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Abstract

With the advent of Web 2.0, digital platforms
have become increasingly multilingual. Non-
English speakers are rapidly adopting their na-
tive languages on social media, highlighting
the need for robust translation and transliter-
ation models to facilitate effective communi-
cation. This systematic review paper provides
an overview of recent machine translation and
transliteration developments for Indo-Aryan
languages spoken by a large South Asian pop-
ulation. The paper examines advancements in
translation and transliteration systems for a few
language pairs that have appeared in recently
published papers in the last half a decade. The
review summarizes the current state of these
technologies, providing a worthwhile resource
for anyone who is doing research in these fields
to understand and find existing systems and
techniques for translation and transliteration.
The current challenges and limitations in the
current systems are identified, and possible di-
rections are suggested.

1 Introduction

The Indo-Aryan languages constitute a main branch
of the Indo-European language family, predomi-
nantly spoken in Central and North India as well
as in neighbouring countries such as Sri Lanka,
Pakistan, Nepal, Maldives, Bangladesh and Bhutan
(Pal and Zampieri, 2020). The large linguistic vari-
eties within the Indo-Aryan language family make
it challenging to communicate both outside and
within the region. Machine translation and translit-
eration systems help to bridge language barrier,s
enabling effective communication between differ-
ent linguistic societies.

The goal of this review paper is to provide an
overview of the current state of machine transla-
tion and transliteration techniques for Indo-Aryan
languages. The review discusses diverse tech-
niques used in the recently published translation
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and transliteration systems which handle the var-
ious scripts and linguistic features of Indo-Aryan
languages.

The contribution of this study can be summa-
rized as performing a systematic review of existing
translation and transliteration techniques related
to Indo-Aryan languages, highlighting the signifi-
cant contributions and developments made by re-
searchers in this constantly developing field. Going
forward, the review is structured to clearly look into
the recent developments in machine translation and
transliteration for Indo-Aryan languages. Starting
with the methodology explains how studies were
selected based on their relevance. The following
sections dive into various translation and transliter-
ation approaches and outline the challenges faced
in the field.

2 Methodology

A systematic approach was adopted in this review
to choose the relevant studies on machine transla-
tion and transliteration for Indo-Aryan languages.
A comprehensive search was conducted across sev-
eral major academic databases, including IEEE
Xplore and Google Scholar. In addition to the
academic database searches, several key papers
were identified from references cited in already
published research, ensuring a wide-ranging collec-
tion of studies relevant to the focus of the review.
Keywords such as "machine translation", "translit-
eration" and "Romanized languages" were used to
identify relevant literature. To avoid redundancy,
duplicate publications across different databases
were identified and removed.

This review focused on papers published from
2018 to the available 2024 publications to ensure
that the recent advancements were included. Stud-
ies were chosen based on the relevance to machine
translation and transliteration within the context of
Indo-Aryan languages. This review also includes
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papers that have proposed and utilized relevant
techniques as part of their work while not directly
focused on translation or transliteration. Specifi-
cally, the papers which proposed novel methodolo-
gies or made outstanding contributions to the field
were prioritized. Figure 1 illustrates the systematic
flow of the paper selection process.

3 Machine Translation (MT) and
Transliteration

Machine Translation (MT) is the study of how to
use machines to translate from a source language
into another target language. This concept was
first put forward by Warren Weaver in 1947 (Wang
et al., 2022). From then on, MT has been one of
the most challenging tasks in the natural language
processing (NLP) field. Figure 2 is an example of
machine translation between Sinhala and English.

Machine transliteration is the process of words
transformation from one language into their pho-
netic equivalent of another. There are two types
of machine transliteration: forward and backward
transliteration. forward transliteration is the pro-
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cess of transliterating a word to a foreign language
from the language from which it originated. On
the other hand, when a word is converted back to
the language of its origin from a foreign language,
it is known as backward transliteration (Kaur and
Garg, 2022). Figure 3 illustrates the difference be-
tween forward and backward transliteration using
Romanized Sinhala.

