probabilities or examples did not help.
Using probabilities, or including few-shot exam-
ples, did not improve performance more than the
predicted label alone for both GPT models.
Fine-tuned GPTs performed best. GPT-4o0
FT-M alone achieved the highest overall perfor-
mance on the merged test set, with GPT-40-mini
FT closely following at significantly lower cost.
Sharing predictions hurt fine-tuned GPTs.
When GPT models were fine-tuned, including
ELECTRA predictions decreased performance—
even when fine-tuned with the same inference-time
prompt that included the ELECTRA prediction.
Fine-tuning with the prediction for more epochs
allowed GPT to discriminate better. Performance
improved, but the cost grew significantly.
Fine-tuned ELECTRA Large outperformed
base GPTs. ELECTRA Large fine-tuned was the
best performing encoder model, and was better than
both GPT-40 and GPT-40-mini base models.
These findings offer affordable options for
projects with limited resources. If fine-tuning via
API is an option, a fine-tuned GPT-40-mini is
nearly as good as GPT-40 FT at 76% less cost. Al-
ternatively, augmenting LLM prompts with predic-
tions from fine-tuned encoder models is an efficient
way to boost performance. For projects that want
to stay local, a fine-tuned ELECTRA Large model
is quite capable, and better than default GPTs.
The key contributions of this research are:

* Proposes a novel collaboration where fine-
tuned bidirectional encoders assist GPT mod-
els with the task of sentiment classification.

* Demonstrates that augmenting GPT prompts
(not fine-tuned) with predictions from fine-
tuned encoders significantly improves classifi-

19

cation performance and reduces costs, achiev-
ing the lowest cost/performance ratio.

* Evaluates various formats for incorporating
encoder output into GPT prompts, and offers
practical guidelines to maximize performance.

2 Prior Literature

2.1 MLMs and ELECTRA

Masked Language Models (MLM) like BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) employed bidirec-
tional encoding to obtain holistic representations
of text. ROBERTa (Robustly Optimized BERT Pre-
training Approach) (Liu et al., 2019) optimized the
pre-training approach, but both models were ineffi-
cient because learning only occurred in about 15%
of the tokens that were masked.

This led to the development of ELECTRA (Ef-
ficiently Learning an Encoder that Classifies To-
ken Replacements Accurately) (Clark et al., 2020).
ELECTRA was pre-trained with two models using
replaced token detection. As a result, it learned
from all tokens and had comparable or better per-
formance in a variety of tasks with less compute.

ELECTRA was found to be a top performer in
sentiment classification on datasets such as SST
(Clark et al., 2020), DynaSent (Potts et al., 2021),
and IMDB movie reviews (B et al., 2023). It was
also found to be better suited for prompt-based
learning due to its use of a discrimnator (Xia et al.,
2022). We chose to use ELECTRA for these rea-
sons, in addition to observing a performance gain
relative to ROBERTa in early trials.

2.2 GPT Models

Bidrectional transformers seemed to have an edge
over early autoregressive models like GPT (Rad-
ford et al., 2018) for sentiment analysis. But that
edge is being whittled away by the successors of
GPT pre-trained at a massive scale: GPT-3, GPT-
3.5, GPT-4, and GPT-40 (OpenAl, 2024a,b,c).
For sentiment analysis of social media posts,
Kheiri and Karimi (2023) found that GPT mod-
els significantly outperformed a number of prior
models on the SemEval 2017 dataset. In contrast,
Kocon et al. (2023) found that, although ChatGPT
is versatile and competent across a wide range of
tasks, it did not perform as well as ROBERTa—
especially for pragmatic tasks involving detection
of emotional and contextual nuances. They pro-

Table 1: Examples of Merged Training Dataset

Index Sentence Label Source

0 Those 2 drinks are part of the HK culture and has years of history. negative dynasent_r2
It is so bad.

1 I was told by the repair company that was doing the car repair negative dynasent_rl
that fixing the rim was "impossible" and to replace it.

2 It is there to give them a good time . neutral sst_local

3 Like leafing through an album of photos accompanied by the negative sst_local
sketchiest of captions .

4 Johnny was a talker and liked to have fun. positive dynasent_rl

pose that fine-tuning ChatGPT may be necessary,
which we explore in this research.

2.3 Collaborative Approaches

Recent work has revealed several promising ap-
proaches for collaboration between these models.

Kok-Shun et al. (2023) explored a unique frame-
work that chains GPT and RoBERTa for emotion
detection. They used GPT’s generative capabili-
ties to augment training data for minority classes.
The augmented dataset is then used to fine-tune
RoBERTa on emotion detection.

Qian et al. (2024) tapped the strengths of dif-
ferent models in a Natural Language Processing
(NLP) pipeline to analyze stadium reviews. One
GPT-3.5 model was fine-tuned to extract experi-
ence aspects, while another classified these aspects
into categories. A RoBERTa model then performed
sentiment scoring on the extracted aspects. We
are chaining ELECTRA and GPT-40 in a similar
manner here, but in a different order.

Andrade et al. (2024) investigated the benefits
of collaboration between MLMs and open LLMs
for sentiment classification, similar to the current
research. In their “Call-My-Big-Sibling” (CMBS)
approach, the initial classification is done with a
calibrated RoBERTa model. If RoBERTa has low
confidence on the classification, an open LLM like
Llama 2 (Touvron et al., 2023) is invoked to per-
form the classification task instead.

In CMBS, the final prediction is either made by
RoBERTa or Llama 2—it’s a decision tree. In con-
trast, our approach always passes the ELECTRA
prediction to the LLM. If we had to come up with
a similar analogy, it would be “Show-Me-Your-
Answers” (SMYA). And then it’s up to the LLM
to decide if it follows the ELECTRA prediction, or
decides to classify the review differently.

Most recently, Charpentier and Samuel (2024)
created GPT-BERT, a hybrid model that learns bidi-
rectional representations like an MLM, but is also

20

generative like a GPT. By shifting the prediction
of masked tokens one position to the right, GPT-
BERT can be trained on both MLLM and autoregres-
sive objectives without changing architecture. In
the BabyLM Challenge 2024 benchmark, it outper-
formed models trained on only one objective, show-
ing there is potential in this combined approach.

Table 2: Label Distribution for the Merged Dataset

Split Negative Neutral Positive
Train 21,910 49,148 31,039
Validation 1,868 1,669 1,884
Test 2,352 1,829 2,349

Table 3: Contribution of Sources to the Merged Dataset

Dataset Samples Percent (%)

DynaSent R1 Train 80,488 78.83

DynaSent R2 Train 13,065 12.80

SST-3 Train 8,544 8.37

Total 102,097 100.00
3 Data

Models were trained and evaluated in English on
a merge of movie reviews from the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013) and busi-
ness reviews from DynaSent Rounds 1 and 2 (Potts
et al., 2021), licensed under Apache 2.0 and Cre-
ative Commons Attribution 4.0 respectively. See
Table 1 for examples. By default, SST is a five-way
classification (positive, somewhat positive, neutral,
somewhat negative, negative). The positive and
negative classes were combined to produce SST-3
(positive, neutral, negative).

The SST-3, DynaSent R1, and DynaSent R2
datasets were randomly mixed to form a Merged
dataset with 102,097 Train examples, 5,421 Valida-
tion examples, and 6,530 Test examples. See Table
2 for the distribution of labels, and Table 3 for a

Table 4: Models Used in Research

Model Provider Access Identifier

ELECTRA Base Hugging Face Local google/electra-base-discriminator
ELECTRA Large Hugging Face Local google/electra-large-discriminator
GPT-40 OpenAl API gpt-40-2024-08-06

GPT-40-mini OpenAl API gpt-40-mini-2024-07-18

breakdown of sources. It’s worth noting that the
source datasets all have class imbalances. Merging
the data helps mitigate this imbalance, but there is
still a majority of neutral examples in the training
split. Another potential issue is that the models will
learn the dominant dataset, which is DynaSent R1.
As a test, the minority classes were over-sampled
to create a new balanced dataset. When this was
evaluated, the performance did not improve.

