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Abstract

This paper explores interaction designs for gen-
erative Al interfaces that necessitate human in-
volvement throughout the generation process.
We argue that such interfaces can promote
cognitive engagement, agency, and thoughtful
decision-making. Through a case study in text
revision, we present and analyze two interac-
tion techniques: (1) using a predictive-text in-
teraction to type the assistant’s response to a
revision request, and (2) highlighting potential
edit opportunities in a document. Our imple-
mentations demonstrate how these approaches
reveal the landscape of writing possibilities and
enable fine-grained control. We discuss impli-
cations for human-AlI writing partnerships and
future interaction design directions.

1 Introduction

Current chatbot interfaces for large language mod-
els like ChatGPT, Claude, and Gemini limit inter-
action to a turn-taking conversation, even though
the underlying models could support more versatile
interactions, especially for writing tasks.

In this paper, we begin to explore the design
space of interactions that people can have with
model outputs, focusing on the potential opportu-
nities presented by interactions where human ini-
tiative is required for completing a task. Although
these interactions are, by construction, less effi-
cient at producing plausible outputs, we aim to
explore the potential benefits they might offer in
control, ownership, visibility of the solution space,
and feedback for model tuning.

We present two interaction techniques for re-
vision in writing: predictive-text and opportunity
highlighting. The first technique adapts the famil-
iar predictive-text interaction (top-k suggestions
or free typing) found on mobile devices to allow
people to type the assistant’s response word by
word. The second technique visualizes alternative
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Six Thinking Hats was written by Dr. Edward de Bono. "Six Thinking Hats" and the associated
idea of parallel thinking provide a means for groups to plan thinking processes in a detailed
and cohesive way, and in doing 5o to think together more effectively.
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Edit

Assistant response
The book "Six Thinking Hats" by Dr. Edward de Bono presents a structured approach to
4
brainstormin

group collaborative

thinking

thinking that problem-

thinking gand

Figure 1: Predictive text interaction repurposed to type
the assistant’s response

. Prompt: Rewrite this encyclopedia article intro to be more comprehensive,
Edit Prompt v .
structured, and engaging.

Document
Six Thinking Hats was written by Dr. Edward de Bono. "Six Thinking Hats" and the associated idea
of parallel thinking provide a means for groups to plan thinking processes in a detailed and

cohesive way, and in doing so to think together more effectively.

is
Six Thinking Hats was written by Dr. Edward de Bono. "Six Thinking Hats" and the associated

idea of parallel thinking provide a means for groups to plan thinking processes in a detailed and

cohesive way, and in doing so to think together more effectively.

Figure 2: Highlighting opportunities for divergent
choices

(and sometimes divergent) choices for revising text
according to a writer-specified goal.

2 Design Principles

Al support for writing has evolved primarily along
two interaction paradigms: conversational ex-
changes with an assistant (as in modern chatbots)
and editorial feedback systems (like inline markup
in Grammarly or reflection tools like Impres-
sona (Benharrak et al., 2024) and Textfocals (Kim
et al., 2024). While these paradigms have proven
useful, they both place the Al in a position of either
generating content or evaluating it, with humans
primarily reacting to Al output.
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We propose interaction-required approaches that
fundamentally shift this dynamic by necessitating
ongoing human involvement throughout the gen-
eration process. Our approach is guided by three
design principles that emphasize cognitive partner-
ship between humans and Al systems:

Prioritize cognitive engagement over efficiency
Although Al assistance can speed task comple-
tion, using it without cognitive engagement can
lead to overconfidence (Fernandes et al., 2025),
errors (Dakhel et al., 2023), and skill stagna-
tion (Gajos and Mamykina, 2022). Interactions can
instead be designed to encourage writers’ thought-
ful participation rather than optimizing solely for
speed or ease. This principle addresses how Al sys-
tems can support authentic self-expression, own-
ership, and accountability in writing, which many
writers desire (Biermann et al., 2022; Hwang et al.,
2024). The literature on explainable Al systems for
decision-making suggests cognitive engagement as
valuable goal (Datta and Dickerson, 2023).

