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Abstract

To help alleviate the pressures felt by care work-
ers, we have begun new research into improv-
ing the efficiency of care plan management by
advancing recent developments in automatic
speech recognition. Our novel approach adapts
off-the-shelf tools in a purpose-built application
for the speech domain, addressing challenges
of accent adaption, real-time processing and
speech hallucinations. We augment the speech-
recognition scope of Open Al’s Whisper model
through fine-tuning, reducing word error rates
(WERs) from 16.8 to 1.0 on a range of British
dialects. Addressing the speech-hallucination
side effect of adapting to real-time recognition
by enforcing a signal-to-noise ratio threshold
and audio stream checks, we achieve a WER
of 5.1, compared to 14.9 with Whisper’s orig-
inal model. These ongoing research efforts
tackle challenges that are necessary to build the
speech-control basis for a custom smart speaker
system that is both accurate and timely.

1 Introduction

Health and social care is one of the last major in-
dustries to undergo the digital transformation to
improve management of information and connectiv-
ity (Glaser and Shaw, 2022; Konopik and Blunck,
2023). Reasons include challenges relating to data
privacy, tech-literacy and scalability in a highly
heterogenuous domain (Aceto et al., 2020). Trans-
formation towards Healthcare 4.0 is helped by inte-
grating new artificial intelligence technologies into
purpose-built smart devices (Wehde, 2019).

Yen et al. (2018) find that, even with the imple-
mentation of real-time electronic record manage-
ment, healthcare administrators spend a quarter of
their time on documentation and, due to typing dis-
tractions, information is missed. Combined with

the job-demanding stresses that care workers expe-
rience (Wilberforce et al., 2012) it is clear that there
is a need for simplified health care record manage-
ment to help reduce the burden. This would further
benefit those cared for as care resources become
more optimised. One way to achieve a quicker,
more efficient approach to care record management
that is both complete and accurate is through au-
tomatic speech recognition (ASR, Ajami, 2016;
Alharbi et al., 2021; Malik et al., 2021).

In this paper we focus on recognition of spo-
ken English in the UK. However, typical off-the-
shelf ASR models are often trained primarily on
American-accented datasets (Vergyri et al., 2010;
Mathur et al., 2020) and health and care in the UK
is a diverse industry. This includes variations in
dialects across the British Isles (MacKenzie et al.,
2022), as well as foreign accents from care workers
who originate from places such as Eastern Europe,
Nigeria, and South Asia, amongst others'. Com-
mercial smart speakers, such as Amazon’s Alexa,
showcase the potential of real-time ASR in a gen-
eral home assistant setting (Hoy, 2018), and have
been used in previous studies to improve well-being
in social care (Edwards et al., 2021). However, to
the best of our knowledge there is currently no
device whose primary function is a smart adminis-
trative assistant for health and care workers.

Hence, we have set out to develop a custom-built
speaker, starting with new research into the funda-
mental ASR basis. This paper introduces a novel
approach and makes the following key contribu-
tions:

]https://www.skillsforcare.org.uk/
Adult-Social-Care-Workforce-Data/
Workforce-intelligence/publications/Topics/

Workforce-nationality-and-international-recruitment.

aspx
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* Fine-tuning an ASR model for greater scope
of accent recognition

* Adapting the model and adding voice com-
mands to a real-time recognition pipeline

* Audio processing methods to prevent speech
hallucinations caused by background noise
and predictive text

2 Smart Speaker Design

We began with a review into different accessible
ASR models. In the context of finding the best-
suited framework to build and adapt our custom sys-
tem around, our initial testing of models included
wav2vec 2.0 (Baevski et al., 2020) and VOSK? with
the Kaldi toolkit®. Ultimately, we decided to utilise
Open AI's Whisper (Radford et al., 2023) model,
due to its free, open license, ongoing development
in state-of-the-art ASR and ease of adapting to our
own needs with Python.

Rather than use an established smart speaker, we
develop our own hardware” to, first, keep the solu-
tion cost-effective for customers in the care sector,
who might not need or want a full-fledged com-
mercial system, and second, to keep full control
of confidentially sensitive data. While the device
itself can run most of the required data manage-
ment functionality, speech inference runs on a GPU
cloud-server. We use sound cues to give audio feed-
back to the user to confirm that voice commands
are understood and functions are carried out.

3 Accent Adaption

Despite Whisper’s extensive training, we find that it
struggles to generalise to a broad variety of British
as well as other foreign accents found in the care
sector. Graham and Roll (2024) find a similar bias
towards North American over other British accents.