4 Models

Four models were fine-tuned and evaluated in this
research, both individually and in collaboration
with each other: ELECTRA Base and Large, and
GPT-40 and 40-mini. See Table 4 for details.

ELECTRA (Clark et al., 2020), released with an
Apache 2.0 license, was chosen as the bidirectional
transformer because its pre-training architecture
gives it an advantage over MLMs. It also outper-
formed RoBERTa in early trials. We evaluated both
the Base (110M parameters) and Large (335M pa-
rameters) variants.

To function as a classifier, ELECTRA’s output
is sent through a mean pooling layer. A classifier
head is appended with 2 hidden layers of dimen-
sion 1024, and a final output dimension of 3. Swish
GLU (Shazeer, 2020) was used as the hidden ac-
tivation function, and dropout layers were added
with a rate of 0.3. See Appendix B for more details
on the model architecture and hyper-parameters.

For comparison and collaboration, two GPT
models were used via OpenAI’s API: GPT-40 (Ope-
nAl, 2024b) and GPT-40-mini (OpenAl, 2024c).
Although the full specifications are not public, they
are state-of-the-art autoregressive language mod-
els with strong zero-shot capabilities. GPT-40 is
described as a “high-intelligence flagship model
for complex, multi-step tasks.” GPT-40-mini is
described as an “affordable and intelligent small
model for fast, lightweight tasks.”

21

5 Methods

Our research progressed through the following
stages. Code and datasets are available at: https:
//github.com/jbeno/sentiment.

5.1 ELECTRA Baseline & Fine-tuning

We first developed a training pipeline to sup-
port interactivity and distributed training across
multiple GPUs. Training progress was tracked
through Weights and Biases so we could monitor
train/validation metrics (loss, macro F1, accuracy)
across epochs. The final models were selected
from checkpoints at convergence, or just before
train/validation metrics started to diverge.

Two baseline models were established by train-
ing only classifier heads for ELECTRA Base and
Large. Hyper-parameters were consistent with
the fully fine-tuned versions. The fine-tuning pro-
cess involved a number of trials on Lambda Labs
multi-GPU instances to identify the best hyper-
parameters, optimizer, and learning rate schedule.
See Appendix B for the final configuration.

We also explored alternative approaches includ-
ing an ensemble of binary classifiers, and additional
fine-tuning on DynaSent R2 and SST-3, but these
did not outperform our initial approach.

5.2 GPT Data Preparation & Fine-tuning

To use OpenAlT’s fine-tuning API, we converted the
Merged training data to JSONL format that defined
the System, User, and Assistant roles. We noticed
that if the context at inference time varied even
slightly from the fine-tuning context, performance
would suffer. So we created three templates to
enable better comparisons between fine-tuned and
default models using the same DSPy signatures
(see Appendix D):

* Minimal (FT-M): No prompt other than Sys-
tem role. User role only contained the review
sentence.

* Prompt (FT): Default fine-tuning. User role
included full DSPy prompt.

https://github.com/jbeno/sentiment
https://github.com/jbeno/sentiment

¢ Prompt with Label (FT-L): User role in-
cluded DSPy prompt with ELECTRA pre-
dicted label.

We included the ELECTRA predictions in the
third template to align the fine-tuning context with
the inference time context, but also to provide an
opportunity for the GPT models to learn from the
ELECTRA predictions. In total there were 9 fine-
tuning jobs (see Table 5, and Appendix C for GPT
fine-tuning details).

Table 5: Fine-Tuning Job Details

Model Code Format Epochs
40-mini FI-M Minimal 1
40-mini FT Prompt 1
4o-mini FT-L Prompt w/Base Label 1
40-mini FT-L Prompt w/Base Label 5
4o-mini FT-L Prompt w/Large Label 1
40-mini FT-L Prompt w/Large Label 5
4o FT-M Minimal 1
40 FT Prompt 1
4o FT-L Prompt w/Large Label 1

5.3 DSPy Signatures & Modules

With DSPy, you create modules (ex: Classify, Clas-
sifyWithExamples), signatures (input/output tem-
plates, ex: review + examples — classification),
define metrics (ex: classification_match) and eval-
uators of data, and use optimizers to find the best
performing prompt or module parameters.

We explored a variety of approaches to inte-
grating ELECTRA’s output into GPT’s decision-
making process. Each approach was implemented
as a custom DSPy signature and module (see Ap-
pendix E for the full examples).

Classification Prompt. Prompt to “Classify the
sentiment of a review as either ‘negative’, ‘neutral’,
or ‘positive’.” One input field ‘review’ described
as “The review text to classify.” and one output
field ‘classification’ described as “One word rep-
resenting the sentiment classification: ‘negative’,
‘neutral’, or ‘positive’ (do not repeat the field name,
do not use ‘mixed’)”.

Predicted Label. Classification prompt with
an additional input field ‘classifier_decision’ de-
scribed as “The sentiment classification proposed
by a model fine-tuned on sentiment.” During eval-
uation, the DSPy module first sends the review
through the ELECTRA model to obtain its predic-
tion. This output is then inserted into the signature.

Probabilities. Classification prompt, but in-
stead of ‘classifier_decision’ it featured three input

22

fields for the probabilities of each class as obtained
from the ELECTRA model. For example: ‘nega-
tive_probability’ was described as “Probability the
review is negative from a model fine-tuned on sen-
timent”. The float is converted to a percent to make
it easier for the model to interpret.

Prediction & Probabilities. Same as Probabili-
ties, but it also included the ‘classifier_decision’ to
emphasize the final decision made by ELECTRA.

Top Examples. A custom retriever was created
from 300 reviews in the Validation split. During
inference, input text is run through the fine-tuned
ELECTRA Large model to extract the output repre-
sentations (prior to the classifier head). The top five
matches and class labels based on cosine similarity
are shown as few-shot examples. This signature
had ‘classifier_decision’ plus an ‘examples’ field
described as “A list of examples that demonstrate
different sentiment classes.”

Balanced Examples. If ELECTRA was wrong,
and the Top Examples were all of the same class,
it might be hard for GPT to make an independent
decision. To compensate, in Balanced Examples,
a different retriever was used that retrieved a total
of six examples (the top two examples from each
class) to ensure the few-shot examples with true
labels did not bias the answer toward a particular
class—although that might be desirable sometimes.

All of the Above. And lastly, a final DSPy signa-
ture had all of the above context from ELECTRA
included: classification prompt, predicted label,
probabilities, and top five examples (not balanced).
It was unclear if providing all this information
would help GPT make a decision, or if the large
number of tokens would dilute the signal.

We then conducted two of the four baselines,
and 26 of the 28 experiments (see Table 6) using
these DSPy signatures and modules. The fine-tuned
ELECTRA models and retriever were instantiated
locally for inference, and the GPT models were
accessed via OpenaAl API. To address single-run
concerns, each baseline and experiment was run a
second time with a different random seed (123 vs.
42) and temperature (0.1 vs. 0.0).

6 Results

Our experiments revealed significant differences
in performance across baseline, fine-tuning, and
collaborative scenarios. See Table 6 for the mean
macro average F1 between the two runs. Appendix
A has the raw data of each run.

