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Abstract

This paper presents a Cross-domain Machine-
Generated Text Detection model developed for
the COLING 2025 Workshop on Detecting
AI-generated Content (DAIGenC). As large
language models evolve, detecting machine-
generated text becomes increasingly challeng-
ing, particularly in contexts like misinfor-
mation and academic integrity. While cur-
rent detectors perform well on unseen data,
they remain vulnerable to adversarial strate-
gies, including paraphrasing, homoglyphs, mis-
spellings, synonyms, whitespace manipula-
tions, etc. We introduce a framework to ad-
dress these adversarial tactics designed to by-
pass detection systems by adversarial training.
Our team DistilBERT-NITS detector placed 7th

in the Non-Adversarial Attacks category, and
Adversarial-submission-3 achieved 17th in the
Adversarial Attacks category.

1 Introduction

Large Language Models (LLMs) (Touvron et al.,
2023; Anil et al., 2023) have quickly established
themselves as transformative tools in Natural Lan-
guage Processing (NLP). These models gain sub-
stantial internal knowledge by undergoing exten-
sive pre-training on massive datasets in a self-
supervised manner, enabling them to excel in vari-
ous tasks, from answering factual queries and gen-
erating coherent text to handling intricate reasoning
processes. This versatility has brought substantial
advancements across various NLP application ar-
eas.

Despite these advancements, ethical concerns
have surfaced regarding inherent risks (McKenna
et al., 2023; Bian et al., 2023; Ferrara, 2023), such
as the potential for misinformation, hallucinations
in generated outputs, and even biases against cer-
tain groups. Growing awareness of these issues
has spurred research into detecting AI-generated
text. However, AI-text detectors may carry similar

vulnerabilities as neural network models (Szegedy,
2013), inspiring related studies (Sadasivan et al.,
2023; Krishna et al., 2024) that explore paraphras-
ing attacks designed to deceive detector predictions.
It is contended that examining potential adversarial
attacks on text detectors is crucial, as weaknesses
in AI detection systems can be identified before
deployment in practical settings, such as academic
plagiarism detection, thereby supporting the devel-
opment of effective countermeasures.

Current detection methods are generally clas-
sified into three main categories: statistical ap-
proaches (Mitchell et al., 2023) that use metrics
like entropy, perplexity, and log-likelihood; neural
classifiers (Guo et al., 2023) trained on supervised
datasets labeled as human or AI-generated; and wa-
termarking techniques (Kirchenbauer et al., 2023)
that embed subtle patterns into AI-generated text.
However, research on adversarial perturbations
specifically targeting AI-text detectors still needs
to be completed. For example, (Sadasivan et al.,
2023) investigated paraphrasing to alter Machine-
Generated Text (MGT) in adversarial attacks, while
(Shi et al., 2024) employed LLMs to create adver-
sarial word candidates through a search-based ap-
proach. Although these studies have shown that
AI detectors can be vulnerable to adversarial mod-
ifications, the impact of such attacks on detector
performance in complex, real-world conditions is
still largely unexamined.

2 Related Work

Most research on adversarial attacks has focused
on image detection (Kong et al., 2021; Akhtar et al.,
2021; Xu et al., 2020), as text data presents unique
challenges due to its discrete structure, making it
harder to create imperceptible modifications com-
pared to image data, where subtle pixel changes
can go largely unnoticed (Peng et al., 2023). Some
general text classification adversarial attacks, such
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as those by (Damodaran, 2021; Gao et al., 2018),
have demonstrated this. Recently, studies have
turned toward adversarial attacks on neural text de-
tectors: (Xu et al., 2020) found that introducing
minor spelling errors and homoglyph replacements
can significantly lower detection rates for GPT-
2-generated text. Similarly, (Liang et al., 2023a)
showed that character-level perturbations also af-
fect RoBERTa-based detectors (Liang et al., 2023b)
further revealed that existing detectors are vulnera-
ble to simple rephrasing and may even mistakenly
label texts written by non-native speakers as AI-
generated.

Due to the susceptibility of current methods to
adversarial attacks, several researchers have pro-
posed approaches to enhance their robustness, in-
cluding work by (Liang et al., 2023b; Shi et al.,
2024). Although watermarking techniques have
also been explored for identifying AI-generated
text, they are generally considered vulnerable to
adversarial tactics, particularly those based on mu-
tation and paraphrasing (Sadasivan et al., 2023;
Kirchenbauer et al., 2023).

