Reassessing Graph Linearization for Sequence-to-sequence AMR Parsing:
On the Advantages and Limitations of Triple-Based Encoding

Jeongwoo Kang!

Maximin Coavoux!

Cédric Lopez> Didier Schwab!

"Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2Emvista, Immeuble Le 610, 10 Rue Louis Breguet Batiment D, 34830 Jacou, France
'{firstname}.{lastname}@univ-grenoble-alpes.fr
2{firstname}.{lastname}@emvista.com

Abstract

Sequence-to-sequence models are widely used
to train Abstract Meaning Representation (Ba-
narescu et al., 2013, AMR) parsers. To train
such models, AMR graphs have to be linearized
into a one-line text format. While Penman en-
coding is typically used for this purpose, we
argue that it has limitations: (1) for deep graphs,
some closely related nodes are located far apart
in the linearized text (2) Penman’s tree-based
encoding necessitates inverse roles to handle
node re-entrancy, doubling the number of rela-
tion types to predict. To address these issues,
we propose a triple-based linearization method
and compare its efficiency with Penman lin-
earization. Although triples are well suited to
represent a graph, our results suggest room for
improvement in triple encoding to better com-
pete with Penman’s concise and explicit repre-
sentation of a nested graph structure.

1 Introduction

Abstract Meaning Representation (AMR) captures
text meaning, such as "who does what to whom,"
and represents it in graphs (see Figure 1). Struc-
tured information is easier for computers to process
and therefore, AMR is widely used in NLP applica-
tions, e.g., machine translation (Wein and Schnei-
der, 2024), text generation (Huang et al., 2023),
or human-robot interaction systems (Bonial et al.,
2019, 2023).

Sequence-to-sequence (seq2seq) approaches
have recently gained popularity for AMR parsing
due to strong performance and easy implementa-
tion. For prediction, the model receives an input
sentence and outputs an AMR graph in text for-
mat. To train seq2seq models for AMR parsing,
graph linearization to represent an AMR graph in
a one-line text format is a prerequisite. Penman
encoding is the most common method for AMR
graph linearization, representing graphs as tree-like
structures. It uses variables (e.g. s, s2 in Figure 2)
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Figure 1: AMR graph for “We never seem to see any of
the dug-in nutters acknowledge the truth in it.” Example
from the AMR 3.0 dataset (Knight et al., 2020).
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Figure 2: AMR in Penman encoding for Figure 2.

Figure 3: AMR graph without inverse roles.
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as node IDs to manage co-references. In addition,
parentheses represent nested structures of AMR
graphs. However, Penman has key limitations to
training a seq2seq model:

1) Parent-Child Distance: Parent and child
nodes may appear far apart in the linearized text,
despite being closely connected in the graph. For
example, in Figure 2, seem-01 and we are en-
coded distant in Penman format (highlighted in
red) despite their proximity in the graph of Fig-
ure 2. This is observed when a preceding sibling
node has a deep sub-graph. We hypothesize that
this long distance increases the difficulty of learn-
ing strong parent-child connections, especially in
deeper graphs. 2) Inverse Roles: Penman repre-
sents a graph in a tree-based format. To be specific,
when a node has multiple parent nodes (node re-
entrancy), the child node is duplicated to maintain
a single-rooted tree structure. To fit an AMR graph
into a tree structure, Penman introduces inverse
roles by rewriting :relation as :relation-of
(see Figure 2 where inverse roles are highlighted
in blue). This increases the number of relations the
model must learn, potentially complicating training
and reducing model performance. Figure 3 shows
how inverse roles are unnecessary in a graph-based
representation.

To address these issues, we propose an alterna-
tive triple-based format for AMR graph lineariza-
tion. A triple consists of a parent node, a child
node, and a relation type between them, ensuring
that parent and child nodes remain adjacent in the
linearized text. This format also eliminates inverse
roles by replacing (node A, relation-of, node
B) with (node B, relation, node A).In the rest
of the paper, we compare Penman and triple-based
formats with examples, highlighting their strengths
and limitations in training a seq2seq AMR parser.
Our contributions to seq2seq AMR parsing are:

* A triple-based linearization method for train-
ing seq2seq AMR parsers.