Table 6: Summary of Model Configuration, Test Set Performance, and Cost

Merged® DynaSent R1 DynaSent R2 SST-3 Cost ($)°
ID' GPT? ELECTRA Description Macro F1* MacroF1* MacroF1* MacroFI* FT /FI
Bl — Base Baseline, Classifier head 69.51+0.20 70.86+0.15 61.39+0.28 60.60+0.36 0.65 0.01
B2 — Large Baseline, Classifier head 67.94+0.08 69.70+0.04 59.78+0.00 57.95+0.37 251 0.04
B3 4o0-mini — Baseline (Zero shot) 179.41£0.16 81.16+0.05 77.02+0.47 69.99 +0.97 - -
B4 4o — Baseline (Zero shot) 7997+£024 80.95+0.25 80.14+0.12 72.08+0.17 — =
El — Base FT Fine-tune all layers 179.14£022 82.12+0.02 70.67+1.64 69.04+129 973 0.12
E2 — Large FT Fine-tune all layers 8276 +0.57 86.22+0.44 7733+146 71.77+1.22 5326 0.65
E3 4o0-mini Base FT Prompt, Label 18250 +0.34 86.40+0.15 7533+1.22 70.88+1.20 973 0.12
E4 4o0-mini Large FT ~ Prompt, Label 83.80+0.43 87.71+027 7873+1.12 71.77+1.10 5326 0.64
E5 4o0-mini Large FT Prompt, Label, Examples (Few shot) 83.42+030 86.94+028 79.50+1.12 7233+049 5326 0.64
E6 4o0-mini Large FT ~ Prompt, Label, Balanced Ex. (Few shot) 8298 +£0.42 86.28+0.62 79.87+0.36 71.98+0.75 53.26 0.64
E7 4o0-mini Large FT Prompt, Probs 83.27+0.37 86.60+0.23 79.41+0.69 7226+1.03 5326 0.64
E8 4o0-mini Large FT ~ Prompt, Label, Probs 83.66+0.32 87.22+028 79.98+0.36 71.78+1.06 53.26 0.64
E9 4o0-mini Large FT Prompt, Label, Probs, Examples 83.19+0.39 86.58+0.60 7899+042 71.94+0.64 5326 0.64
E10 4o0-mini FT — Fine-tune w/prompt 86.70+0.11 89.65+0.30 87.00+0.13 75.83+0.21 33.15 0.38
Ell 4o-mini FT5 — Fine-tune w/prompt (5 epochs) 84.86+0.13 87.74+0.13 86.22+0.40 75.38+0.32 165.75 1.95
El12 4o0-mini F-TM — Minimal fine-tune 86.51+£0.06 89.57+0.18 87.13+£0.22 75.74+0.17 16.60 0.19
E13 4o0-mini FT Base FT Prompt, Label, FT w/prompt 81.06 £0.52 84.67+0.14 73.06+2.03 69.70+1.77 42.88 0.53
El4 4o0-mini FT-L Base FT Prompt, Label, FT w/prompt, label 81.84+0.26 8520+0.06 77.29+122 70.70+1.39 4931 0.60
E15 4o0-mini FT-L 5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.67 +0.30 86.38 £0.51 81.19+0.62 75.02+0.03 207.64 248
E16 4o0-mini FT Large FT Fine-tune w/prompt 83.94+0.09 87.57+0.11 80.17+0.28 72.46+0.00 8641 1.03
E17 4o0-mini FT-L Large FT Fine-tune w/prompt, label 84.12+0.06 87.58+0.10 80.75+0.20 73.34+0.06 92.84 1.10
E18 4o-mini FT-L 5 Large FT Fine-tune w/prompt, label (5 epochs) 84.83+0.06 87.75+0.17 84.37+0.81 7559+0.01 251.17 2.96
E19 4o Large FT ~ Prompt, Label 83.19+0.01 8571+0.00 8206+0.11 73.48+0.06 53.26 0.64
E20 4o Large FT ~ Prompt, Label, Examples (Few shot) 83.29+0.28 86.11+0.14 81.48+0.07 7296127 5326 0.64
E21 4o Large FT ~ Prompt, Label, Balanced Ex. (Few shot) 83.19+0.28 86.01+0.19 81.04+0.21 72.88+1.03 53.26 0.64
E22 4o Large FT ~ Prompt, Probs 82.99+0.47 86.37+045 7842+1.05 71.90+1.04 5326 0.64
E23 4o Large FT ~ Prompt, Label, Probs 83.31 £0.33 86.69+0.35 7946+0.33 72.17+0.97 53.26 0.64
E24 40 Large FT ~ Prompt, Label, Probs, Examples 83.04 £0.42 86.53+029 7847+1.00 71.83+1.20 53.26 0.64
E25 40FT — Fine-tune w/prompt 86.79+0.06 90.46+0.03 88.14+0.28 73.09+0.01 276.24 3.18
E26 40 FT-M — Minimal fine-tune 86.99 +0.00 90.57 £0.00 89.00+0.00 73.99+0.00 13837 1.59
E27 40FT Large FT Fine-tune w/prompt 84.03+0.30 87.90+0.13 80.01+0.73 72.00+1.15 329.50 3.93
E28 40 FT-L Large FT Fine-tune w/prompt, label 84.37+0.19 87.81+0.09 81.28+1.03 73.10+0.66 383.10 4.55

Bold = best overall, highlighted = best in section

fScores relevant to Hypothesis 1 (ELECTRA prediction improving non-fine-tuned GPT performance)

! Some ID numbers changed from their original ID in the research repo.

% GPT fine-tuning types: FT = fine-tune with prompt, FT-M = minimal without prompt, FT-L = with prompt including ELECTRA label, FT 5 = 5 epochs vs. 1

3 Merged dataset: Combination of test splits from DynaSent R1/R2 and SST-3

4 Each experiment was run twice with different random seeds (42, 123) and temperature (0.0, 0.1); values reported are means + standard deviations. Standard

deviations are based on two runs (n=2) and should be interpreted with caution.

3 Cost: FT = Fine-tuning cost, no inference-time API charges. Ratio is FT cost divided by F1 score.

Baselines. Regarding baselines, both GPT mod-
els outperformed the ELECTRA classifiers, with
GPT-40 achieving a 79.97 mean macro F1 and GPT-
4o0-mini scoring 79.41, compared to ELECTRA
Base (69.51) and Large (67.94). This demonstrates
the strong zero-shot capabilities of GPT models.

Fine-tuning. Fine-tuning improved perfor-
mance across all models. ELECTRA Base’s mean
macro F1 increased from 69.51 to 79.14, while
ELECTRA Large showed greater gains, improv-
ing from 67.94 to 82.76. This improvement is the
result of fine-tuning all layers—the baselines had
the same classifier head. Fine-tuned GPT models
had the highest scores (see Figure 2), with GPT-4o-
mini FT rising from 79.41 to 86.70, and GPT-40
FT-M achieving 86.99 with the minimal template.

Sharing Predictions. The effect of adding
ELECTRA predictions to GPT prompts depended
on if the GPT model was fine-tuned (see Figure 1

23

Change in F1 Score from Adding ELECTRA Predictions

GPT-40-mini +
ELECTRA Base FT

GPT-40 +

ELECTRA Large FT

GPT Fine-tunled w/prompt GPT Fine-tunéd w/prompt
+ ELECTRA label

GPT not fline-tuned

Figure 1: Change in Mean F1 from Adding Predictions

for the differences in mean F1). Sharing ELEC-
TRA Base predictions with GPT-40-mini (not fine-
tuned) significantly improved the macro F1 in
round one from 79.52 to 82.74 (p < 0.0001, Mc-
Nemar’s test and bootstrap analysis), a +3.22 gain.
There was an even greater gain of +3.97 points

when ELECTRA Large predictions were shared
(from 79.52 to 83.49, p < 0.0001). Similarly, in-
cluding ELECTRA Large predictions with GPT-40
improved the macro F1 from 80.14 to 83.18 (p <
0.001) in round one, a +3.04 gain.