3 Methodology

3.1 Dataset Description

As shown in Table 1, the RAID dataset contains
over 10 million generated samples across diverse
models, content domains, decoding strategies, and
adversarial attacks. Models include ChatGPT,
GPT-4, GPT-3, Llama 2, Cohere, MPT-30B, and
Mistral 7B, covering content from Reddit, IMDb,
Wikipedia, and news articles. Decoding strategies
such as Greedy, Sampling, Greedy+Repetition
Penalty, and Sampling+Repetition Penalty are
used alongside adversarial techniques like para-
phrasing, homoglyph, perplexity misspelling,
synonyms, whitespace, upperlower, number,
insert_paragraphs, article_deletion, alterna-
tive_spelling, and zero_width_space. This dataset
supports research on model performance, genera-
tion diversity, and robustness against adversarial
attacks.

Task Label Train Dev

Non-Adversarial Human (0) 13,371 4,855
Machine (1) 454,614 165,070

Adversarial Human (0) 160,452 58,260
Machine (1) 5,455,368 1,980,840

Table 1: Statistics of Train and Development Data for
Non-Adversarial and Adversarial Tasks.

3.2 System Description

This paper presents our approach to Task 3 in the
COLING Workshop on MGT Detection, which em-
phasizes cross-domain robustness in AI-generated
content detection (Dugan et al., 2025). The primary
objective of this task is to classify whether a given
text is machine-generated or human-authored, even
when the content spans multiple domains. We
participated in both Subtask A (Non-Adversarial
Cross-Domain MGT Detection) and Subtask B (Ad-
versarial Cross-Domain MGT Detection), which
involve handling text from eight diverse domains,
produced by eleven generative models and four
decoding strategies. We first classify whether the
text has been adversarially attacked to detect ad-
versarial attacks in text. If an attack is detected,
the text undergoes preprocessing to mitigate the
attack, after which the preprocessed text proceeds
to our model for further MGT detection. Our ap-
proach to finetuning the DistilBERT model uses
hyperparameters to extract semantic features.

3.2.1 Experimental Setup and Data Sampling
The experiment was conducted in a Jupyter Note-
book on a machine powered by an Intel® Xeon®

W-2155 CPU @ 3.30GHz with 20 cores and an
NVIDIA Quadro P2000 GPU for handling LLM
tasks. The system was also equipped with 64 GB of
RAM. Python served as the programming language,
utilizing the libraries Numpy, Pandas, SKlearn, and
TensorFlow.

To reduce the computational load, only 40% of
the adversarial data is sampled based on the unique
adv_source_id. This is done by selecting a ran-
dom sample of rows corresponding to 40% of the
unique IDs in the training set. This sampled data is
then prepared for further processing, ensuring the
dataset remains manageable while representing a
substantial portion of the original data. The sam-
pled data is reset for indexing and is ready for the
pipeline’s next steps.

3.2.2 Preprocessing:
As evidenced by the analysis, all attacks target plain
text, and the dataset maintains a balance, with an
equal number of rows for each attack type, as re-
flected in the supporting figure. Next, the code im-
plements a preprocessing pipeline to clean and stan-
dardize text (Every text attacked and non-attacked).
The attacks, such as paraphrasing, homoglyph, per-
plexity misspelling, synonyms, whitespace, upper-
lower, number, insert_paragraphs, article_deletion,
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alternative_spelling, and zero_width_space can
confuse NLP systems. The preprocessing steps
address these issues by applying several transfor-
mations. Homoglyphs, which are visually similar
but distinct characters (e.g., numbers or symbols
resembling letters), are replaced using a predefined
mapping. Additionally, alternative spellings (like
British versus American English) are normalized,
ensuring consistency in spelling. Numbers are con-
verted to their word equivalents, and extra spaces
or zero-width spaces are removed. The text is also
converted to lowercase, and punctuation is stripped
for uniformity. By implementing these techniques,
the pipeline cleans up adversarially manipulated
text, making it more suitable for analysis while
maintaining its original meaning. This process en-
sures that NLP models can better understand and
process the input text without being misled by ad-
versarial perturbations.

input_text = "Th!s ls @n ex@mple txt w1th
h0m0glyphs, zerowidth\u200bspaces, and
incorr3ct spelling."

After preprocessing:

output_text = "this is an example text with
homoglyphs, zerowidthspaces, and incorrect
spelling."

3.2.3 Adversarial Detection:
After preprocessing, we obtained both the Raw
Text and the Preprocessed Text for each input. We
employed several factors like the combination of
Cosine Similarity and Edit Distance, Word Over-
lap ratio, and Homoglyph Substitution Count to
analyze surface-level changes (e.g., homoglyph sub-
stitutions, misspellings) on text embeddings gener-
ated by the distilbert-base-uncased model.

Cosine similarity: A widely used metric for its
simplicity, interpretability, and computational effi-
ciency for capturing semantic meaning. Its values
range from -1 (completely dissimilar) to 1 (identi-
cal), providing an intuitive similarity measure. This
will focus solely on the directional alignment of
embeddings. Furthermore, its low computational
complexity ensures scalability, making it ideal for
processing large datasets efficiently.