4 Approaches in Machine translation and
Transliteration

Many machine translation and transliteration sys-
tems have been implemented for Indo-Aryan lan-
guages. Since transliteration is considered a form
of translation, both translation and transliteration
systems have used similar approaches. The fol-
lowing section will discuss the various machine
translation and transliteration approaches found in
the literature. Here, the ISO 15919 standard' for
the transliteration of Devanagari and related Indic
scripts into Latin characters has not been the focus,
but it may be relevant in rule-based approaches.

4.1 Rules-based Machine Translation
(RBMT)

RBMT (Rules-Based Machine Translation) is a
type of MT system which translates languages
based on the rules which represent linguistic knowl-
edge. Large number of linguistic terms can be ap-
plied to using the Rules-Based Machine Translation
methodology in 3 stages: analyzing, transferring,
and generating. Programmers and linguists who
have already spent a significant amount of time to
understand the principles and patterns between 2
languages have established rules. RBMT methods
only produce good results only if the translation
rules are applied correctly. Transfer-based machine
translation and Interlingual machine translation are

1https: //www.unige.ch/biblio_info/files/5116/
3775/9122/1S0_15919_en. pdf
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two main types of RBMT (Khepra et al., 2023).

Transfer-based machine translation: This MT
type breaks down the process of translation into
several subtasks, such as morphological analysis,
syntactic parsing, and semantic analysis, and then
translates the meaning of source input into the tar-
get languages. This approach is useful to handle
complex grammatical structures and idiomatic ex-
pressions (Khepra et al., 2023).

Interlingual machine translation: This approach
involves using an intermediary language to trans-
late between the source and target languages and
then translate it into the target language. One of
the major advantages of this approach is that it can
handle multiple languages at once, and it may bring
down errors in the output (Khepra et al., 2023).

4.2 Corpus-based Machine Translation
(CBMT)

Corpus-based machine translation (CBMT) relies
on large amounts of parallel corpus (bilingual text)
to train statistical models for translation. The mod-
els are trained to learn patterns in the data, then use
those patterns to make translations. The study by
Khepra et al. (2023) describes two types of CBMTs:
Example-based machine translation and Statistical
Machine Translation (SMT).

Example-based machine translation (EBMT):
This type of MT uses a bilingual sentence pairs
database to translate text. The system gets the most
similar sentence pair from the database and use it
to generate the target sentence. This approach is
useful to handle less common language pairs or
rare languages (Khepra et al., 2023).

Statistical Machine Translation (SMT): In Statis-
tical Machine Translation, the model is developed
completely from the information in corpora without
user intervention. It was the dominant paradigm
up until the beginning of 2010. A computer re-
quires examples which provide information about
the translation of the phrases (the bilingual word
mappings) and the appropriate placements of the
converted words in the targeted phrase (alignment)
to learn how to translate (Khepra et al., 2023).

4.3 Knowledge-based Machine Translation
(KBMT)

This kind of MT uses a predetermined set of gram-
matical and lexical rules to translate text. A differ-
ent name for it is a rule-based machine translation.
KBMT is especially advantageous in its capability
to handle specific domains such as legal or tech-
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nical texts where the text structure is well-defined
(Khepra et al., 2023).

4.4 Neural Machine Translation (NMT)

Neural Machine Translation (NMT) uses deep
learning techniques to train an MT model on large
amounts of parallel data. Typically, NMT mod-
els are more accurate than rule-based or statistical
models but also need more computational resources
for the training process (Khepra et al., 2023).

4.5 Hybrid Machine Translation

This approach is one of the latest approaches in
machine translation systems. This will be devel-
oped with the combination of more than one exist-
ing MT-based approach. Two or more approaches
discussed in the above sections can be used in
the Hybrid approach to produce accurate results
(Sumanathilaka et al., 2023).