However, sharing ELECTRA predictions with
fine-tuned GPT models actually decreased perfor-
mance. GPT-40-mini FT’s mean macro F1 dropped
from 86.70 to 81.06 when including ELECTRA
Base predictions, and to 81.84 when fine-tuned
with the predictions included in the prompt. Sim-
ilarly, GPT-40 FT’s mean F1 fell from 86.79 to
84.03 when including ELECTRA Large predic-
tions, and to 84.37 when fine-tuned with them.

Few-shot Examples. Some contexts performed
better than others for specific model combinations
(see Figure 3). Providing few-shot examples in ad-
dition to the predicted label was mostly the same or
worse than using the label alone. However, when
looking at the more challenging DynaSent Round 2
dataset, GPT-40-mini saw some benefit. Including
just the ELECTRA Large predicted label produced
a mean macro F1 of 78.73. Adding examples in-
creased the mean macro F1 to 79.50 (+0.77), and
balanced examples increased it to 79.87 (+1.14).

Sharing Probabilities. Using probabilities in-
stead of (or in addition to) the predicted label was
mostly the same or worse than using the label alone.
However, similar to using examples, the more chal-
lenging datasets saw some benefit. For DynaSent
Round 2, GPT-40-mini had a mean macro F1 of
78.73 with just the ELECTRA Large predicted la-
bel. Using probabilities instead changed it to 79.41,
and using the label with probabilities increased it
to 79.98. A similar minor improvement was seen
with SST on this dataset.

Datasets. Performance also varied across
datasets. GPT-40 FT-M achieved the top scores
on DynaSent R1 (90.57 mean macro F1) and Dy-
naSent R2 (89.00). Surprisingly, GPT-40-mini FT—
the smaller model—performed best on SST-3 with
a 75.83 mean macro F1, exceeding even GPT-40
FT’s performance of 73.99.

Cost. The most cost-effective approach was
ELECTRA Base FT with GPT-40-mini (not fine-
tuned) at $0.12 per F1 point. GPT-40-mini FT
provided a good compromise at $0.38 per F1 point,
while GPT-40 FI-L with ELECTRA Large FT
proved most expensive at $4.55 per F1 point.

24

7 Analysis

H1. Sharing predictions would boost perfor-
mance. The significant improvement in GPT-4o-
mini’s performance when augmented with ELEC-
TRA Base FT or Large FT predictions strongly
supports HI. We also saw a similar boost for GPT-
40 with ELECTRA Large FT predictions.

However, following ELECTRA’s predictions
had mixed results. When GPT-40-mini changed
its decision and followed ELECTRA Base FT in
round one, it was correct 548 times and wrong
412 times (+136 net improvement, 57.08% suc-
cess rate). When GPT-40 changed its decision and
followed ELECTRA Large FT, it was correct 521
times and wrong 481 times (+40 net improvement,
52% success rate).

Most of the improvement was in the neutral
and positive classes (see Figure 4). There was
barely any improvement in the negative class, but
importantly—it didn’t worsen. ELECTRA Base FT
had more than double the incorrect negative predic-
tions, but GPT-40-mini did not follow them. The
negative class was 21.46% of the Merged dataset,
so ELECTRA may not have learned it well. Con-
versely, GPT-40 followed more of the negative pre-
dictions, and performance suffered.

DynaSent R1 was the dominant source of the
Merged dataset (80,488 samples, or 78.83%), and
saw the most improvement. It could be that ELEC-
TRA learned this dataset the most, but it also repre-
sented less challenging reviews.

H2. Improvement would be less for fine-tuned
GPTs. H2 was supported more strongly than an-
ticipated. For a fine-tuned GPT model, including
the ELECTRA prediction actually decreased per-
formance (see Figure 1). Initially, we thought this
was because the fine-tuning context did not include
the ELECTRA prediction in the prompt. But we
still saw a decrease in performance (although less)
when it was included.

GPT was trained to be a helpful chat assistant
that thinks through problems, evaluates informa-
tion critically, and synthesizes knowledge. When
presented with an ELECTRA prediction, it can de-
cide when to follow the prediction and when to
rely on its own judgment. In contrast, when fine-
tuned specifically for sentiment classification, the
model is optimized to map directly from input text
to sentiment labels, potentially bypassing the criti-
cal thinking that made the base model effective at
filtering ELECTRA’s suggestions.

F1 Scores on Merged Dataset by Experiment

90

86.99 (E26: GPT-40 minimal fine-tune)

Macro Average F1 Score

odel or Collaboration
ELECTRA Base
ELECTRA Large
GPT-40-mini

GPT-40

GPT-40-mini + EBFT
GPT-40-mini + ELFT
GPT-40-mini FT + EBFT
GPT-40-mini FT + ELFT
GPT-40 + ELFT

GPT-40 FT + ELFT

=

Experiment ID & Description

Figure 2: Mean Macro F1 Scores on Merged Dataset by Experiment

Model

Change in F1 Score

+0.0

Label,

Probabilities ,
Probabilities

Balanced
Examples

Examples Label,
Probabilities,
Examples

Context from ELECTRA Large

Figure 3: Impact of Context on Mean F1 Score

It may also be that it takes more time to learn
the nuances of when ELECTRA is right vs. wrong.
When we extended fine-tuning from 1 to 5 epochs,
GPT was better able to discriminate ELECTRA’s
predictions. The follow rate decreased from
96.34% to 89.66%, and the discrimination gap—
the difference between following correct and in-
correct predictions—went from 16.89% to 35.95%.
Although additional epochs improved performance,
it comes with a significant increase to the cost:
$207.64 to $251.17 vs. only $33.15 to just fine-
tune GPT-40-mini—with better performance.

H3. Format of prediction would impact per-

25

Experiment
== B3: GPT-40-mini Baseline

mm E1: ELECTRA Base Fine-tuned

W= £3: GPT-40-mini + ELECTRA Predictions

Incorrect Predictions

Neutral Positive

Classification Label

Negative

Figure 4: Incorrect Predictions by Label (Round 1)

formance. Although using the predicted label
alone was best, GPT-40-mini saw more variabil-
ity in performance between the different contexts,
as shown in Figure 3. However, for GPT-40, there
was not much of a difference when looking at the
mean change in F1 score.

H4. Including examples would improve per-
formance. Contrary to this hypothesis, including
examples did not improve performance for either
GPT-40-mini or GPT-40 when looking at the mean
change in F1 score. It either had no effect (GPT-40)
or actually decreased performance (GPT-40-mini).

8 Conclusion

This research investigated collaborative approaches
to sentiment classification between bidirectional
transformers and LLMs. Our results show that
augmenting prompts with predictions from a fine-
tuned ELECTRA can significantly improve per-
formance when the GPT model is not fine-tuned—
up to +4.39 points of gain in the mean macro F1
score. Including probabilities or similar examples
improved performance slightly on the more chal-
lenging datasets. However, this collaborative ben-
efit disappeared when the GPT models were fine-
tuned.

It is possible that the fine-tuning process hinders
the critical thinking that’s present in the default
GPT models. Fine-tuning over more epochs im-
proves the situation—GPT gets smarter about when
to follow ELECTRA vs. when to ignore it. How-
ever, this comes at a significant cost increase—six
to seven times the cost of fine-tuning GPT-40-mini
alone, and the performance is still not comparable.