* A detailed comparison with Penman lineariza-
tion, focusing on performance across varying
graph depths and lengths, and identifying ar-
eas for improvement.

2 Related Work

Triple encoding has been used in relation extrac-
tion (Huguet Cabot and Navigli, 2021; Ye et al.,
2021; Saxena et al., 2022) and discourse represen-
tation structure (DRS) parsing (van Noord et al.,
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Figure 4: Triple linearization of the graph in Figure 2.

2018a,b). The closest to our approach is van No-
ord et al. (2018a), who convert AMR graphs into
DRS triples. However, their representation differs
from ours by mapping AMR relations to DRS roles
and adding extra information that does not exist in
AMR. In addition, they did not include training an
AMR parser in their work. While triple encoding is
widely used in relation extraction and DRS parsing,
it has not been used for seq2seq AMR parsers. In
our work, we propose using it to linearize AMR
graphs, analyzing its strengths and weaknesses as
an encoding method.

3 Methodology: Triple Linearization

Triple representation mitigates the challenges of
Penman linearization (described in Section 1) by
encoding a graph as a set of triples. Figure 4 il-
lustrates that the parent-child nodes, which were
distantly located in Figure 2, are now adjacent in
the triple representation (highlighted in red). We
hypothesize this helps the model learn direct parent-
child relationships, especially in deeper graphs.
Triples also eliminate inverse roles by reversing
the order of two nodes, as shown in Figure 4 (high-
lighted in blue).

The triple format, widely used for graph repre-
sentation (e.g., RDF), aligns better with AMR’s
graph structure than Penman’s tree-based encoding.
Its flexibility supports graphs with multiple roots
or re-entrancies, making it potentially suitable for
broader semantic frameworks. To assess its utility,
we trained seq2seq AMR parsers using triple and
Penman formats.

Despite its advantages, triple linearization can
result in verbose linearization, slowing down the
learning process, and may be less effective at cap-
turing nested structures of graphs compared to Pen-
man. This study evaluates both linearization meth-
ods to train seq2seq AMR parsers, exploring: (1)
whether triple representation improves AMR pars-
ing; (2) which graphs benefit most from triple rep-
resentation, such as those with deep structures or
large size, and (3) if combining triple and Penman



representations enhances parsing performance.

Experiments involve training models respec-
tively with triple, Penman, and both formats (multi-
task learning). Using both formats may serve as a
form of data augmentation, as it effectively doubles
the training data by representing one example in
two linearized formats. We train and evaluate our
model with English AMR 3.0 (Knight et al., 2020)
data. We evaluate our model using SMATCH (Cai
and Knight, 2013) score by counting the matching
triples between two graphs. We analyze results by
graph depth and size to determine which types of
graphs benefit from different encoding methods.

Triple linearization strategies To linearize
AMR graphs in triples, we extract all triples and
unfold them in depth-first search order using the
PENMAN library.! Four linearization strategies
are applied, varying in whether variables” or in-
verse roles are retained. We provide an example
for each linearization type in Table 3 and Figure 7
of Appendix A. Each model is named based on
linearization type as follows:

e Triple_X_var_X_invrole: Variables and in-
verse roles are removed. Variables are re-
placed by node names, and inverse roles are
converted by reversing node order.> Reversing
inverse roles reduces the number of relation
types from 155 to 115 in our training data.
Triples are separated by a pipe symbol (l).

* Triple_X_var_O_invrole: Variables are re-
moved, but inverse roles are retained.

* Triple_O_var_QO_invrole: Both variables
and inverse roles are retained. Variables
and their instances are represented as triples
with the instance relation (e.g., f instance
fruit). This approach is the most compre-
hensive, as no information is lost from the
original graph during linearization.

* Triple_O_var_X_invrole: Variables are re-
tained, but inverse roles are removed.

"https://penman.readthedocs.io/en/, version 1.3.0

2Removing variables is a common pre-processing strategy
for seq2seq AMR parsing (Konstas et al., 2017; van Noord
and Bos, 2017). This leads to information loss but effectively
reduces data sparsity for training.

3For the models discussed in this article, variables and
inverse roles are removed in this manner.

