
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing (KnowledgeNLP’25), pages 152–159
May 3, 2025 ©2025 Association for Computational Linguistics

EKRAG: Benchmark RAG for Enterprise Knowledge Question Answering

Tan Yu∗, Wenfei Zhou*, Lei Yang, Aaditya Shukla, Meenakshi Madugula, Pritam Gundecha
Nick Burnett, Anbang Xu, Vishal Seth, Tamar Bar, Rama Akkiraju ,Vivienne Zhang

NVIDIA
Santa Clara, California, USA

Abstract

Retrieval-augmented generation (RAG) offers
a robust solution for developing enterprise in-
ternal virtual assistants by leveraging domain-
specific knowledge and utilizing information
from frequently updated corporate document
repositories. In this work, we introduce the
Enterprise-Knowledge RAG (EKRAG) dataset
to benchmark RAG for enterprise knowledge
question-answering (QA) across a diverse
range of corporate documents, such as prod-
uct releases, technical blogs, and financial re-
ports. Using EKRAG, we systematically evalu-
ate various retrieval models and strategies tai-
lored for corporate content. We propose novel
embedding-model (EM)-as-judge and ranking-
model (RM)-as-judge approaches to assess an-
swer quality in the context of enterprise in-
formation. Combining these with the exist-
ing LLM-as-judge method, we then compre-
hensively evaluate the correctness, relevance,
and faithfulness of generated answers to corpo-
rate queries. Our extensive experiments shed
light on optimizing RAG pipelines for enter-
prise knowledge QA, providing valuable guid-
ance for practitioners. This work contributes to
enhancing information retrieval and question-
answering capabilities in corporate environ-
ments that demand high degrees of factuality
and context awareness.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable zero-shot reasoning capabilities
(Brown et al., 2020; Achiam et al., 2023). How-
ever, their static knowledge base, acquired during
pre-training, poses significant challenges in gen-
erating factual, timely, and salient responses to
ambiguous and complex queries, particularly in
corporate environments. This limitation is critical
in enterprise settings, where accuracy and up-to-
date information are paramount for a functional

*Equal contribution.

product. Inaccurate or outdated responses to time-
sensitive queries not only erode user trust but can
render AI-assisted tools impractical. For instance,
using obsolete data to answer financial queries like
"What was the company’s last quarter revenue?"
could lead to misinformed decision-making, if not
panic in the stock market, even if the information
was accurate once upon a time.

Retrieval-augmented generation (RAG) (Guu
et al., 2020; Lewis et al., 2020) emerges as a promis-
ing solution, integrating external knowledge from
domain-specific corpora to potentially generate up-
to-date, factually correct answers. It is particularly
suited for corporate internal chatbots, facilitating
employees and external investors access to cur-
rent company policies, procedures, and knowledge
across public facing corporate documents.

Despite its advantages, RAG presents unique
evaluation challenges compared to standalone
LLMs. Their answer quality depends not only on
the LLM’s pre-trained knowledge and reasoning
capabilities but also on the relevance of retrieved
context and the model’s ability to integrate and syn-
thesize information. While recent works (Adlakha
et al., 2023; Chen et al., 2024b; Gao et al., 2023;
Es et al., 2023; Xiong et al., 2024) have evaluated
RAG systems in general domains, assessing both
answer correctness and alignment with retrieved
context, the evaluation of RAG in enterprise knowl-
edge applications remains largely unexplored.

To address this gap, we introduce the Enterprise-
Knowledge RAG (EKRAG) dataset, comprising
1,347 manually curated questions, designed to sys-
tematically evaluate the influence of each RAG
component on enterprise knowledge question-
answering over five core question types in multi-
hop settings. Using this benchmark, our extensive
evaluations of various retrieval models and strate-
gies reveal that well-known techniques like HYDE
and hybrid search do not significantly improve
enterprise knowledge retrieval accuracy, while

152

some straightforward mechanisms such as multi-
embedding vector achieve excellent performance.