Our findings offer several cost-effective paths
for sentiment analysis projects. For organizations
that can fine-tune via API, GPT-40-mini FT offers
nearly equivalent performance to GPT-40 FT-M
(86.70 vs 86.99 mean macro F1) at 76% lower
cost ($0.38 vs $1.59/F1 point). For those with
data privacy concerns or resource constraints, GPT-
40-mini with ELECTRA Base FT had the best
cost/performance ratio ($0.12/F1 point). Projects
that need to stay completely local can fine-tune
ELECTRA Large, which outperformed both base
GPT models.

Future work could explore optimization of
inference-time prompts through DSPy, and alter-
nate System role instructions during fine-tuning.
In addition, this collaborative approach could be
extended to different datasets/domains, classifica-
tion tasks, and model pairings. There may also be
potential for including multiple predictions from
an ensemble of models. A new collaborative sce-
nario would be fine-tuning GPTs on the ELECTRA
output representations.

9 Limitations

The cost/performance evaluation only considered
the fine-tuning costs to achieve the reported macro
F1 on the test set. In practice, there may be ongoing
costs for inference time API calls for hosted GPT
models. The time and cost required to fine-tune
different datasets will vary, and this will affect the

26

relative cost/performance differences.

Our research was limited to GPT-40 and GPT-
40-mini from OpenAl, but there are many GPT-
style models available. Some of these are open
source and can be fine-tuned locally or on hosted
compute resources, such as Llama 2 or 3 from Meta
(Touvron et al., 2023; Dubey et al., 2024). The cost
of fine-tuning an open source GPT model without
API fees was not evaluated.

Resource and time constraints prevented us from
exploring every possible collaborative scenario.
Once we saw ELECTRA Large FT performed bet-
ter than ELECTRA Base FT, we only evaluated the
output from Large in the different prompt contexts
for both GPT-40 and GPT-40-mini.

Many experimental runs involved prompting the
GPT models, and these prompts could be further
optimized with frameworks like DSPy. Some of the
prompts are verbose, and these additional tokens
could dilute the signal of the ELECTRA context.

Although we quantified changes in GPT clas-
sification decisions before and after ELECTRA
predictions were included, we did not have time
to thoroughly explore why the ELECTRA predic-
tion was ignored in some cases, but followed in
others. Future research could prompt the model to
explain their decision, and the responses could be
analyzed. This additional instruction would likely
affect the classification decision—similar to Chain
of Thought (Wei et al., 2022)—and would be a new
experimental scenario.

We tried to give the GPT models a chance to
learn when ELECTRA was right or wrong dur-
ing fine-tuning (GPT-40 FT-L, GPT-40-mini FT-L).
There may be a more direct way of fine-tuning
GPT so that it learns when to trust ELECTRA’s
prediction, and when to decide for itself.

The data used for this research was a merge of
movie and business reviews from SST-3 and Dy-
naSent R1/R2. The majority of the reviews were
written in English and relatively short in length. As-
sessing generalization to other domains, languages
and longer lengths would require future research.

10 Acknowledgments

Thank you to the Stanford Engineering Center for
Global and Online Education (CGOE) for the op-
portunity to conduct this research as part of the Nat-
ural Language Understanding class (XCS224U),
and to Professor Christopher Potts, Insop Song,
and Petra Parikova for your support and guidance.

References

Claudio M. V. de Andrade, Washington Cunha, Davi
Reis, et al. 2024. A strategy to combine 1st gen
transformers and open LLMs for automatic text clas-
sification. arXiv preprint arXiv:2408.09629.

Mala J B, Anisha Angel S J, Alex Raj S M, and Rajeev
Rajan. 2023. Efficacy of ELECTRA-based language
model in sentiment analysis. In 2023 International
Conference on Intelligent Systems for Communica-
tion, lIoT and Security (ICISColS), pages 682—687.

Lucas Georges Gabriel Charpentier and David Samuel.
2024. GPT or BERT: why not both? arXiv preprint
arXiv:2410.24159.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

Kiana Kheiri and Hamid Karimi. 2023. SentimentGPT:
Exploiting GPT for advanced sentiment analysis and
its departure from current machine learning. arXiv
preprint arXiv:2307.10234.

Jan Kocon, Ireneusz Cichecki, Oliwier Kaszyca, et al.
2023. ChatGPT: Jack of all trades, master of none.
Information Fusion, 99:101861.

Brice Valentin Kok-Shun, Johnny Chan, Gabrielle Peko,
and David Sundaram. 2023. Intertwining two artifi-
cial minds: Chaining GPT and RoBERTa for emotion
detection. In 2023 IEEE Asia-Pacific Conference on
Computer Science and Data Engineering (CSDE),
pages 1-6.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, et al. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

27

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams Engineering Journal,
5(4):1093-1113.

OpenAl. 2024a. GPT-4 technical report. OpenAl Web
Site.

OpenAl. 2024b. Hello GPT-40. OpenAl Web Site.

OpenAl. 2024c. GPT-40 mini: advancing cost-efficient
intelligence. OpenAl Web Site.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and
Douwe Kiela. 2021. DynaSent: A dynamic bench-
mark for sentiment analysis. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2388-2404, Online. As-
sociation for Computational Linguistics.

Tyreal Yizhou Qian, Weizhe Li, Hua Gong, Chad
Seifried, and Chenglong Xu. 2024. Experience is all
you need: a large language model application of fine-
tuned GPT-3.5 and RoBERTa for aspect-based sen-
timent analysis of college football stadium reviews.
Sport Management Review, 0(0):1-25.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAl Blog.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog.

Noam Shazeer. 2020. GLU variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

https://arxiv.org/abs/2408.09629
https://arxiv.org/abs/2408.09629
https://arxiv.org/abs/2408.09629
https://doi.org/10.1109/ICISCoIS56541.2023.10100342
https://doi.org/10.1109/ICISCoIS56541.2023.10100342
http://arxiv.org/abs/2410.24159
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
https://www.sciencedirect.com/science/article/pii/S156625352300177X
https://doi.org/10.1109/CSDE59766.2023.10487718
https://doi.org/10.1109/CSDE59766.2023.10487718
https://doi.org/10.1109/CSDE59766.2023.10487718
https://dl.acm.org/doi/abs/10.1145/3560815
https://dl.acm.org/doi/abs/10.1145/3560815
https://dl.acm.org/doi/abs/10.1145/3560815
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/https://doi.org/10.1016/j.asej.2014.04.011
https://doi.org/https://doi.org/10.1016/j.asej.2014.04.011
http://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://doi.org/10.18653/v1/2021.acl-long.186
https://doi.org/10.18653/v1/2021.acl-long.186
https://doi.org/10.1080/14413523.2024.2386467
https://doi.org/10.1080/14413523.2024.2386467
https://doi.org/10.1080/14413523.2024.2386467
https://doi.org/10.1080/14413523.2024.2386467
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, £ ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Mengzhou Xia, Mikel Artetxe, Jingfei Du, Dangi Chen,
and Veselin Stoyanov. 2022. Prompting ELECTRA:
Few-shot learning with discriminative pre-trained
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11351-11361. Association for Computational
Linguistics.

Boyu Zhang, Hongyang Yang, Tianyu Zhou, Muham-
mad Ali Babar, and Xiao-Yang Liu. 2023. Enhancing
financial sentiment analysis via retrieval augmented
large language models. In Proceedings of the Fourth
ACM International Conference on Al in Finance,
ICAIF 23, page 349-356, New York, NY, USA. As-
sociation for Computing Machinery.