4 Experimental Setup

Models are trained using the large mBART model
(Tang et al., 2021) on each linearization type.*

4.1 Baseline

To compare our method with existing approaches
using Penman encoding, we trained a model on
AMR graphs linearized using Penman encoding,
which serves as our baseline. Note that maintain-
ing inverse roles is a necessary aspect of Penman
encoding and X_invrole types are not available for
Penman encoding. For training, we employed the
same mBART model and trained two models as
follows (see Table 3 for examples):

e Penman_X_var_O_invrole: Variables are re-
moved, but inverse roles are retained.’

e Penman_QO_var_QO_invrole: Both variables
and inverse roles are retained.

4.2 Multi-task Learning

As mentioned in Section 1, combining triple and
Penman encodings may offer complementary bene-
fits. To test this, we trained models in a multi-task
learning framework by merging two differently en-
coded datasets. During training, the model learns
from shuffled examples with a token indicating the
encoding type. For predictions, the model is in-
structed to use either triple or Penman encoding to
use the corresponding decoding strategy to recon-
struct graphs. We trained four models:

e Multi_tri_O_var_QO_invrole: Both variables
and inverse roles are retained. The main task
is triple encoding, with Penman encoding as
an auxiliary task. This means that the best
model is selected based on the performance on
the validation set using triple encoding, while
Penman encoding is treated as an auxiliary
task to help the triple learning.

* Multi_penman_QO_var_O_invrole: Both
variables and inverse roles are retained. The
main task is Penman encoding, with triple en-
coding as an auxiliary.

e Multi_tri_X_var_O_invrole: Variables are
removed but inverse roles are retained. The
best model is chosen based on the model’s
performance in triple prediction.

*The model was chosen based on our goal of developing a
multilingual system, which was not covered in this article.
SWe used the script from van Noord and Bos (2017).
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Model The Little Prince AMR 3.0

Triple_O_var_O_invrole 76.2 £ 0.3 80.0 = 0.2
Triple_O_var_X_invrole 76.1 + 0.5 80.3 +0.1
Triple_X_var_O_invrole 76.5 +0.2 78.7+0.1
Triple_X_var_X_invrole 76.21+0.2 78.9+0.8
Penman_O_var_O_invrole 77.0 £ 0.4 80.9 + 0.2
Penman_X_var_O_invrole 76.7+£0.1 80.2+ 0.1
Multi_tri_O_var_O_invrole 76.9 + 0.2 80.3£0.1
Multi_tri_X_var_O_invrole 76.3 +0.2 78.94+0.1
Multi_penman_O_QO_invrole 76.7+£0.2 80.6 = 0.3
Multi_penman_X_var_O_invrole 76.1 +0.1 79.8 £0.1

Table 1: SMATCH scores for evaluation (with the
highest scores in bold and the second-highest scores
underlined).

e Multi_penman_X_var_O_invrole: Vari-
ables are removed but inverse roles are re-
tained. The best model is selected based on
performance in Penman prediction.

S Results and Insights

Global results. Table 1 presents results on two
test sets: The Little Prince® and AMR 3.0.
The Penman single-task model with variables
(Penman_O_var_O_invrole) performs best on
both test sets (77.0 and 80.9, respectively). Among
single-task triple models, Tri_O_var_Q_invrole
achieves the best results, with a marginal gap from
the best model (<1 SMATCH).

Preserving variables consistently improves per-
formance, contradicting the assumption that remov-
ing them aids learning by reducing data sparsity.
This suggests variable removal leads to critical in-
formation loss. In addition, learning from Penman
encoding while performing an auxiliary triple task
reduces performance, whereas the reverse improves
it. This indicates Penman encoding provides struc-
tural information beneficial to triple encoding but
not vice versa.

Within triple linearization, removing inverse
roles improves performance on AMR 3.0 but not
The Little Prince. Given that AMR 3.0 includes
longer sentences, removing inverse roles may ben-
efit longer sentences while harming shorter ones.
However, the inconsistency across test sets could
also suggest inverse roles have only a marginal
effect.