Furthermore, we propose novel evaluation
methodologies: embedding-model-as-judge and
ranking-model-as-judge approaches, complement-
ing the prevailing LLM-as-judge technique. Our
comprehensive investigation provides insights into
optimizing RAG pipelines for enterprise knowl-
edge systems, offering a nuanced understanding
of answer quality that could lead to more robust
and reliable RAG implementations in real-world
corporate applications.

2 Related Work
Adlakha, BehnamGhader, Lu, Meade, and Reddy
(2023) utilizes the existing QA datasets and eval-
uates the answer quality of RAG along the dimen-
sions of correctness and faithfulness. To be specific,
the correctness dimension reveals the relevance be-
tween the response and the ground-truth answer.
On the other hand, faithfulness measures the rel-
evance between the answer and the retrieved con-
text to evaluate model’s capability to ground the
retrieved context. RGB (Chen et al., 2024b) evalu-
ates RAG from four aspects including noise robust-
ness, negative rejection, information integration,
and counterfactual robustness. ALCE (Gao et al.,
2023) proposes evaluation metrics of RAG along
three dimensions including fluency, correctness,
and citation quality. RAGAS (Es et al., 2023) de-
velops an automated evaluation pipeline by prompt-
ing LLMs and evaluate RAG from the dimensions
of faithfulness, answer relevance and context rele-
vance. MIRAGE (Xiong et al., 2024) benchmarks
different RAG solutions in the field of medicine
and ablates the influence of each component on the
overall answer quality from a multi-dimensional
perspective. CRAG (Yang et al., 2024) proposes
a comprehensive RAG benchmark consisting of
questions across five domains and eight categories.

3 Enterprise-Knowledge RAG Dataset
3.1 Overview
The Enterprise-Knowledge RAG (EKRAG) dataset
(v.1) is an expert-curated, comprehensive evalu-
ation resource for Retrieval-Augmented Genera-
tion (RAG) systems operating on corporate doc-
uments. Developed by Corporate’s IT and data
teams, EKRAG serves as a benchmark for assess-
ing agentic RAG systems, particularly those requir-
ing a high degree of factuality in reporting corpo-
rate financial performance and product information.

Key features of EKRAG include:

1. Composition: 1,348 human curated data
points, each consisting of a query, relevant
context chunk(s), referenced document, and
ground truth answer, complemented by asso-
ciated metadata. These are derived from a di-
verse corpus of 5,000 documents, encompass-
ing Corporate technical blogs, news releases,
SEC filings, and leadership communications.

2. Manual Curation: Annotations are provided
by a team of 14 human experts with back-
grounds in business and finance, ensuring
high-quality, domain-specific data points that
reflect real-world complexity and nuance.

3. Comprehensive Task Coverage: The dataset
facilitates evaluation across five core tasks of
varying complexities:

• Extractive Question Answering
• Abstractive Question Answering
• Summarization
• Financial Numerical Reasoning
• No Answer Questions

Each task type encompasses questions of
varying complexities, characterized by 1)
modality utilization (text, tables, or both),
2) intra-document reasoning (synthesizing
information from non-contiguous chunks),
and 3) inter-document reasoning (integrat-
ing information across multiple documents).
These multi-hop tasks simulate real-world,
enterprise-level scenarios, evaluating both the
RAG retriever’s ability to fetch complex in-
formation from diverse sources and the gen-
erator’s capacity to synthesize coherent re-
sponses from retrieved chunks. This design
assesses the system’s end-to-end capability in
handling practical information retrieval and
integration problems in a corporate setting.

3.2 Annotation Methodology
3.2.1 Data Sourcing
Reference Documents: The EKRAG dataset is
derived from 5,000 publicly available Corporate
documents, including web pages, earnings call tran-
scripts, and SEC reports in PDF, HTML, .docx,
and .txt formats. These documents are categorized
into four main groups: Corporate News and Blogs,
Corporate Technical Blogs, leadership communi-
cations (including public fireside chats), and SEC

153

10-K and 8-K filings. The current v.1 of the dataset
utilizes only the Corporate News and Blogs and
Corporate Technical Blogs categories.

Queries: To ensure real-world relevance, we ana-
lyzed approximately 200 queries made by corpo-
rate finance analysts during the initial release of
the chatbot. These queries were rigorously catego-
rized to create a comprehensive taxonomy, which
formed the basis for the annotation guidelines. This
approach ensured alignment between annotators’
efforts and real-world use cases.