We start by adapting Whisper to better recog-
nise the variations in six different British ac-
cents: ‘Southern’, ‘Northern’, ‘Midlands’, ‘Scot-
tish’, “Welsh’, ‘Irish’ from the OpenSLR5 dataset
of ~30 hours of spoken English (Demirsahin et al.,
2020). With this dataset, we fine-tune Whisper’s
medium.en model, which balances speed with ac-
curacy, and is the largest model that we can enforce
with English-only recognition; the larger models

2https://alphacephei.com/vosk/

3https://gi’chub.com/kaldi—asr/kaldi

“We use a Raspberry Pi (Model 4), 8GB RAM, GPIO
speaker & USB speaker, USB microphone, one-button ‘key-
board’ and touchscreen.

Shttps://www.openslr.org/83/

would occasionally incorrectly recognise speech
as a different language and attempt to translate.
Furthermore, the large model requires twice the
VRAM but offers diminishing returns in perfor-
mance (Radford et al., 2023) and we do not require
the additional feature of multi-language ASR.

Our fine-tuning® is done with 95% of the data,
with the remainder used for validation. By observ-
ing the evolution of the word error rate (WER)” and
validation loss through training, we find that the
model begins to plateau half an epoch in and con-
verges in approximately two training epochs, be-
yond which the model begins to overfit the dataset.
Training for 3,072 steps (batch size 16 and evalua-
tion every 256 steps), we achieve a minimum WER
of 1.0 at step 2,048, where validation loss is also
minimised®. This checkpoint defines the fine-tuned
model uesd in this study. Table 1 shows the im-
provement in WERSs per accent through fine-tuning.
Recognition of all accents surpasses human-level
transcription (Amodei et al., 2016; Stolcke and
Droppo, 2017; Lippmann, 1997).

4 Dealing with Hallucinations

Off-the-shelf, Whisper requires an audio file up-
loaded manually in a controlled process. Adapt-
ing Whisper to a real-time pipeline presented an
unexpected challenge: hallucinations in ASR are
defined as ‘recognised’ text that arises completely
independently from what is spoken. While not
limited to real-time ASR (Dolev et al., 2024), the
phenomenon becomes more apparent in this adap-
tion. Hallucinations are not simply mis-recognised
words or phrases, but recognition in the absence
of speech. These need to be prevented as hallu-
cinated text, while often common words/phrases,
e.g. “Thank you”, “Yes”, can be unexpected or
even harmful (Koenecke et al., 2024). Without au-
tomatic mitigation, hallucinations may cause con-
fusion in care records and require additional work
to fix, resulting in the opposite of what we aim to
achieve with our smart speaker. We find two causes
of hallucination in our setting, as detailed below.

*We follow a similar method to https://huggingface.
co/blog/fine-tune-whisper, adapted to our dataset.

"We use the WER implementation from https://
huggingface.co/spaces/evaluate-metric/wer

$Model fine-tuning was done using Viper (https://hpc.
wordpress.hull.ac.uk/), taking approximately 70 hours to
optimise.
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WER before  WER after Number of
Accent . .
fine-tuning  fine-tuning test samples
‘Southern’ 16.8 0.9 451
‘Midlands’ 13.9 1.3 25
‘Northern’ 16.3 0.9 158
“Welsh’ 16.4 1.2 148
‘Scottish’ 17.9 1.4 93
‘Irish’ 21.0 2.7 19
Weighted 16.8 1.0
average

Table 1: WERs for Whisper before and after fine-tuning with the OpenSLR dataset. WER scores are rounded as
higher precision is not meaningful with these sample sizes. Averages are weighted as proportions of each accent in
the test data differ, shown by the number of test samples. True WER scores (maximum precision) were included in
calculation of averages, that are then rounded at the end. Class imbalance is due to random sampling and reflects the

number of volunteers for each accent during creation of the original dataset.

4.1 Recognising Background Noise

The first cause is due to continually monitoring
with a microphone. If audio input, regardless of
its nature, is automatically passed to Whisper, the
model will try to process it into text, even if noth-
ing has been spoken. In this case, Whisper tries to
recognise speech from effective silence, i.e. back-
ground noise, and results in speech hallucinations.

The dynamic energy threshold® we employ for
microphone input is not sufficient in separating
clear speech from background noise. Hence, we
apply a check in each processing loop before pass-
ing the queued audio data to the ASR (Figure 1).
A signal-to-noise ratio (SNR) threshold is defined
during initialisation and we choose SNR = 50,
determined empirically by testing in different en-
vironments, e.g. quiet room at home, noisy office.
Then, for each audio loop, the SNR is calculated as

_ Signal Power 0%

Initialise H Loop audio |
stream |

SNR >
threshold
?