Triple linearization does not improve learning
for deeper graphs. We hypothesized that triple
linearization could enhance training by position-

https://github.com/flipz357/AMR-World

ing child and parent nodes closer, especially when
a preceding sibling has a deep subgraph. In Pen-
man encoding, such cases place these nodes farther
apart. Assuming this issue is more common in
deeper graphs, we analyzed results by reference
graph depth (distance from the root to the furthest
node), focusing on AMR 3.0, which has greater
depth variety than The Little Prince.

Our results (Figure 5, Appendix) show SMATCH
scores by depth align with overall scores, in-
dicating no learning benefit for deeper graphs
with triple encoding. The best model, Pen-
man_O_var_QO_inverserole, consistently per-
formed best across depths. This contradicts our hy-
pothesis that triple encoding benefits seq2seq AMR
learning by bringing parent-child nodes closer to-
gether. Instead, the results emphasize the benefit
of Penman’s concise graph representation and its
ability to explicitly encode nested structures, which
play a more critical role in model performance.

Triple linearization does not improve learning
for longer graphs. We also analyzed perfor-
mance by graph length (i.e., token count in the lin-
earized reference graph), assuming verbose triple
encoding would degrade performance on longer
graphs. Since graph depth and length are not al-
ways correlated, results may differ from the depth
analysis. Figure 6 in the Appendix shows the re-
sults per graph length with token counts of refer-
ence graphs grouped into buckets of 50 for clar-
ity. For shorter graphs, the gap between models
is smaller, but as the graphs become longer, the
performance of triple models decreases more no-
ticeably, resulting in a wider gap. This supports
our earlier hypothesis regarding the limitations of
triple encoding: its verbose representation likely
contributes to the observed performance degrada-
tion on lengthy graphs.

6 Conclusion

We introduced triple linearization as an alternative
to Penman linearization, hypothesizing that it could
improve training for several reasons: (1) parent and
child nodes are always located together in a triple,
(2) the elimination of inverse roles may simplify
training by reducing the number of relations, (3)
and triples more closely resemble the underlying
graph structure, while Penman encoding represents
a graph in a more tree-like format. Contrary to our
hypothesis, Penman has proven to be a more effec-
tive linearization method to train a seq2seq parsing.
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However, the gap between the best Penman model
and certain triple-based models is marginal. Our
results show a potential to train a seq2seq AMR
parser that predicts a graph directly (not a tree-
based representation) while maintaining equiva-
lent performance. Notably, the model’s output in
triples more naturally aligns with AMR’s graph
structure than Penman. Our code to train and eval-
uate the model is available on https://github.
com/Emvista/Triple_AMR_Parser.git.
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Figure 7: AMR graph for “There are too many traitors of China!”. This example is drawn from AMR 3.0 dataset
(Knight et al., 2020).
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Triple_X_var_X_invrole

Triple_X_var_0_invrole

Triple_O_var_0_invrole

Triple_O_var_X_invrole.

person ARGO-of betray-01 |
betray-01 ARG1 country |
country name * China " |
person ARGI-of have-quant-91
have-quant-91 ARG2 many |
have-quant-91 ARG3 too

betray-01 ARGO person |
betray-01 ARG1 country |
country nane * China * |
| have-quant-31 ARGI person
have-quant-91 ARG2 many |
have-quant-91 ARG3 too

instance person |
instance betray-01 |
instance country |
have-quant-91

ARG3 t

instance
instance
instance
instance

P person |
b betray-01 |

< country |

h have-quant-91 |
m instance many |

t instance too |

b ARGE p |
b

h

h

h

ARG € |
nane * China " |
ARG p |

ARG2 m |

ARG3 t

“Table 2: Trple encoding examples of Figure 7.

Penman_X_var_0_invrole.

Penman_O_var_0_invrole

 person
) :ARGI-of ( have-quant-91

ARGO-of ( betray-01

ARGT ( country sname * China

ARG2 ( many ) :ARG3 ( too ) ) )

? / person :ARGI-of ( b / betray-01 :ARG] ( < / country :name
ina * Salut Maxinin, 3'ai sounis 1a version actuelle (changement

du titre, ajouter des comentaires de Cédroc dans la conclusion)

au workshop) )
ARG3 (t/t00) ) )

ARG1-of ( h / have-quant-91

ARG2 (m / many )

“Table 3: Penman encoding examples of Figure 7.