3.2.2 Data Preprocessing

To facilitate human annotation, the corpus under-
went a thorough cleaning process. Using the Beau-
tiful Soup package, the team extracted crucial meta-
data (e.g., publication dates and titles) from HTML
and PDF files while removing extraneous content
such as CSS. Rigorous filtering criteria were ap-
plied, resulting in 3, 620 high-quality documents
suitable for annotation.

For multi-document annotations, the team em-
ployed topic modeling and preprocessing tech-
niques to group similar documents together, result-
ing in clusters of 1-4 topically related documents.

Throughout the annotation process, the annota-
tors provided active feedback. They were given the
option to skip document groupings that are 1) low-
quality; 2) impossible to derive coherent queries.
The annotation process is described in Appendix B.

4 RAG Pipeline
4.1 Indexing

We denote the cropped chunks by {ci}Ni=1 where
N denotes the number of chunks. For each chunk,
the embedding vector is extracted by

ci = femb(ci), (1)

where femb(·) denotes the embedding model.
Since the embedding of chunks are independent
to the query, a retrieval system normally pre-
computes chunk embedding vectors {ci}Ni=1. In the
retrieval phase, we just need compute the query’s
embedding online and compare it with the pre-
computed chunk embedding vectors to retrieve the
most relevant chunks. When N is large, to speed
up the retrieval, approximated nearest neighbor
(ANN) search methods such as Hashing, Product
Quatization, and HNSW are used in indexing.

4.2 Embedding Models

Dense Embedding. Trationally, the dense embed-
ding model adapts a bi-encoder Transformer ar-
chitecture (Reimers and Gurevych, 2019). To be
specific, the query encoder maps the textual query
into the query embedding:

q = bi-encquery(q). (2)

In parallel, the doc encoder maps a text chunk into
the chunk embedding:

c = bi-encdoc(c). (3)

The relevance between the query and the chunk is
measured by the distance/similarity between the
query embedding q and the chunk embedding c.
Recently, with the emergence of LLM, ecoder-
based embedding models (Lee et al., 2024) are
obtained by fine-tuning immediate output of LLM,
achieving promising performance in retrieval.
Sparse Embedding often represents the occur-
rence or statistics of specific features (e.g., words or
n-grams). It was widely used in traditional informa-
tion retrieval and text classification. Traditionally,
TF-IDF (Ramos et al., 2003) and BM25 (Robert-
son et al., 1995) are widely used term-weighting
sparse embedding methods. Recently, some works
such as SPLADE (Formal et al., 2021) and BGE-
M3 (Chen et al., 2024a) utilize foundational BERT
architecture to generate sparse embedding vectors.

4.3 Retrieval.

Hybrid search is a widely used strategy for RAG
applications (Finardi et al., 2024). It conducts
dense retrieval and the sparse retrieval simultane-
ously. To be specfic, given a query q, we retrieve t
most relevant queries based on dense embedding:

[ci1 , · · · , cit] = dense(q, {ci}ti=1). (4)

In parallel, another t most relevant queries are re-
trieved based on sparse embedding:

[cj1 , · · · , cjt] = sparse(q, {ci}ti=1). (5)

Then 2t retrieved chunks from both sparse and
dense retrieval are de-duplicated and re-ranked by
a ranking model, and top s ranked chunks are as
the context for LLM to generate the answer:

[ck1 , · · · , cks] = rerank({cil}tl=1, {cjl}tl=1) (6)

154

Embedding Model Recall@1 Recall@3 Recall@5 Recall@10
BM25 (Robertson et al., 1995) 0.004 0.010 0.023 0.074

NV-QA (Verma et al.) 0.277 0.540 0.651 0.752
Arctic-L (Merrick et al., 2024) 0.313 0.552 0.660 0.786

NV-EMB (Lee et al., 2024) 0.360 0.618 0.742 0.839

Table 1: The evaluation of the embedding models.