Retrieve data

Listen for
trigger words

Add to
transcript

Figure 1: Flow chart of the speaker pipeline. After set up
(yellow) and starting the audio loop (green), functions
(purple) are evoked via voice commands (blue).

4.2 Record Timeout

LLMs such as Whisper are typically trained on se-
quences of words (Sutskever et al., 2014; Radford
et al., 2023). Therefore, when an initial word is
passed to a trained model, it will anticipate the next

SNR = — = =5, () :
Noise Power oy word/s, based on common sequences it has learned
) ) o from many hours of training. This learned ‘pre-
where o2 is the variance (standard deviation

squared) for signal S and noise N, and, if it is
greater than the threshold, the audio clip is passed
to Whisper. 0% is calculated for each loop’s audio
clip. 012\, is calculated upon device startup when
the speaker records the background noise level of
the current environment. We limit 012\, to the range
0.5-5x1079, determined empirically, as, too low
and any sound will be passed to the ASR as speech,
and too high and no speech will be recognised.

9https ://pypi.org/project/SpeechRecognition/2.
1.3/

dictive text’ means that, if the model considers the
speech input to be only part of a phrase, Whisper
may automatically output what it thinks the full
phrase should be. This form of hallucination oc-
curs when the microphone recording loop times
out before a word/phrase is completed. Figure 2
demonstrates this effect with a waveform of speech
and its corresponding recognised text, before and
after a phrase is completed.

We find a recorded timeout of 2 seconds suit-
able to balance the trade-off between ‘real-time-
ness’ and ASR accuracy. We implement predictive-
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(b) Recognised speech: “Hopefully,
sentences won’t be missed out”

Figure 2: Waveforms of speech where the phrase is cut off by a recorded timeout and where the complete phrase is
allowed to be fully recorded. Speech bubbles show the true speech recorded and their captions state ASR output.

Real-time setup WER WER*
Original model: both hallucination methods 15.4 14.9
Fine-tuned model: without SNR checks 8.7 7.2
Fine-tuned model: without SNR checks, with pauses 1855 1824
Fine-tuned model: without audio stream checks 57.8 55.8
Fine-tuned model: both hallucination methods 6.6 5.1
Fine-tuned model: both hallucination methods, with pauses 6.0 5.7

Table 2: WERs for our different real-time tests. ‘Both hallucination methods’ here means that the SNR threshold
and audio stream checks are both in place. The ‘original model’ is Whisper’s medium.en model. ‘With pauses’
means that 3-second pauses were taken after every sentence. WER* denotes the word error rate when we ignore
errors due to lexical differences that can still be considered as the recognition having the correct understanding.

hallucination prevention by tracking the audio data
that is passed to the ASR. This method ensures
that the each new transcript entry!? is only saved
when a full phrase is spoken, with recognised text
corresponding only to the processed audio. When
data between successive recognitions overlap, we
ensure that the current transcript entry is updated
with the most recent recognition. New transcript en-
tries are added when at least 3 seconds have passed
since the previous recognition and the recognition
is on all new audio data. For additional robustness,
we combine this with a comparison of texts be-
tween successive recognitions to check whether the
current recognition is a continuation of the previous
entry.

5 Real-time Recognition Results

We present the results of real-time recognition with
our fine-tuned model and hallucination-prevention
methods in Table 2. To test performance of our

19Each ‘entry’ is a string element in the transcription list.

real-time ASR pipeline, the same script of 332
words (an excerpt from a paper draft) was read
for different setups including comparison of our
fine-tuned model to the original Whisper model,
and with/without our hallucination methods. The
reading for each setup was done in the same office
meeting room in one take, where some background
noise from adjacent rooms was present to help sim-
ulate a real environment where our device may be
used, and was read by the same speaker who self-
identifies as having a ‘Northern’ accent. For each
test, the transcription is compared to the original
script and we calculate the WER.

The model’s full potential is demonstrated with
both hallucination methods reaching a minimum
WER across all tests of 6.6. The improvement over
the original Whisper model is substantial (down
from WER = 15.4), although limited compared to
the reduction achieved with fine-tuning (Table 1).
We attribute this to the real-time adaption where
arbitrarily-segmented audio clips are input automat-
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ically and the test environment, where some levels
of background noise were present.