Enable granular control Rather than offering
only coarse accept/reject options for completed
Al outputs, interfaces could instead allow writers
to influence the progress of generation. Granular-
ity could enable just-in-time feedback that shapes
the direction of Al assistance, providing a way for
users to clarify their goals without having to engage
in prompt refinement or writing examples.

Reveal the landscape of possibilities Interac-
tions should make visible the alternatives avail-
able at each decision point, helping writers under-
stand the range of options and make more informed
choices. Prior work has explored contextual sug-
gestions of alternative words or phrases at targeted
points (e.g., Reza et al. (2023); Gero and Chilton
(2019)), but some authors have explored interfaces
for navigating through the tree of suggestions in
a narrative generation context (Reynolds and Mc-
Donell, 2021).

2.1 Interaction-Required Suggestions

The degree to which a writing support interface
requires interaction can be measured, in principle,
by an amplification ratio, the ratio of the entropy
of system output (new text or edits) to the entropy
of user input. For example, asking a chatbot to
write a complete essay or make overall edits has
a high amplification ratio since the input entropy
is confined to the prompt. Accepting grammar
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suggestions also has high amplification ratio, since
the user often only needs to click "Accept".

We conjecture that LLM-powered interfaces
with a low amplification ratio can be designed ac-
cording to these design principles to assist writers
at various points in the writing process.

3 A Case Study in Revision

We will present two interaction designs that em-
body these design principles for the purpose of
revision. As a running hypothetical example, sup-
pose Alex is a Wikipedia editor who wants to re-
vise the introduction section for the article on "Six
Thinking Hats", as it was on 2025-02-25:

“Six Thinking Hats was written by Dr.
Edward de Bono. "Six Thinking Hats"
and the associated idea of parallel think-
ing provide a means for groups to plan
thinking processes in a detailed and co-
hesive way, and in doing so to think to-
gether more effectively.”

We will use a revision instruction generated by
Claude.ai: “Rewrite this document to be more com-
prehensive, structured, and engaging.”

3.1 Typing the Assistant’s Response with
Predictive Text

Alex starts a chatbot conversation in the now-
customary way, asking for a revision according to
her goals 1. She now sees the assistant’s response
being formed—but instead of seeing the assistant
type its response, Alex sees an editable text box,
which starts empty except for the now-familiar but-
tons of predictive text.

Alex starts by ignoring the prediction buttons be-
cause she realizes it would be clearer to start with
“The book”, so she starts by typing that phrase. Af-
terwards the predictions give the title of the book,
followed by the author, which Alex readily accepts
with a few taps. After that, the top 3 suggestions
are “revolutionized”, “presents”, and “is”; she take
“presents”, an active verb that avoids exaggeration.
The next suggestions are “a revolutionary”, “an in-
novative”, and “a groundbreaking”, which exhibit
the same problem of exaggeration as before. These
suggestions were probably due to Alex’s prompt
of “engaging”, but the vacuous exaggeration of
the suggestions indicates to Alex that she needs to
consider what exactly should be engaging about
this introduction. So she pauses to read the rest



of the article and concludes that the most impor-
tant aspect is that the book provides a structured
approach to thinking in individual and group set-
tings. She needed to type “a structured”, but then
the predictions offered acceptable remaining words
with only a bit of guidance: “approach to thinking,
both individually and collectively.”

Takeaways This interaction leverages the famil-
iarity of the predictive-text interaction that is ubiqg-
uitous on smartphones, but the simple extension
of this familiar interface to the context of typing
the assistant’s response to a revision request yields
several unique kinds of uses:

* The system sometimes helps with routine
tasks, like typing a book name (functioning
like an adaptive copy-and-paste).

» The same interaction can suggest alternative
wordings for phrases, using the natural 3— or
S5—option button interface.

* Unlike a chat interface, the writer can exert
granular, just-in-time control over the system.

* Some suggestions can even be provocative,
leading the writer to pause and think more
about what they wanted to say.