NV-QA Arctic-L NV-EMB Recall@1 Recall@3 Recall@5 Recall@10D 0.360 0.618 0.742 0.839D D 0.325 0.590 0.697 0.808D D 0.350 0.640 0.746 0.858D D 0.358 0.639 0.751 0.863D D D 0.348 0.648 0.748 0.857

Table 2: The results from combining multiple embedding models.

4.4 Reranking

Cross-encoder. In the reranking phase, we nor-
mally takes a cross-encoder architecture. Different
from bi-encoder model used in embedding model,
cross-encoder takes a query-chunk pair (q, cki) as
the input and output a relevance score:

ri = cross-enc(q, cki). (7)

Chunks {cki}si=1 are sorted by relevance scores.
Detailed discussions on the cross-encoder and bi-
encoder are in Appendix A.

4.5 Answer Generation

We fill the query and the chunks {cki}si=1 from
reranking into the prompt template and feed the
prompt into a LLM to generate answer.

5 Benchmark on Retrieval

Metrics. There are multiple metrics to evaluate the
retrieval such as mAP, Precision@K, Recall@K,
NDCG. In RAG scenarios, Recall@K is the most
cruial metric, which reveals the coverage of rele-
vant information in the retrieved chunks. Thus, by
default, we use Recall@K as the evaluation metric.

5.1 Ablation on Embedding Models

Ablation on embedding models. We compare 4
models, including BM25 (Robertson et al., 1995),
NV-QA (Verma et al.), Arctic-L (Merrick et al.,
2024) and NV-EMB (Lee et al., 2024). NV-EMB is
a decoder-only large language model (LLM)-based
embedding model. Compared with BERT-based
models, it achieves significantly higher accuracy
on public benchmarks but takes much high com-
putational cost. As shown in Table 1, NV-EMB
significantly outperforms other embedding models.

Multi-embedding vector. To make use of multi-
ple embedding model simultaneously, a straight-
forward method is to concatenate the embedding
vectors from multiple models into a long vector,
which we term as multi-embedding vector. For
example, we denote the query/chunk embedding
from the first embedding model by q1/c1 and that
from the second embedding model by q2/c2. We
normalize and concatenate the query/chunk embed-
ding vectors into a multi-embedding vector:

q̄ =
[
α1

q1

∥q1∥2
, α2

q2

∥q2∥2
]
,

c̄ =
[
α1

c1
∥c1∥2

, α2
c2

∥c2∥2
]
,

(8)

where α1 and α2 are pre-defined constants to
weight the contributions of each embedding vector.
By default, we set α1 = α2 = 1. Emperically, we
could assign a higher weight to a better embedding.
The relevance between the query and the chunk is
computed by the dot product between q̄ and c̄:

r(q, c) = ⟨q̄, c̄⟩ = α2
1cos(q1, c1) + α2

2cos(q2, c2). (9)

We evaluate multi-embedding vectors in Table 2.
As shown, multi-embedding vector using Arctic-L
and NV-EMB achieves the highest recall@5. By
default, we use this setting for embedding.
Hybrid Search. In Table 4, we compare the
hybrid search with methods using solely dense-
embedding. To be specific, dense-based method
adopts a multi-embedding settings using both NV-
EMB and Archtic-L. As shown, hybrid search
does not bring considerable improvement for re-
call. Thus, by default, we exclude hybrid search.

5.2 Retrieval boosting strategies
Average query expansion (AQE) (Carpineto and
Romano, 2012) refines the query embedding by

155

LLM for HYDE Recall@1 Recall@3 Recall@5 Recall@10
w/o 0.360 0.618 0.742 0.839

Mistal-7B (Jiang et al., 2023) 0.358 0.625 0.736 0.836
Llama3-8B (AI@Meta, 2024) 0.358 0.621 0.737 0.830

Gemma2-7B (Team, 2024) 0.351 0.621 0.737 0.838
Llama3-70B (AI@Meta, 2024) 0.361 0.624 0.740 0.842

Mixtral-8x7B (Jiang et al., 2024) 0.351 0.621 0.742 0.836
Mixtral-8x22B (Mistral AI team, 2024) 0.358 0.629 0.740 0.838

Table 3: The evaluation of the HYDE.