Cosine Similarity: cos(θ) =
A⃗ · B⃗

∥A⃗∥∥B⃗∥
(1)

Here, A⃗ and B⃗ represent the embedding vectors,
A⃗ · B⃗ denotes their dot product, and ∥A⃗∥ and ∥B⃗∥

represent their magnitudes (L2 norms). The re-
sulting similarity score ranges between −1 and 1.
Where: 1 indicates perfect similarity (identical di-
rection), 0 indicates orthogonality (no similarity),
and -1 indicates complete opposition (opposite di-
rection).

Edit Distance: Specifically, Levenshtein Dis-
tance calculates the minimum number of edits re-
quired to transform one string into another. This
detects small, surface-level changes.

Levenshtein Distance(s1, s2) = min


Insert,
Delete,

Substitute


To combine these two measures, we can apply a
hybrid approach that leverages the strengths of both
metrics. The combined similarity score, Snew, can
be represented as:

Snew = α · CS + (1− α) · β (2)

CS = Cosine Similarity(A,B) (3)

β = (1− Levenshtein Distance(A,B)

max(len(A), len(B))
) (4)

Where: - A and B are the two texts being com-
pared. - α is a weight parameter that controls the
contribution of each metric. - len(A) and len(B)
are the lengths of the two texts. - β normalizes the
Levenshtein distance to a range between 0 and 1.

Word Overlap Ratio: is a metric used to quan-
tify the similarity between two text sequences by
comparing the number of common words to the to-
tal number of unique words across both sequences.

Let W1 and W2 represent the sets of words in
two text sequences.

Word Overlap Ratio =
|W1 ∩W2|
|W1 ∪W2|

(5)

Let x represent a text that is not attacked. Upon
preprocessing, x remains unchanged, denoted as
x′. Computing the cosine similarity between x and
x′, we obtain a value of 1, as x and x′ are identical:

CosineSimilarity(x, x′) = 1, when x = x′.

Conversely, if x is an attacked text, preprocess-
ing yields a modified version x′. The cosine similar-
ity between x and x′ will deviate from 1, reflecting
the difference introduced by the attack:

CosineSimilarity(x, x′) ̸= 1, when x ̸= x′.

This approach effectively captures adversarial
manipulations, enabling robust detection based on
the interplay between cosine similarity and edit
distance metrics.
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3.2.4 Classification Model Architecture:

After calculating the adversarial detecting factors,
the text embeddings and the factors combined un-
dergo classification using a fine-tuned DistilBERT
model as shown in Figure 1 for distinguishing
human-generated and machine-generated text. The
detailed architecture of the DistilBERT model is
depicted in Figure 2. The Figure 2 illustrates the
internal workings of the model, particularly high-
lighting the implementation process obtained from
the code model.to(device). The model is trained
with a batch size of 16 for 3 epochs using the AdamW
optimizer and CrossEntropyLoss, all the hyperpa-
rameters are shown in the Table 2. During training,
the model’s performance is evaluated on key met-
rics like accuracy, precision, recall, and F1 score,
ensuring robustness against adversarial attacks. By
fine-tuning the model with this approach, it can bet-
ter classify text accurately in real-world scenarios,
even when it contains adversarial modifications.

Figure 1: Architecture workflow

3.3 Results Analysis

Due to computational constraints and limited space
as per the requirements, we sampled only 40% of
the dataset. The table 4 presents the training epochs
for the non-adversarial data, the table 5 presents
the training epochs for the adversarial data, where
the evaluation metrics Accuracy, Precision, Recall,
F1 Score, and Loss were used. Additionally, Table

Parameter Value

Max Seq Leng 128
Batch Size 16, 32
Learning Rate 2e-5,5e-4
Epochs 3, 5
Patience 2
Minimum Delta 0.001
Loss CrossEntropyLoss
Optimizer AdamW

Table 2: Model Hyperparameters

3 shows the test results in final leaderboard per-
formance for both adversarial and non-adversarial
data. Although this model may not yet be equipped
to handle more advanced semantic and synthetic ad-
versarial attacks, we will consider these and strive
to improve our work in the future by incorporating
new techniques.

4 Conclusion

In this study, we developed a robust framework
using a fine-tuned DistilBERT-NITS model to de-
tect MGT across diverse domains, focusing on ad-
versarial scenarios. Our approach ranked 7th in
non-adversarial detection and 17th in adversarial
detection at the COLING Workshop, involves pre-
processing text to mitigate detected adversarial ma-
nipulations, enhancing detection accuracy. These
findings support the potential of lightweight mod-
els to handle adversarial and cross-domain MGT
detection effectively. Future work will be focused
on refining this method to improve robustness and
adaptability against evolving adversarial tactics.
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A Appendix

Figure 2: DistilBERT Model Architecture
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