The prototype shows short phrases in predic-
tion buttons, inspired by Arnold et al. (2016);
next-phrase suggestions can shape writer thinking
more than individual words even when not used
directly (Bhat et al., 2023; Arnold et al., 2018;
Jakesch et al., 2023).

3.2 Highlighting Edit Opportunities

Figure 2 shows a different interface with the same
source text and prompt. This interface shows
Alex’s document with highlights in places where
Alex might consider making edits to enact the revi-
sion goal that she has just specified. Hovering over
an opportunity highlight shows a provocative clue
of what an edit there might look like. Alex notices
that “and” is highlighted; reading the phrase she
notices that the phrase (“and the associated idea
of parallel thinking”) is not well connected to the
main thought of the paragraph and decides to seek
an alternative. Hovering the “and” reveals “is”, sug-
gesting that the next phrase could simply describe
the book itself more (e.g., “is a guide for...”) or
perhaps state something concrete about its impact
(e.g., “is the top-cited book on...”). Reading the
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rest of the paragraph and article, Alex decides to go
with the description strategy, but chooses a differ-
ent word: “describes a process for groups to plan
thinking. ..”. She makes this edit in the document
and the opportunity highlights update to suggest
other potential edits. She notices that the word “de-
tailed” doesn’t quite fit with how she understands
the book; even though it is not highlighted, she
hovers over it and sees an alternative, “structured”,
which seems more accurate.

Takeaways

¢ Alex retained full control over their document;
all of the words are her own.

* In contrast to editing systems like Gram-
marly, Alex also had detailed control (via the
prompt) over what sort of edit opportunities
they wanted to see.

The interaction allowed Alex to explore alter-
native choices: every word offered an alterna-
tive, even those not highlighted.

The words shown in edit opportunities were
sometimes substitutions but often instead of-
fered a different semantic or grammatical di-
rection that could be taken.

It is still possible for the result to be entirely
Al-generated text, but that would require the
writer iteratively inspecting and applying ev-
ery suggested change.

4 Discussion

So far these interaction designs have only been eval-
uated informally; empirical studies with writers are
needed to determine how interaction-required sug-
gestion interfaces affect writers’ sense of owner-
ship, control, and awareness of alternatives. Anec-
dotally, however (from use by the authors and a few
others), both have been useful in low-level editing
(trimming and clarifying wording), the predictive-
text interface has been helpful for initial drafting
(e.g., based on an outline), but neither are useful
for larger-scale revision because they focus atten-
tion on localized choices; other tools are needed
to address those needs (e.g., Dang et al. (2022);
Benharrak et al. (2024); Kim et al. (2024)).
Although we described a case study in revision,
predictive text could be used in any assistant re-
sponse. We are particularly curious about how it
might have different effects across different types



of tasks: open-ended tasks such as ideation, ana-
Iytical tasks such as review generation, and close-
ended tasks such as refactoring code.

The straightforward application of predictive
text to typing the assistant’s response, as we pro-
pose in Section 3.1, presents opportunities to in-
crease cognitive engagement and control over the
status quo of accepting complete generated re-
sponses. Yet it is still possible to use the chat-
bot’s words uncritically by accepting suggestions
rapidly. (Should the interface be designed to al-
low larger-block acceptance?) And even cogni-
tive engagement with the suggestions could still
lead to a reduced sense of ownership over the re-
sult (Lehmann et al., 2022) and influence on hu-
man opinions (Arnold et al., 2018; Jakesch et al.,
2023). Additional exploration of the interaction
design (e.g., how alternatives are visualized and
navigated) is needed.

The additional control afforded by predictive
text (effectively prefilling the assistant’s response)
affords some additional risks for users to jailbreak
the model (Andriushchenko et al., 2024). However,
since prefilling is part of many commercial LLM
APIs, we doubt that this interaction design presents
significant marginal risk.