Recall@1 Recall@3 Recall@5
Dense 0.403 0.688 0.707
Hybrid 0.404 0.687 0.707

Table 4: Evaluation on hybrid search.

n 0 1 2 3 4
NV-QA 0.651 0.660 0.647 0.652 0.662
Arctic-L 0.660 0.689 0.667 0.663 0.652
NV-EMB 0.742 0.725 0.716 0.721 0.731

Table 5: The influence of average query expansion.

the embeddings from the top-retrieved chunks. To
be speicifc, we denote the original query embed-
ding by q and the embeddings for the retrieved top
n chunks as {ci}ni=1. AQE generates the revised
query embedding by suming up the original query
embedding with each chunk embedding ci:

q̂ =
q+

∑n
i=1(ci)

n+ 1
(10)

We evaluate the influence of AQE on the retrieval
Recall@5. As shown in Table 5, when we set
n = 1, AQE consistently improves Recall@5 for
NV-QA and Arctic-L embedding models, but it
drops Recall@5 for the NV-EMB. Considering the
computation cost, we do not use AQE, by default.
HYDE (Gao et al., 2022) utilizes the LLM’s knol-
wedge to generate a hypothetical document d =
LLM(q) for the query q. Then the embedding
model encodes document d into the embedding
vector d = femb(d). The refined query embedding
q̂ is obtained by summing up q and d:

q̂ = αq+ (1− α)d, (11)

where α is a pre-defined positive constant (α ∈
[0, 1]) controlling the contribution from each
component. We explore multiple open-source
LLMs including Mistal-7B (Jiang et al., 2023),
Llama3-8B (AI@Meta, 2024), Gemma2-7B (Team,
2024), Llama3-70B (AI@Meta, 2024), Mixtral-
8x7B (Jiang et al., 2024) and Mixtral-8x22B (Mis-
tral AI team, 2024) to generate the hypothetical
document. As shown in Table 3, HYDE could not
consistently improve the recall. Thus, we exclude
HYDE in retrieval pipeline.

5.3 Reranking
By default, we use QA-Mistral-4B(NVIDIA AI,
2024) for reranking. As shown in Table 6, the
reranking model consistently and significantly im-
proves the recall of all embedding models. There-
fore, we use rerakning model in default settings.

6 Benchmark on Answer Generation

6.1 Metrics
Correctness measures the alignment between the
generated answer and the ground-truth answer.
Relevance quantizes the relevance between the gen-
erated answer and the ground-truth context.
Faithfulness measures the relevance between the
retrieved context and generated answer.
We design three types of judge mechanisms includ-
ing embedding-model-as-judge, ranking-model-as-
judge and LLM-as-judge.

6.2 Embedding-model-as-judge
We denote the embedding of the ground-truth an-
swer by ag, that of answer generated from RAG
by ar, the embedding of the ground-truth con-
text by cg and that of the retrieved context by cr.
When using embedding model as judge, correct-
ness/relevance/faithfulness is measured by the co-
sine similarity between embeddings:

Cemb =
⟨ar,ag⟩

∥ar∥2∥ag∥2
,

Remb =
⟨ar, cg⟩

∥ar∥2∥cg∥2
,

Remb =
⟨ar, cr⟩

∥ar∥2∥cr∥2
.

(12)

6.3 Ranking-model-as-judge
We denote the labeled groundtruth answer by ag,
the answer generated from RAG by ar, the ground-
truth context by cg and the embedding of the re-
trieved context by cr. We denote the cross(x, y)
as the cross-encoder model maps a pair of texts
(x, y) into a relevance score s ∈ [−∞,+∞]. The
higher score means that x is more relevant with

156

Rerank NV-QA Arctic-L NV-EMB Arctic-L + NV-EMB
Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5

w/o 0.277 0.651 0.313 0.552 0.360 0.742 0.358 0.751
QA-Mistral-4B 0.389 0.757 0.391 0.767 0.401 0.782 0.403 0.787

Table 6: The influence of ranking model.

Models Embedding-model-as-judge Ranking-model-as-judge LLM-as-judge
Corre. Relev. Faith. Corre. Relev. Faith. Corre. Relev. Faith.