4.6 Discussion of MT Approaches

Each machine translation (MT) approach has dif-
ferent strengths and limitations according to their
underlying mechanisms. To address some of the
issues with these single approaches, researchers
have used a combination of these approaches to
overcome those issues. RBMT and KBMT ap-
proaches depend on predefined rules, making them
effective for structured texts. However, those ap-
proaches struggle with unseen text which does not
follow predefined rules. CBMT approaches, includ-
ing SMT and EBMT, utilize large parallel corpora,
offering more adaptability, but these approaches
require substantial data. NMT can be identified as
the most commonly used approach recently. Both
NMT and CBMT face the challenge of data scarcity
for low-resource languages. When corpus size is
small, SMT performs better than the NMT accord-
ing to results obtained by Tennage et al. (2017).
Recently, there has been an outstanding trend to
use transformers (Vaswani et al., 2017), which is
one of the latest NMT approaches.

5 Current State of Machine Translation
for Indo-Aryan Languages

This section provides an overview of the current
state of MT approaches developed for diverse Indo-
Aryan language pairs.

5.1 Hindi-English Translation

Recently, NMT has been broadly explored for this
language pair. Singh et al. (2019) proposed LSTM



(Long Short-Term Memory) based NMT system
for English-Hindi translation showing promising
results, especially for shorter sentences. Further
advancements include the study by Tiwari et al.
(2020), who suggested 2 other NMT approaches,
which are ConvS2S and LSTM Seq2Seq, with
the ConvS2S model outperforming the proposed
LSTM model. Similarly, Gogineni et al. (2020)
proposed an NMT model based on Bidirectional
LSTM (BiLSTM), outperforming the traditional
SMT approaches in terms of BLEU scores. At-
tention mechanisms have also been a major focus
in enhancing the performance of NMT systems.
Laskar et al. (2019) studied the comparison be-
tween two NMT approaches, one based on the
modern transformer model, which is based on a
recently introduced self-attention mechanism and
the other on the LSTM. The results demonstrated
that the transformer-based model outperformed the
LSTM-based model. Rose et al. (2023) showed
that incorporating an attention mechanism into an
Encoder-Decoder-based LSTM model significantly
improved the translation. The use of a guided trans-
former model proposed by Bisht et al. (2023) fur-
ther increased the translation performance by inte-
grating dependency parsing into the encoder. For
addressing challenges in long sentence translation,
Sarode et al. (2023) explored the Recurrent Neu-
ral Networks (RNN) and Gated Recurrent Units
(GRU) usage in a Seq2Seq architecture with an
attention mechanism. Lastly, Watve and Bhalekar
(2023) implemented a transformer-based English-
to-Hindi translator, contributing to the improve-
ment of work in this area.

5.2 Sinhala-English Translation

To improve the accuracy of Sinhala to English
translation, Nugaliyadde et al. (2019) proposed a
novel approach using an Evolutionary Algorithm
(EA). This method iteratively refines the transla-
tion ensuring that the final output is meaningful and
grammatically correct. According to their paper,
this is one of the early efforts to apply EA in MT
for Sinhala-English language pairs. Fonseka et al.
(2020) introduced a transformer-based translation
system particularly developed for translating offi-
cial government documents between English and
Sinhala. To address one of the common issues in
MT, which is the out-of-vocabulary (OOV) issue,
they implemented Byte Pair Encoding (BPE). Fur-
ther advancements were made by researchers who
explored the document alignment in Sinhala and
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English. For example, research extended the Si-Ta
(Ranathunga et al., 2018) system (Will be discussed
in the next section) to include SMT techniques im-
proving the alignment process between Sinhala and
English texts (C et al., 2020). To enable Sinhala
speakers to search English web content effectively,
Hisan et al. (2020) focused on a cross-language in-
formation retrieval system using word embeddings
to enhance the translation of Sinhala queries into
English. Additionally, Sandaruwan et al. (2021)
addressed the challenge of translating Romanized
Sinhala into English. They built a Seq2Seq NMT
model with an attention mechanism that effectively
handled the various spelling variations in Singlish.
In this system, a deep multi-layer RNN, which
consists of bidirectional LSTMs, is considered re-
current units.