28

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.emnlp-main.780
https://aclanthology.org/2022.emnlp-main.780
https://aclanthology.org/2022.emnlp-main.780
https://doi.org/10.1145/3604237.3626866
https://doi.org/10.1145/3604237.3626866
https://doi.org/10.1145/3604237.3626866

A Results of Individual Runs

Table 7: Round 1 Results

Merged DynaSent R1 ~ DynaSent R2 SST-3 Cost ($)
ID GPT! ELECTRA Description F1 Acc F1 Acc F1 Acc Fl1 Acc FT /F1
Bl — Base Baseline, Classifier head 69.65 69.83 7096 71.28 61.59 61.67 60.85 70.14 0.65 0.01
B2 — Large Baseline, Classifier head 67.88 68.06 69.72 70.06 59.78 59.72 57.68 67.51 251 0.04
B3 4o-mini — Baseline (Zero shot) 79.52 80.34 81.12 81.00 77.35 77.92 70.67 80.05 — —
B4 4o — Baseline (Zero shot) 80.14 80.74 81.12 80.94 80.22 80.56 7220 80.45 - =
El — Base FT Fine-tune all layers 79.29 79.69 82.10 82.14 71.83 7194 69.95 7824 9.73 0.12
E2 — Large FT Fine-tune all layers 8236 8296 8591 8583 7629 76.53 7090 80.36 5326 0.65
E3 4o-mini Base FT Prompt, Label 82.74 8335 86.50 86.44 76.19 7653 71.72 80.54 9.73 0.12
E4 4o-mini Large FT Prompt, Label 8349 8421 8752 8747 7794 7847 7099 80.77 5326 0.64
E5 4o0-mini Large FT ~ Prompt, Label, Examples (Few shot) 8320 83.80 86.74 86.64 7871 79.03 7198 80.72 53.26 0.64
E6 4o-mini Large FT Prompt, Label, Balanced Ex. (Few shot) 82.68 8328 85.84 8569 79.61 80.00 7145 8041 5326 0.64
E7 4o-mini Large FT ~ Prompt, Probs 83.01 83.60 86.44 8636 7892 79.17 7153 80.54 5326 0.64
E8 4o-mini Large FT ~ Prompt, Label, Probs 8343 84.12 87.02 86.94 79.72 80.14 71.03 80.81 5326 0.64
E9 4o-mini Large FT Prompt, Label, Probs, Examples 8291 83.54 86.15 86.06 78.69 79.03 71.49 80.90 5326 0.64
E10 4o0-mini FT — Fine-tune w/prompt 86.77 87.26 89.86 89.75 86.90 87.08 75.68 83.26 33.15 0.38
Ell 4o-mini FT5 — Fine-tune w/prompt (5 epochs) 84.95 8527 87.83 87.67 8593 8597 7560 81.13 16575 1.95
E12 4o-mini FtM — Minimal fine-tune 86.55 87.00 89.70 89.58 86.97 87.08 75.62 82.76 16.60 0.19
E13 4o-mini FT Base FT Prompt, Label, FT w/prompt 81.42 8190 84.77 8478 7449 7472 7095 79.55 42.88 0.53
El4 4o-mini FT-L Base FT Prompt, Label, FT w/prompt, label 82.02 8253 85.24 85.11 7815 7847 71.68 79.64 49.31 0.60
E15 4o-mini FT-L5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.88 84.27 86.74 86.61 81.62 81.81 75.00 8127 207.64 248
E16 4o-mini FT Large FT Fine-tune w/prompt 84.00 84.58 87.65 87.58 80.37 80.69 7246 80.95 86.41 1.03
E17 4o-mini FI-L Large FT Fine-tune w/prompt, label 84.16 84.70 87.65 87.56 80.89 81.11 7329 81.22 92.84 1.10
E18 4o-mini FI-L5 Large FT Fine-tune w/prompt, label (5 epochs) 84.87 8525 87.87 87.75 83.80 83.89 7558 81.63 251.17 2.96
E19 4o Large FT ~ Prompt, Label 83.18 83.68 85.71 8556 8198 8222 7344 81.09 5326 0.64
E20 4o Large FT Prompt, Label, Examples (Few shot) 83.09 83.66 86.01 8586 81.53 81.81 72.06 80.68 53.26 0.64
E21 4o Large FT Prompt, Label, Balanced Ex. (Few shot) 82.99 8355 85.87 85.69 80.89 81.11 72.15 80.86 53.26 0.64
E22 4o Large FT Prompt, Probs 82.65 8325 86.05 8597 77.67 7792 71.16 80.54 5326 0.64
E23 4o Large FT Prompt, Label, Probs 83.08 83.71 8644 8633 79.23 79.58 7148 80.77 5326 0.64
E24 4o Large FT ~ Prompt, Label, Probs, Examples 82.74 8335 86.32 8622 77.76 78.06 70.98 80.41 5326 0.64
E25 40FT — Fine-tune w/prompt 86.83 87.43 9044 9036 88.34 8847 73.08 8231 276.24 3.18
E26 40 FT-M — Minimal fine-tune 86.99 87.57 90.57 90.50 89.00 89.17 73.99 8226 13837 1.59
E27 40FT Large FT Fine-tune w/prompt 83.82 8447 87.80 87.72 7949 79.86 71.18 80.68 329.50 3.93
E28 4o FT-L Large FT Fine-tune w/prompt, label 84.23 8482 87.74 87.64 80.55 80.83 72.63 81.54 383.10 4.55