Mistral-7B 0.789 0.747 0.707 0.891 0.693 0.668 0.925 0.894 0.977
Llama3-8B 0.779 0.744 0.724 0.880 0.691 0.692 0.945 0.915 0.976

Mixtral-8x7B 0.792 0.738 0.691 0.891 0.684 0.651 0.913 0.875 0.963
Mixtral-8x22B 0.769 0.760 0.742 0.885 0.698 0.674 0.939 0.912 0.977
Llama3-70B 0.793 0.739 0.694 0.894 0.693 0.695 0.944 0.915 0.978

Table 7: The evaluation results on the generated answers from multiple open-source LLMs.

y. To normalize the score to the range [0, 1], we
process the relevance score by a sigmoid func-
tion: ŝ = sigmoid(s). We define the correct-
ness/relevance/faithfullness as below:

Crank = sigmoid(cross(ar, ag)),

Rrank = sigmoid(cross(ar, cg)),

Frank = sigmoid(cross(ar, cr)).

(13)

6.4 LLM-as-judge
We design the prompt templates for correctness,
relevance and faithfulness, respectively. Given the
query q, ground-truth answer ag, answer generated
from RAG ar, ground-truth context by cg, retrieved
context by cr, we fill them into the pre-defined
templates, which is further feed into an LLM:

CLLM =LLM(TemplateC(q, ar, ag))

RLLM =LLM(TemplateR(q, ar, cg))

FLLM =LLM(TemplateF(q, ar, cr)).

(14)

Since LLM is not good at evaluating outputs in
continuous range, we prompt the LLM to output
a integer score within [1, L] and divide the integer
score by L to normalize it. By default, we use
Mistral-Large as the judge.

6.5 Experimental results

Ablation on LLMs for answer generation. We
evaluate the generation capabilities across a spec-
trum of Large Language Models (LLMs). The
assessment includes smaller-scale models such as
Mistral-7B and Llama3-8B, as well as larger-scale
models including Mixtral-8x7B, Mixtral-8x22B,
and Llama3-70B. The comparative results, pre-
sented in Table 7, reveal that the larger-scale mod-
els do not demonstrate a substantial performance
advantage over their smaller counterparts in this
specific task. Given these findings, and taking into
account computational efficiency, we have opted to

chunks 0 1 3 5 10
EM-as-J 0.717 0.764 0.777 0.779 0.775
RM-as-J 0.772 0.861 0.879 0.880 0.876

LLM-as-J 0.630 0.902 0.940 0.945 0.945

Table 8: Impact of the count of chunks on correctness.

utilize Llama3-8B as our default model for answer
generation. This choice represents an optimal bal-
ance between performance and resource utilization
in our experimental framework.
Influence of the retrieved chunks. Table 8 illus-
trates the impact of the number of retrieved docu-
ments on answer correctness. The results demon-
strate that the absence of retrieved chunks signifi-
cantly diminishes answer correctness compared to
scenarios where chunks are utilized, thus validat-
ing the efficacy of RAG over standalone LLMs. As
the number of retrieved chunks increases from 1
to 5, we observe a consistent improvement in an-
swer accuracy. However, this trend plateaus and
potentially reverses when the number of chunks
increases from 5 to 10. This phenomenon can be
attributed to the introduction of extraneous infor-
mation as the chunk count rises, which may im-
pede the generation of accurate responses. These
findings suggest an optimal retrieval window that
balances comprehensive context with focused rel-
evance, highlighting the importance of judicious
document retrieval in RAG systems.

7 Conclusion
Our comprehensive study on Retrieval-Augmented
Generation (RAG) for enterprise knowledge
question-answering has yielded several significant
insights. Through the creation and utilization of
the EKRAG dataset, comprising 3200 manually
curated questions, we have conducted an exten-
sive evaluation of various components within the
RAG pipeline. The insights gained from this study
have broad implications for the optimization of
RAG pipelines in enterprise knowledge manage-
ment systems. By shedding light on the effective-

157

ness of various retrieval strategies and introducing
new evaluation paradigms, our work contributes
to the ongoing refinement of question-answering
systems tailored to enterprise needs.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han
Lu, Nicholas Meade, and Siva Reddy. 2023. Eval-
uating correctness and faithfulness of instruction-
following models for question answering. arXiv
preprint arXiv:2307.16877.