5.3 Sinhala-Tamil Translation

The first dedicated MT system for Sinhala and
Tamil official documents was Si-Ta which is pro-
posed by Ranathunga et al. (2018). Nissanka et al.
(2020) further explored Neural Machine Trans-
lation for this pair of languages using Byte Pair
Encoding (BPE) to address the OOV problem as
described above in the study by Fonseka et al.
(2020). In their approach, they combined mono-
lingual and parallel corpus data utilizing trans-
former architecture to improve translation accu-
racy. In a study comparing different translation
models done by Pramodya et al. (2020), they found
that the introduction of the Incrementally Filtered
Back-Translation technique, which was proposed
by Arukgoda et al. (2019), enabled NMT mod-
els to surpass SMT models, especially in low-
resource conditions. They compared different trans-
lation models, including RNNs, SMT and Trans-
former models for Tamil to Sinhala translation.
Thillainathan et al. (2021) extended this line of
research by fine-tuning modern pre-trained large
language models such as mBART for extremely
low-resource translation tasks. They showed that
fine-tuning these models significantly enhanced
the quality of translation for Sinhala-Tamil, espe-
cially in domain-specific contexts (such as official
government documents) compared to traditional
Transformer-based NMT models.

5.4 Punjabi-English Translation

SMT-based system for Punjabi-English language
pair using the Moses toolkit has been studied by Jin-
dal et al. (2018). That involved creating a 20,000-



sentence parallel corpus encompassing diverse do-
mains and utilizing GIZA++ for word alignment.

5.5 Bengali-English Translation

Research on Bengali-English translation has been
focused on both NMT and SMT approaches. Rah-
man et al. (2018) proposed an MT system which
uses a corpus-based method with an N-gram lan-
guage model. The results of this system have been
shown to outperform Google Translate in terms of
computational efficiency and accuracy. More re-
cently, Paul et al. (2023) evaluated four different
Seq2Seq models, which are LSTM, GRU, BiLSTM
and Bidirectional GRU (BiGRU), concluding that
the BiLSTM model performed well achieving high
BLEU scores.

5.6 Sanskrit-Hindi Translation

For the Sanskrit-Hindi language pair, a Corpus-
Based Machine Translation (CBMT) system using
deep neural networks to translate Vedic texts and
other sacred writings was proposed by Singh et al.
(2020). This system was able to handle phrasal and
idiomatic expressions, achieving a BLEU score of
41.17. Lastly, Bhadwal et al. (2020) explored an
RBMT model which utilizes a direct (dictionary-
based) approach for translating text from Hindi to
Sanskrit.

5.7 Sanskrit-Gujarati Translation

Raulji et al. (2022) introduced a novel framework
to translate Sanskrit to Gujarati using a symbolic
approach. They focused on keeping grammatical
structures through a sequential process involving
morphological and syntactic analysis, lexical trans-
fer and grammatical transfer. This system achieved
a BLEU score of 58.04 despite the challenge of
scarcity of resources, which demonstrated the effec-
tiveness of this system for low-resource languages.

5.8 Urdu-English Translation

A study proposed by Naeem et al. (2023) evaluated
the performance of different neural network models
(RNN, GRU, and LSTM) for translation between
English and Urdu languages and the results showed
that the GRU model outperformed the others.

5.9

Recent research on the Marathi-English transla-
tion has been relatively limited. For the Marathi-
English translation, Gunjal et al. (2023) proposed
a Seq2Seq transformer model, which was trained

Marathi-English Translation
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on a large dataset of parallel English-Marathi sen-
tences and achieved a BLEU score of 41. 99.

5.10 Kashmiri-English Translation

Research on the Kashmiri-English language trans-
lation has also been relatively limited. A study
(Giri et al., 2024) proposed an RNN-based MT
system focusing on the tourism domain. This sys-
tem is structured on an Encoder-Decoder model,
indicating initial efforts for this pair of languages,
especially in domain-specific contexts.