Table 8: Round 2 Results

Merged DynaSent R1 ~ DynaSent R2 SST-3 Cost ($)
ID GPT' ELECTRA Description F1 Acc F1 Acc F1 Acc F1 Acc FT /F1
B1I — Base Baseline, Classifier head 69.37 69.57 70.75 71.11 61.19 6125 60.34 69.77 0.65 0.01
B2 — Large Baseline, Classifier head 67.99 68.15 69.67 70.03 59.78 59.72 5821 67.83 251 0.04
B3 4o-mini — Baseline (Zero shot) 79.29 80.15 81.19 81.08 76.69 77.36 69.30 79.55 — =
B4 4o — Baseline (Zero shot) 79.80 80.47 80.77 80.61 80.05 80.42 71.96 80.27 - -
El — Base FT Fine-tune all layers 7898 7946 8213 82.19 69.51 69.72 68.13 78.19 9.73 0.12
E2 — Large FT Fine-tune all layers 83.16 83.71 86.53 86.44 7836 78.61 7263 8091 5326 0.64
E3 4o-mini Base FT Prompt, Label 82.26 8292 86.29 8625 7447 7486 70.03 80.14 9.73 0.12
E4 4o-mini Large FT Prompt, Label 84.10 8473 87.90 87.83 79.52 79.86 72.54 8127 5326 0.63
E5 4o-mini Large FT Prompt, Label, Examples (Few shot) 83.63 84.18 87.13 87.03 80.29 80.56 72.68 80.72 5326 0.64
E6 40-mini Large FT Prompt, Label, Balanced Ex. (Few shot) 83.28 83.81 86.71 86.58 80.12 80.42 7251 80.41 5326 0.64
E7 4o-mini Large FT ~ Prompt, Probs 83.53 84.07 86.76 86.67 79.89 80.14 7298 81.13 53.26 0.64
E8 4o-mini Large FT Prompt, Label, Probs 83.88 84.47 8741 8733 80.23 80.56 7253 81.09 53.26 0.64
E9 4o-mini Large FT ~ Prompt, Label, Probs, Examples 83.46 84.03 87.00 86.89 79.28 79.58 7239 80.81 5326 0.64
E10 4o0-mini FT — Fine-tune w/prompt 86.62 87.09 89.44 8933 87.08 8722 7598 8339 33.15 0.38
Ell 4o-mini FT5 — Fine-tune w/prompt (5 epochs) 8476 85.07 87.64 87.47 86.50 86.53 75.15 80.68 165.75 1.96
E12 4o-mini FItM — Minimal fine-tune 86.47 86.89 89.44 8931 87.28 8736 75.86 82.81 16.60 0.19
E13 4o0-mini FT Base FT Prompt, Label, FT w/prompt 80.69 81.24 84.57 8458 71.62 7194 6845 7882 42.88 0.53
E14 4o0-mini FT-L Base FT Prompt, Label, FT w/prompt, label 81.65 8225 8515 8503 7643 7681 69.71 79.50 49.31 0.60
El5 4o0-mini FT-L 5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.46 83.89 86.02 85.89 80.75 80.97 75.04 81.58 207.64 2.49
E16 4o-mini FT Large FT Fine-tune w/prompt 83.87 84.44 8749 8742 79.97 8028 7246 8095 86.41 1.03
E17 4o-mini FI-L Large FT Fine-tune w/prompt, label 84.07 84.59 87.51 87.42 80.61 80.83 73.38 81.22 92.84 1.10
E18 4o-mini FT-L 5 Large FT Fine-tune w/prompt, label (5 epochs) 84.79 85.15 87.63 87.50 84.94 8500 7559 81.36 251.17 2.96
E19 4o Large FT ~ Prompt, Label 8320 83.69 8571 8556 82.13 8236 73.52 81.09 53.26 0.64
E20 4o Large FT ~ Prompt, Label, Examples (Few shot) 83.48 84.00 86.21 86.06 8143 81.67 73.85 8140 53.26 0.64
E21 4o Large FT Prompt, Label, Balanced Ex. (Few shot) 83.38 8389 86.14 8597 8I1.18 8139 73.61 8131 5326 0.64
E22 4o Large FT Prompt, Probs 83.32 8387 86.68 86.58 79.16 79.44 72.63 8090 53.26 0.64
E23 4o Large FT Prompt, Label, Probs 83.54 84.10 86.93 86.81 79.69 80.00 72.85 81.04 53.26 0.64
E24 4o Large FT ~ Prompt, Label, Probs, Examples 83.34 8389 86.73 86.61 79.18 79.44 72.68 8090 53.26 0.64
E25 40oFT — Fine-tune w/prompt 86.74 87.32 9048 90.42 87.94 88.06 73.09 82.04 27624 3.18
E26 40 FT-M — Minimal fine-tune 86.99 87.57 90.57 90.50 89.00 89.17 73.99 8226 13837 1.59
E27 40FT Large FT Fine-tune w/prompt 84.24 84.84 87.99 87.89 80.52 80.83 72.81 81.18 329.50 3.91
E28 4o FT-L Large FT Fine-tune w/prompt, label 84.50 85.04 87.87 87.75 82.01 8222 73.56 81.54 383.10 4.53

Bold = best overall, highlighted = best in section

I GpT fine-tuning types: FT = fine-tune all layers with prompt, FT-M = minimal fine-tune format without prompt, FT-L = fine-tune with prompt including ELECTRA
label, FT 5 = fine-tune for 5 epochs

29

B ELECTRA Fine-tuning Details

Table 9: ELECTRA Fine-Tune Configuration

Setting ELECTRA Base FT ELECTRA Large FT
Source Hugging Face Hugging Face
Source Model ID google/electra-base-discriminator google/electra-large-discriminator
Encoder Blocks 12 24
Embedding Dimension 768 1024
Attention Heads 12 16
Feedforward Size 3072 4096
Parameters 110 Million 335 Million
Custom Pooling Layer Method Mean Mean
Classifier Head Hidden Layers 2 2
Classifier Head Hidden Dimension 1024 1024
Classifier Head Hidden Activation SwishGLU SwishGLU
Finetuned Encoder Blocks 12 24
Total Layers 104 200
Total Parameters 112,830,979 338,293,763
Trainable Parameters 100% 100%
Learning Rate le™® le™®
Learning Rate Decay 0.95 0.95
Batch Size 16 16
Accumulation Steps 2 2
Target Epochs 50 50
Actual Epochs 20 23
Selected Best Epoch 14 13
Dropout Rate 0.30 0.30
L2 Strength 0.01 0.01
Optimizer AdamW AdamW
Zero Redundancy Yes Yes
Scheduler CosineAnnealingWarmRestarts CosineAnnealingWarmRestarts
Scheduler: T_0 5 5
Scheduler: T_mult 1 1
Scheduler: eta_min 1e”7 1e” 7
Early Stop Validation F1 Score Validation F1 Score
N Iterations No Change 10 10
Dataset Merged (Dyn R1, Dyn R2, SST-3) Merged (Dyn R1, Dyn R2, SST-3)
Train Size 102,097 102,097
Train Label Distribution Neu: 49,148, Pos: 31,039, Neg: 21,910 Neu: 49,148, Pos: 31,039, Neg: 21,910
Validation Size 5,421 5,421
Validation Label Distribution Neu: 1,669, Pos: 1,884, Neg: 1,868 Neu: 1,669, Pos: 1,884, Neg: 1,868
Hosting Provider Lambda Labs Lambda Labs
GPU Type Tesla V100 A100
GPU Memory 16 GB 40 GB
GPU Quantity 8 8
Rate $4.40/hour $10.32/hour
Training Time (Up to Selected Epoch) 02:12:44 05:09:23
Training Time (Total) 03:09:40 09:23:29
Cost (Up to Selected Epoch) $9.73 $53.26
Cost (Total) $13.91 $96.92

30

¥8°67¢$ YTILTS LESETS 8C6¢$ 8C°6¢$ 8C°6¢$ 8C°6¢$ SIees 0991% 150D
SUS0) N1/ST$ SUNO) NT/STS SUOI INT/STS Sua¥0l NT/€$ SUO) N 1/€$ SUNO) NT/€$ SUO) NT/€$ SUO) INT/€$ SuSN0) INT/€$ ey
LSLE6TET 0CL'6¥0°T1 6¥8vESS LSLE6TET LSLE6TET LSL'E6TET LSL'E6TET 0TL6¥0°T1 6v8vESS SUSYOJ, paurel],
[474%\] 9¢01°0 ¥S01°0 6Cr10 6Cr10 6Cr10 6Cr10 PITT0 CIIT0 SSOT] UONePI[eA
SLOTO 0SIT0 S8IT°0 98¢C1°0 98¢CI1°0 98¢CI1°0 98¢CI1°0 €8¢1°0 0sCI0 SSOTT Ured],
I I I 1 I I 1 1 1 syoodyg
89 89 89 89 89 89 89 89 89 9ZIS yareqg
(44 (44 (44 (44 (44 (44 (474 (44 (44 Pa9§
0¢C 0¢C 0¢C 8’1 8’1 8’1 8’1 8’1 8’1 Jordnmn 91
6LV 10 ereri10 90:1¢:10 00:60:10 00:60:10 00:60:10 00:60:10 S0:LO' 10 LOLT'TO Quwil], qOf [e10],
€2-01-b20C e Sumunp-ouny
1P’ K449 1Ty’ K449 1Ty’ K44 ¥44Y K44 K44 9ZIS UOonepIeA
L60°201 L6001 L6001 L6001 L6001 L6001 L6001 L6001 L6001 9ZI§ urelq,
Pa31oIN Pa3IoIN PpasIoIN PasIoIN PaSIoIN PaSIoIN PasIoIN PasIoIN PpasIoIN jasereq
90-80 90-80 90-80 81-L0-¥20T 81-L0-¥C0T 81-L0-¥C0T 81-L0-¥20T 81-L0-¥20T 81-L0-¥2C0T
-£207-01-1d3 -£207-01-1d3 -$207-01-1d3 -Turw-o4,-3ds -Turw-o4,-3d3 -Tur-o4,-3d3 -Turw-o4,-3d3 -Turw-o4,-3d3 -Turw-o4,-3d3 1 [9POIA 22In0S
Ivuado Ivuado Ivuado Ivuado Ivuado Ivuado Ivuado Ivuado Ivuado 92IN0S
[°qeT (1dwoig oN) [°qeT [°qe] [°qe] [°qe] (idwoid oN)
+ 1dwoig A4Sa ydwoiq £4Sq NOSf +1woig £dSa +1dwoig AgSa +1dwoid 4dSg +1dwoig £4SA ydwoid £4SA NOSI JewIoq
[eqeT/m JRULIO [eqe/m [eqe1/m [eqe1/m [eqe1/m JeWLIO]
QuUN-ouL] suny-oury [ewTurj Qunp-oury Qunp-oury Qunp-oury Qunp-ourLy Quny-oury [ewIuIA Surueapy opo)
T1d 14 W-14 T1d T1d T1d T1d 14 N-1d 9poD
I 9Sre SUON SUON 1d osegq Id oseq I1d 9seg 1d eseg QUON QUON [°POIN VIIDA 1A
oy oy oy urnu-04, ur-o4, uru-o4, uru-o4, -0+, urw-oy, [SPOIN LdD
[98xe] T-Ld 1A N-1d G 93re] T-Ld [93xe] T-Ld G oseq T-1d [osed T-1d 14 N-1d
ot ot o TUTuI-0f, TUIuI-0 TUIu-0, TUIu-0f, TUIu-0, TUru-o, Sumyesg