Predictive text can be viewed as an interac-
tive visualization of high-probability local alter-
natives within a sequence of categorical choices
(e.g., Figure 1 shows two-token predictions to pro-
vide awareness of where each suggestion could be
going.! From this perspective a wide range of inter-
active visualization techniques are possible, such
as the Dasher text entry system (Ward et al., 2000)
(which may have accessibility benefits as well).
Design dimensions of these visualizations include
the granularity of suggestions (words, phrases, or
larger units such as copy-pasted text from a writer’s
other drafts) and how interacting with the sugges-
tion affects the surrounding text. The effects of
these design decisions might vary by stage of the
writing process.

The opportunity highlighting interface explored
an extreme design position of being minimally pre-
scriptive in Al help, but relaxing that extreme could
yield a range of alternative interaction designs. For
example, it could incorporate an interactive visu-
alization where the writer could navigate through
contextual alternatives at any point.

'We plan to implement the phrase preview interaction of
Arnold et al. (2016) to enable writers to see larger phrases
without having to use all of them.
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Both of these models presuppose autoregressive
(left-to-right) language modeling, but additional
types of interaction might be enabled by emerging
model types based on out-of-order modeling or
diffusion LLMs (Sahoo et al., 2024).

Although prior work has explored the effects of
generating different kinds of content with LLMs on
writer reactions (Benharrak et al., 2024; Kim et al.,
2024; Zhou and Sterman, 2024), this work keeps
the task for the LLM unchanged and explores the
kinds of interactions that people can have with the
inference process.

Interaction-required suggestions are a source
of rich feedback data for reward-based language
model training and personalization. Unlike static
documents, the interaction logs with a conversa-
tional predictive text system would include what
suggestions were made but not taken, providing a
fine-grained human feedback signal. These feed-
back signals can be used for updating a language
model (Wu et al., 2023; Arnold et al., 2017).

Conclusion With continuously increasing capa-
bilities of LLMs, the difference between augment-
ing and replacing human thinking is a question
not of system capabilities but of interaction de-
sign. The interaction-required approaches we’ve
presented demonstrate how small shifts in inter-
face design can fundamentally change the nature of
human-AI partnership in writing. By prioritizing
cognitive engagement, enabling granular control,
and revealing the landscape of possibilities, we can
design Al writing interfaces that help us think not
less but better—maintaining human agency while
still benefiting from Al capabilities.
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Appendix

Implementation Details

The prototypes described here were implemented
using a Streamlit frontend and a backend using
the Hugging Face Transformers library (Team,
2025). Full source code and demo is available
at https://huggingface.co/spaces/CalvinU/
writing-prototypes.

Both of these systems rely on language model
functionality that is not typically exposed in effi-
cient ways in commercial APIs?, but are straight-
forward to implement when given direct access
to the forward pass of the model, which computes
next-token distributions for all tokens in the context
(including both “user” and “assistant” messages).
The implementation in our demo uses the Gemma
2 9B model released by Google (Team et al., 2024).

The predictive text interface first computes the
top-k (e.g., 3 or 5) next tokens, then constructs
a short phrase (in the demo, a single additional
token) by greedy generation from each of those op-
tions. With careful management of the key-value
cache, this generation readily completes at inter-
active speed on commodity hardware. Predictive-
text coding systems like GitHub Copilot served as
informal prototypes of this interaction (since in-
structions can be entered as code comments), but
they did not reveal the landscape of possibilities

*For example, prompt logprobs, needed for highlighting,

was part of the OpenAl text completions API but was never
added to the chat completions API
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(see section 2 on Design Principles) in the way that
smartphone keyboards and our system do.

The highlighting interface constructs a pseudo-
conversation by where the user message is the re-
vision prompt concatenated with the original doc-
ument and the assistant message is the original
document repeated unchanged. Rather than gen-
erate additional tokens, we simply compute the
next-token distributions for all tokens in the “as-
sistant” message corresponding to the user’s docu-
ment. The frontend highlights the tokens where the
model gives a higher score to a token other than the
one in the original document. Mouseover hovers
show an alternative token; for tokens where the
argmax prediction matched the original document
(which are typically the majority of tokens), the
hover shows the 2nd highest-scored option.
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