5.11 Other Multilingual Translation

A study proposed by Sen et al. (2018) introduced
two multilingual Transformer architecture-based
NMT models: many-to one (7 Indic languages to
English) and one-to-many (English to 7 Indic lan-
guages). The results showed that multilingual NMT
performs better than separate bilingual NMT mod-
els if the target side has only one language (En-
glish). When the target has many languages, multi-
lingual NMT performance degrades compared to
bilingual models for relatively high-resource lan-
guages. Further advancements in multilingual lan-
guage translation involve the inclusion of Hindi,
Telugu, Kannada and English within a single sys-
tem (Chimalamarri et al., 2020). This study im-
proved transformer-based NMT models by incor-
porating source-side morpho-linguistic features,
which are word-based, BPE-based, and morpho-
lexical features with POS tags. The results showed
significant enhancements in the translation pro-
cess for all language pairs by incorporating source-
side morpho-linguistic features, especially morpho-
lexical features with POS tags. Another important
translation system based on pre-trained mT5 trans-
former was fine-tuned to translate between Hindi,
Bengali, and English (Jha et al., 2023). That system
leveraged the extensive multilingual capabilities in
the mTS5 model, achieving high BLEU scores for
Bengali-English and English-Bengali translations.

6 Current State of Machine
Transliteration for Indo-Aryan
Languages

The transliteration of Indo-Aryan languages has
been a challenge of research for several decades.
There are various models proposed to address the
complexities of converting text from one script
to another. Over the years, the transliteration ap-
proaches have improved from traditional rule-based



methods to modern neural and hybrid models, re-
flecting the increasing computational capabilities.
From 2018 to 2024, there were more studies on
transliteration systems for Sinhala compared to
other Indo-Aryan languages.

In 2018, significant contributions were made to
transliteration with the development of rule-based
and modern machine-learning approaches. A rule-
based transliteration system for Romanized Sinhala
was proposed, using phonetic and transliteration
rule bases to transliterate Romanized text into na-
tive Sinhala script. While effective, the system
faced limitations in handling ambiguities, particu-
larly with proper nouns(Vidanaralage et al., 2018).
Another study experimented with Seq2Seq and
LSTM models to develop a scalable transliteration
pipeline for Indian languages and evaluated differ-
ent language transliterations. The results showed
that the Seq2Seq models outperformed traditional
LSTM models, although they need large datasets
for effective training (Joshi et al., 2018). Addi-
tionally, a character-level transliteration tool was
created to improve Tamil to Sinhala NM, T demon-
strating the utility of rule-based methods in trans-
lation tasks (Tennage et al., 2018). According to
their literature, that was the first Tamil to English
and Sinhala to English transliteration tool that used
a rule-based approach.

In 2019, Priyadarshani et al. (2019) introduced a
hybrid approach using SMT and machine learning
to transliterate personal names in the Sri Lankan
context using Moses SMT toolkit for Sinhala,
Tamil and English languages. This system showed
the importance of incorporating ethnic origin clas-
sification for personal name transliteration to im-
prove accuracy. Another significant transliteration
approach was the Gurmukhi to Roman transliter-
ation, which used character mapping and hand-
crafted rules for the transliteration of Punjabi to
English with a good accuracy of 99.27% (Singh
and Sachan, 2019).

There were further advancements in transliter-
ation techniques during 2020 and 2021, particu-
larly with the use of neural networks. A rule-based
method which is proposed by UCSC is combined
with a trigram model trained on social media text to
improve the Sinhala transliteration accuracy in the
study by Liwera and Ranathunga (2020). Another
study in 2021 introduced a rule-based approach
for Singlish to Sinhala transliteration with an error
correction module to improve accuracy (Silva and
Ahangama, 2021). Singh and Bansal (2021) exper-
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imented with various neural architectures for the
transliteration of Hindi and Punjabi languages. Out
of those, a model with a character/grapheme level
bidirectional encoder and auto-regressive decoder
proved to be the best-performing architecture. In
the same year, a systematic approach employing
phrase-based statistical machine translation (PB-
SMT) to create an English-Hindi parallel database
for transliteration was introduced (Mogla et al.,
2021). Another work in 2021 was the develop-
ment of a Python-based algorithm to transliterate
between Devanagari or Roman scripts and Brah-
mic scripts, and vice versa (Nair and Ahammed,
2021). Additionally with the introduction of a
method for normalizing and back-transliterating
Hindi-English code-switched text, this field saw
further innovation (Parikh and Solorio, 2021). This
system first normalized Romanized Hindi with the
use of the Seq2Seq model based on an LSTM
encoder-decoder architecture and then syllabified
the tokens to map them to the Devanagari script.
This approach could handle informal typing vari-
ations and phonetic discrepancies, improving the
transliteration.