Some of the errors we find in the transcripts
are not necessarily inaccuracies, but rather mis-
matches with the original script. For example,
sometimes the model will recognise “UK” as
“United Kingdom”, and “7100,000s” as “hundreds
of thousands”. While we consider the original
script as the ‘ground truth’ for these tests, consider-
ing these differences as correct, WER reduces to
as low as 5.1 with our fine-tuned model. Results
for these cases are shown in Table 2 under WER*.

Without the SNR checks in place, there is less
reduction in performance (WER = 8.7), however,
the crucial importance of including a SNR thresh-
old is demonstrated when 3-second pauses are
taken after every sentence. Recognition from si-
lence/background noise results in multiple hallu-
cinations throughout. The generated text during
these quiet moments is often gibberish, repeated
out multiple times and with no relation to the con-
text of the previous speech, increasing WER to as
high as 185.5. In comparison, the same test with
speech pauses using both hallucination methods,
achieves similar results to the first test: WER = 6.0.

Finally, we test our fine-tuned model in real time
without checking the audio stream for repeated
recognitions of overlapping data. The WER is
again high at 57.8 and results in several instances
where a sentence is hallucinated or repeated multi-
ple times in the transcript.

These results highlight that our fine-tuned model
is more than twice as effective as Whisper’s origi-
nal model and that hallucination prevention is es-
sential to achieve the lowest WERSs possible.

6 Conclusion

We demonstrated that an off-the-shelf Whisper is
not well-adapted to a wide range of spoken British
accents and that WERSs can be reduced substantially
through fine-tuning to the set of target varieties.
Adapting Whisper as a real-time ASR results in
the unexpected side effect of speech hallucinations.
This is addressed by enforcing a SNR criterion in
each audio clip and tracking audio data passed to
the ASR to ensure that recognised text consists of
complete and accurate phrases.

Future work will include greater accent scope, in-
tegration into health and care plan systems, sophis-
ticated care data querying and monitoring methods,
and trigger/alert systems to improve administration

efficiency and help identify errors. Upon success-
ful deployment of these features, we will trial our
smart speaker in a real care-home environment to
gain a better understanding of technological ca-
pabilities, user requirements and to maximise the
social impact of our specialised speaker system.

Limitations

Our initial fine-tuning of Whisper that is described
covers a range of British accents from a single
dataset. We would like to expand on this, especially
with accents representing the diversity of health
and care workers in the UK, but have not yet been
able to because of a lack of available datasets with
suitable coverage of a variety of accents. Initial
testing of ASR performance in real time was done
with a single speaker only for our pilot speaker. We
are planning to expand this in future.

Ethical Considerations

Ethical reviews, including draft consent forms,
have been completed and approved to prepare for
user testing. While initial testing will be done with
dummy care data, we have plans in place to follow
General Data Protection Regulation with the han-
dling of any sensitive information in the case of in-
situ health and care environments. As we progress
in our development, we will address privacy con-
cerns with secure logins and encryption methods.
Measures are being taken for accurate recording
of important information, especially with regards
to treatments, medicine, etc., following guidelines,
e.g. from the British National Formulary''.
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A Appendix

A.1 Voice Controls and Speaker Functions

Table 3 details some of the main trigger words and
their functions in our smart speaker pipeline. Initial-
isation steps include microphone calibration, defin-
ing starting settings, e.g. ‘asleep’, and beginning
to listen in the background. The different functions
are only carried out when the appropriate ‘trigger’
words are located in the recognised text, e.g. “Acti-
vate and retrieve latest medication entry”. In the
future we would like to add a more conversational-
agent approach, with a text-to-speech output to
fulfil the role of ‘speaker’.

A.2 Fine-tune Training

Figures 3 and 4 show the fine-tuning evolution of
training/evaluation loss and WER respectively.
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Figure 3: Loss on training and evaluation (test) data.
The loss scale is logarithmic to help visualise the differ-
ence between loss evolutions. Evaluation loss is min-
imised at step 2048, beyond which a small degree of
overfitting is observed. This approximately coincides
with training over two epochs. Evaluation is done every
256 steps due to computational time constraints.
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Figure 4: Through fine-tuning, WER on test data re-
duces and plateaus quickly, minimising at step 2048.

Trigger word

Functionality

Wake word, e.g. “Activate”
Care record section, e.g. “Medication”
“Sign off”
“Undo”
“Retrieve”
“Restart”

Wake speaker and unlock all other functionalities
Start recording transcript for the given section
Save transcript to care record with date/time-stamp

Removes most recent transcript addition
Return data from care record section

Erase current transcript and sleep the device again

Table 3: The main speaker functions and the trigger words that activate them.
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