AI@Meta. 2024. Llama 3 model card.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Claudio Carpineto and Giovanni Romano. 2012. A
survey of automatic query expansion in information
retrieval. Acm Computing Surveys (CSUR), 44(1):1–
50.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
arXiv preprint arXiv:2402.03216.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024b. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754–17762.

Shahul Es, Jithin James, Luis Espinosa-Anke, and
Steven Schockaert. 2023. Ragas: Automated eval-
uation of retrieval augmented generation. arXiv
preprint arXiv:2309.15217.

Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pe-
dro Gengo, Celio Larcher, Marcos Piau, Pablo Costa,
and Vinicius Caridá. 2024. The chronicles of rag:
The retriever, the chunk and the generator. arXiv
preprint arXiv:2401.07883.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. Splade: Sparse lexical and expan-
sion model for first stage ranking. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2288–2292.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. In Empirical Methods in Natural
Language Processing (EMNLP).

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel
Campos. 2024. Arctic-embed: Scalable, efficient,
and accurate text embedding models. arXiv preprint
arXiv:2405.05374.

Mistral AI team. 2024. Mixtral8x22b.

NVIDIA AI. 2024. Rerank-QA-Mistral-4B.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of the
first instructional conference on machine learning,
volume 242, pages 29–48. Citeseer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Gemma Team. 2024. Gemma.

158

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://mistral.ai/news/mixtral-8x22b/
https://build.nvidia.com/nvidia/rerank-qa-mistral-4b/modelcard
https://doi.org/10.34740/KAGGLE/M/3301

Shashank Verma, Vinh Nguyen, Nguyen Lee, Nave
Algarici, Gabriel Moreira, Ronay AK, Caroline Got-
tlieb, Benedikt Schifferer, and Wei Ping. Build En-
terprise Retrieval-Augmented Generation Apps with
NVIDIA Retrieval QA Embedding Model.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and
Aidong Zhang. 2024. Benchmarking retrieval-
augmented generation for medicine. arXiv preprint
arXiv:2402.13178.

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla,
Xiangsen Chen, Sajal Choudhary, Rongze Daniel
Gui, Ziran Will Jiang, Ziyu Jiang, et al. 2024.
Crag–comprehensive rag benchmark. arXiv preprint
arXiv:2406.04744.

A Bi-encoder versus Cross-encoder

Bi-encoders individually encodes each input (e.g.,
a query or a document) into dense embeddings.
Bi-encoders are scalable because the embeddings
for inputs can be pre-computed and stored. This
allows for efficient retrieval from large datasets us-
ing approximate nearest neighbor (ANN) search
techniques. Cross-encoder jointly encodes a query
and a document by concatenating them and feeding
the concatenated sequence through a single model.
It allows the model to directly capture the interac-
tions between the inputs. Cross-encoder normally
achieves higher retrieval accuracy. Nevertheless,
cross-encoder is computationally expensive since it
could not pre-compute embeddings like bi-encoder.
This limitation forbids its application in large-scale
retrieval scenarios. Therefore, cross-encoder is
only applied in re-ranking tens of candidates re-
trieved based on embedding models.

B Annotation Process

The annotation was conducted using the LabelStu-
dio platform by a team of 14 experienced annota-
tors with professional backgrounds in business and
finance. The process occurred in two phases:

• Retrieval Annotation: Annotators were pre-
sented with individual or grouped documents
and tasked with formulating queries and se-
lecting relevant context(s) that answered these
queries.

• Generator Evaluation: A different set
of annotators reviewed the query-context
pairs along with multiple LLM-generated an-
swers (using GPT-4, Claude 3.5, and Mixtral
7x22B). These LLM outputs served as guide-
lines for the annotators in creating the final
ground truth answers.

Each annotation underwent rigorous vetting by
a lead annotator and a data team lead to ensure
adherence to guidelines and maintain quality.

159