Moving into 2022, Swa-Bhasha (Athukorala and
Sumanathilaka, 2022) proposed a novel approach
using a combination of rule-based methods and
fuzzy logic to transliterate Singlish to Sinhala even
when vowels are omitted. This system has intro-
duced a new numeric coding system to use with
the Romanized Sinhala letters by matching with
the recognized typing patterns. Fuzzy logic-based
implementation has been used for the mapping
process. Another back-transliteration system for
Romanized Sinhala to Sinhala was proposed by
Nanayakkara et al. (2022) utilizing a Translitera-
tion Unit (TU) based model and a BILSTM encoder
combined with an LSTM decoder. Moreover, in
2022, a bilingual RBMT system was developed
for Sanskrit-English. This system allowed users
to type Sanskrit using English orthography and
transliterate Sanskrit text into the English script
(Sethi et al., 2022).

In 2023, Sharma et al. (2023) introduced a Gener-
ative Adversarial Networks (GANSs) based system
using Pix2Pix GAN architecture to transliterate an-
cient Indian scripts (images) like Nandinagari and
Sharda into modern Devanagari script (images). Ya-
dav and Kumar (2023) proposed a hybrid approach
to transliterate Hindi to English which includes im-
age processing and a model trained with attention.
The final phase of the proposed system, which is



the transliteration phrase, used the Python Indicate
Transliteration library to transliterate Hindi charac-
ters into the Roman script. In the same year, Swa-
Bhasha hybrid approach combining statistical meth-
ods with a Trigram and rule-based model was pro-
posed for Singlish back transliteration (Sumanathi-
laka et al., 2023). Additionally, it incorporated a
Trie data structure to generate word suggestions.
The work by Athukorala and Sumanathilaka (2022)
has achieved 0.64-word level accuracy while Li-
wera and Ranathunga (2020) achieved 0.52-word
level accuracy. This Swa-Bhasha system has per-
formed much more accurately with 0.84-word level
accuracy compared to the existing transliteration
works for Sinhala. By applying a similar hybrid
approach, another back-transliteration system for
Romanized Tamil, TAMZHI, was proposed by
Mudiyanselage and Sumanathilaka (2024). This
system achieved 93% accuracy at the character
level and 70% at the word level, further demon-
strating the effectiveness of this method.

In 2024, further advancement was made with the
introduction of Swa Bhasha 2.0 (Dharmasiri and
Sumanathilaka, 2024), which is developed to ad-
dress the ambiguities of Romanized Sinhala back
transliteration using GRU-based NMT. Also, the
study of Swa-Bhasha Dataset (Sumanathilaka et al.,
2024) introduced a rule-based transliteration tool
which can annotate Sinhala words into Romanized
Sinhala. This system can accommodate the vari-
ous ad hoc typing patterns used by the community.
Finally, in 2024, another model was proposed for
accurate cross-script conversion, focusing on the
hybrid model development for transliteration. This
study compared two models: a hybrid of Seq2Seq
with LSTM and a hybrid of rule-based and NMT
approaches. Seq2Seq with an LSTM-based model
demonstrated superior performance, especially in
back-transliterating English text into different Indic
languages (Shukla et al., 2024).