uonemnSyuo)) suny-oury 4O 0] 9[qeL

s[reaq surum-duly ILdo D

31

D OpenAl Fine-tuning Templates

Table 11: FT-M: Minimal Template for Fine-tuning

Role Content

System “You are a model that classifies the sentiment of a review as either ‘positive’, ‘neutral’, or ‘negative’.”

User “Those 2 drinks are part of the HK culture and has years of history. It is so bad.”

Assistant “negative”

Table 12: FT: Prompt Template for Fine-tuning

Role Content

System “You are a sentiment analysis assistant.”

User “Classify the sentiment of a review as either ‘negative’, ‘neutral’, or ‘positive’.\n—\n\nFollow the
following format.\n\nReview: The review text to classify.\nClassification: One word representing
the sentiment classification: ‘negative’, ‘neutral’, or ‘positive’ (do not repeat the field name, do not
use ‘mixed’)\n\n—\n\nReview: Those 2 drinks are part of the HK culture and has years of history. It is
so bad.\nClassification:”

Assistant “negative”

Table 13: FT-L: Prompt with Predicted Label Template for Fine-tuning

Role Content

System “You are a sentiment analysis assistant.”

User “Classify the sentiment of a review as either ‘negative’, ‘neutral’, or ‘positive’.\n—\n\nFollow the
following format.\n\nReview: The review text to classify.\nClassifier Decision: The sentiment classi-
fication proposed by a model fine-tuned on sentiment.\nClassification: One word representing the
sentiment classification: ‘negative’, ‘neutral’, or ‘positive’ (do not repeat the field name, do not use
‘mixed’)\n\n—\n\nReview: Those 2 drinks are part of the HK culture and has years of history. It is so
bad.\nClassifier Decision: negative\nClassification:”

Assistant “negative”

32

E DSPy Prompt Signature Examples

Figure 5: Basic Prompt DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Review: The review text to classify.
Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’'positive
(do not repeat the field name, do not use ’‘mixed’).

’

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.
Classification:

Figure 6: Prompt with Predicted Label DSPy Signature

Classify the sentiment of a review as either ’'negative’, ’'neutral’, or ’positive’.

Follow the following format.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.
Classification: One word representing the sentiment classification: ’'negative’, ’'neutral’, or ’'positive’
(do not repeat the field name, do not use ’'mixed’)

Review: I was told by the repair company that was doing the car repair that fixing the rim was
"impossible" and to replace it.

Classifier Decision: negative

Classification:

33

Figure 7: Prompt with Probabilities DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Review: The review text to classify.

Negative Probability: Probability the review is negative from a model fine-tuned on sentiment
Neutral Probability: Probability the review is neutral from a model fine-tuned on sentiment
Positive Probability: Probability the review is positive from a model fine-tuned on sentiment

Classification: One word representing the sentiment classification: ’'negative’, ’'neutral’, or
(do not repeat the field name, do not use ’'mixed’)

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.
Negative Probability: 99.85%

Neutral Probability: 0.04%

Positive Probability: 0.12%

Classification:

'positive’

Figure 8: Prompt with Predicted Label and Probabilities DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.
Negative Probability: Probability the review is negative

Neutral Probability: Probability the review is neutral

Positive Probability: Probability the review is positive

Classification: One word representing the sentiment classification: ’'negative’, ’'neutral’, or
(do not repeat the field name, do not use ’'mixed’)

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.
Classifier Decision: negative

Negative Probability: 99.85%

Neutral Probability: 0.04%

Positive Probability: 0.12%

Classification:

'positive’

34

Figure 9: Top Examples DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Classification: One word representing the sentiment classification: ’'negative’, ’'neutral’, or ’positive’
(do not repeat the field name, do not use ’'mixed’)

Examples:

- negative: We’ve been to about 5 or 6 other Verizon stores in Vegas, and they all give us a hard time
about everything and never solve any issue.

— negative: Then Raj then had the balls to send me an email after my box was closed to tell me they were
ready to receive the key for my mailbox after closing it.!

- negative: Always and issue here even with take out orders.

- negative: SHOULD YOU HAVE ANY DISPUTE, THEY IMMEDIATELY WILL THREATEN YOU WITH MECHANICS LIENS.

- negative: We were waiting for them to get our order out, but the lady came out and gave the car behind
us their order first!

Review: I went back in to ask for cilantro dressing the shift leader even smile or greet me.
Classifier Decision: negative

Classification:

Figure 10: Balanced Examples DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’'positive’
(do not repeat the field name, do not use ’'mixed’)

Examples:

- negative: Beware of all the fake 5 star reviews of this place, Jjust take a look at these people.

- negative: 3- girls look even cheaper than the club.

— neutral: Not to mention the esso across the street also has cheaper gas.

- neutral: I wish that they would open up by 6am so that I can pick up a coffee or tea before work, but
what boba place is opened that early?

— positive: The plumbers did not give up and continued to work on the drain for two days.

— positive: This is my 6th gun to add to my collection and if I had not wanted it so bad, I would have
walked out 2 minutes after walking in.

Review: She greeted customers by holding the scanner toward them without even looking.
Classifier Decision: negative

Classification:

35

Figure 11: All Context DSPy Signature

Classify the sentiment of a review as either ’negative’, ’‘neutral’, or ’positive’.

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.
Negative Probability: Probability the review is negative

Neutral Probability: Probability the review is neutral

Positive Probability: Probability the review is positive

Classification: One word representing the sentiment classification: ’negative’, ’'neutral’, or ’'positive’
(do not repeat the field name, do not use ’'mixed’)

Examples:

- negative: The only negative I can think for this place is it’s price-point.

- positive: This place will be the death of my waist (but not my wallet).

- negative: Expensive, if you are looking for something more affordable, don’t go here; you will miss
the best dishes.

— positive: Thank you so much for dealing with my crabby ass

- positive: I think I scarfed it down so quickly because it was that good! It was bad.

Review: The gentleman staffing the bar seemed a bit gruff, but a good caffeine fix will help me forgive
even the orneriest grump.

Classifier Decision: negative
Negative Probability: 84.37%
Neutral Probability: 0.53%
Positive Probability: 15.10%

Classification:

36