7 Gaps and Challenges in Machine
Translation and Transliteration for
Indo-Aryan Languages

Despite significant advancements in the field of
machine translation (MT) and transliteration for
Indo-Aryan languages, there are still several chal-
lenges and gaps that can be identified. Addressing
these will be important to develop reliable systems
for any language. This section describes some of
the identified gaps and challenges in this field.
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7.1 Data Scarcity

Data scarcity in low-resource languages presents
significant challenges to machine translation and
transliteration, especially when using neural ma-
chine translation and corpus-based translation ap-
proaches like statistical machine translation (SMT).
This problem gets worse in NMT approaches be-
cause these models are even more data-hungry than
SMT. Some studies have shown that when corpus
size is small, SMT performs better than the NMT
(Tennage et al., 2017). Even though the transformer
architecture, one of the latest NMT approaches,
has shown outstanding results with high-resource
language pair translation, recent studies have still
conducted only a small number of works on Indo-
Aryan languages because of data scarcity problems.

7.2 Complex Morphological and Syntactic
Structures

The complex grammatical structures and rich mor-
phology of Indo-Aryan languages, where a single
word can have multiple forms depending on tense,
gender, and case, pose challenges to translation sys-
tems. Syntactic differences between Indo-Aryan
languages and other language families like English
also complicate the translation process, especially
with idiomatic expressions.

7.3 Out-of-Vocabulary (OOV) Words

The "out of vocabulary" (OOV) issue in this field
refers to the problem which occurs when a source
language word is not present in the vocabulary
ofthe translation/transliteration system, meaning
it has not been seen or learned during training.
OOV words might include rare terms, names or
new slang. Techniques such as Byte Pair Encod-
ing (BPE) have been used to address this issue in
recent systems, but this issue still persists in some
developments.

7.4 Code-Mixing

A significant number of people use social media in
various native languages other than English. How-
ever, most of these people do not use Unicode
characters to represent their languages. Instead,
they use phonetic typing with the English alphabet.
Therefore, people express their native languages
using the English alphabet, and they even insert
English words mixed up with the native language
words. This phenomenon is known as code-mixing
(Smith and Thayasivam, 2019). Also, sometimes,



people write in their native script and insert En-
glish words using the English alphabet. Some of
the current MT and transliteration systems struggle
to handle mixed language inputs.

7.5 Variations in Transliteration

When people use transliterated text, especially Ro-
manized forms of Indo-Aryan languages, the writ-
ing patterns they use to express their native lan-
guage vary from person to person. Also, these
typing patterns change depending on the time and
the mood of uthe ser (Sumanathilaka et al., 2024).
Common variations in transliterated text include
ambiguous consonant transliteration, vowel drop-
ping, long vowel transliteration, double consonant
transliteration, slang and abbreviations (Parikh and
Solorio, 2021). These inconsistencies make it chal-
lenging to convert the transliterated text back into
the native script. Few recent developments have
focused on addressing these typing variations.

7.6 'Word Ambiguity

Word ambiguity, where a single word can represent
multiple meanings based on the context of the sen-
tence, remains a key challenge. Addressing this
problem is known as word sense disambiguation.
While SMT and NMT approaches, such as LSTM
and GRU models, can retain contextual information
to some extent, they have not provided an optimal
solution. The transformer architecture can offer
a better approach. However, only a few transla-
tion/transliteration systems have been developed
with this architecture, and it seems they have not
given much direct attention to this problem.

8 Conclusion

The review highlights significant advancements in
machine translation and transliteration for Indo-
Aryan languages. Translation systems have seen
notable improvements in accuracy with the ad-
vancement of natural language processing. In
transliteration, there has been progress in convert-
ing text between different scripts by managing the
phonetic variations. Notably, both translation and
transliteration have seen significant enhancements
with the advent of transformer architecture varia-
tions, which is marking a promising direction for
future research in this field. These developments
are important in improving effective communica-
tion and access to information across different Indo-
Aryan language communities.
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Limitations

This systematic review has several limitations that
need to be considered. Considering only papers
published between 2018 and 2024 might have
left out earlier important studies which could pro-
vide more details on how machine translation and
transliteration related to Indo-Aryan languages
have evolved. This review only included papers
which are freely available. As a result, it might
have missed important studies published in less
accessible journals or conference proceedings. Ad-
ditionally, using specific keywords to find relevant
studies might have caused important studies which
do not use these exact keywords to be missed.
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