
Proceedings of the Joint Workshop of the 9th FinNLP, the 6th FNP, and the 1st LLMFinLegal, pages 392–400
January 19–20, 2025. ©2025 Association for Computational Linguistics

392

Adapt LLM for Multi-turn Reasoning QA using Tidy Data

Jan Strich
Language Technology Group

Universität Hamburg
Germany

Abstract

This paper presents our submission to the Fin-
DBQA shared task at the 9th FinNLP work-
shop. The task involves answering finance-
focused questions in a multi-turn environment,
requiring step-by-step reasoning and Python
code generation. We propose a novel approach
to tackling this multidimensional problem by
preprocessing the data into tidy format so that
each column represents a variable and each row
an observation. Our experiments demonstrate
that using the tidy data format allows all mod-
els to surpass SOTA, with GPT-4o achieving
a 50.62% accuracy on the DBQR-QA bench-
mark, placing it second in the Shared Task
Leaderboard. These findings suggest that trans-
forming data into the tidy data format enhances
reasoning capabilities, reduces syntax errors,
and improves performance on table-reasoning
QA tasks. The code is available online1.

1 Introduction

When analyzing data in finance, the ability to write
code that can answer complex, multi-step questions
is crucial. These questions often require reasoning
across multiple data sources and steps. As finan-
cial data becomes increasingly intricate, this ability
to reason and generate code is vital for deriving
insights and making informed decisions.

Recent advancements in NLP, particularly with
the rise of large language models (LLMs), are
crucial for tackling the multi-step reasoning tasks
commonly encountered in finance. Early research
in question answering (QA) focused on zero-shot
tasks using general benchmarks (Rajpurkar et al.,
2016; Chen et al., 2021a). However, more recent
work has shifted towards more complex challenges,
such as multi-hop reasoning (Chen et al., 2021b)
and reasoning over tabular data (Zhang et al., 2020;
Pal et al., 2023), including hybrid approaches that
combine it with text (Chen et al., 2022).

1https://github.com/pesc101/dbqr

Figure 1: Transform table into the tidy data format
(Wickham et al., 2023).

This paper explores approaches for the Fin-
DBQA shared task (Nararatwong et al., 2024),
which involves answering finance-focused ques-
tions in a multi-turn conversation using a data
chunk of a graph database. We approach the task
using three approaches testing them on four models
from two model families (Llama 3.1 & GPT-4o).
We generate Python code using the pandas package.
In addition to the question and the variables, cus-
tom Python functions are integrated, and the table
information from the data chunks is passed to the
model. Our main assumption is that models will
generate code more accurately and reason better
by converting tables into tidy data format (Wick-
ham, 2014), as shown in Figure 1. Therefore, we
compare three approaches: one using the raw data,
another using a tidy-data format, and a third that
extends the tidy-data approach by adding few-shot
examples. The contributions of the paper are:

• Testing Prompt Templates: Robust prompt
templates are essential for generating Python
code with reasoning steps, clarity, error han-
dling, and the correct output format.

• Testing Tidy Data approach: Tidy data pro-
vides a clear, repeatable, and reliable format,
making it easier for models to reason through
steps and generate accurate code.

https://github.com/pesc101/dbqr

393

2 Related Work

Recent advancements in reasoning-based QA
have been fueled by key datasets like MMLU
(Hendrycks et al., 2021) and GSM-8K (Cobbe et al.,
2021). In tabular QA, which requires complex rea-
soning, notable contributions include TAT-QA (Zhu
et al., 2021) and FinQA (Chen et al., 2021b), which
focus on hybrid financial tabular and textual data,
and numerical reasoning in finance. ConvFinQA
(Chen et al., 2022) introduces multi-hop conversa-
tional QA using a single table, while FeTaQA (Nan
et al., 2021) expands to free-form table QA.

Tidy data (Wickham, 2014), provides a struc-
tured framework for organizing datasets to facili-
tate manipulation, modeling, and visualization that
is used widely in data science and statistical com-
puting. In tidy datasets, each variable is a column,
each observation is a row, and each type of observa-
tional unit forms a table. This structure simplifies
analysis, reduces errors, and ensures consistency
across workflows.

3 DBQR-QA Benchmark

The shared task FIN-DBQA involves answering
finance-focused questions in a multi-turn conversa-
tion using a data chunk of a graph database. The
DBQR-QA benchmark is used for this purpose.
However, in this task, only the reasoning com-
ponent is tested, as the data chunks of the graph
database are already given. The reasoning step in-
volves writing a Python program (with pandas) that
includes logical steps and mathematical calcula-
tions. Figure 3 in Appendix A shows an example
question from the practice dataset. Each dataset
contains a question, a set of variables, the queries
used to fetch the data from the graph database, and
a pickle file containing the data chunks.

Dataset Details The dataset is divided into five
categories, each targeting specific aspects of rea-
soning within financial datasets: Simple: Basic
queries, such as finding the best year to exclude to
maximize metrics for a specific company. Com-
plex: No explicit company names; involves thresh-
olds and optimizing parameters across companies.
Multi-Table: Queries span multiple tables, re-
quiring data integration and comparative analy-
sis. Multi-Hop: Multi-step reasoning, analyzing
trends or comparisons across industries and periods.
Instruction: Real-world queries, guiding models
through multi-step, multi-dimensional analysis.

Figure 1 shows the distribution of the categories
based on the dataset splits. For the categories Sim-
ple, Complex, and Multi-Table, the benchmark con-
sists of ten conversations, and Multi-Hop and In-
struction consists of five. Each conversation is a
collection of ten questions built up on each other.

Evaluation Metric The dataset is evaluated us-
ing three metrics (Nararatwong et al., 2024). These
include a custom heuristic evaluator, a custom GPT
and human score. In our work, we focus solely on
the heuristic evaluator, which operates as follows:
The prediction must match the label in these ways:
for a single numeric label (excluding years), the
prediction should be a number with two decimal
places. For a set of numbers, the prediction must
have the same number of values, each matching
the label. For years, all elements in the label must
appear in the prediction.

Practice Train Test

Simple 10 50 40
Complex 10 50 40
Multi-table 10 50 40
Multi-hop 10 30 10
Instruction 10 20 20
Total 50 200 150

Table 1: Distribution of samples per dataset category.

4 Methodology

Section 4.1 outlines the prompt templates, Section
4.2 covers converting data chunks into tidy data,
and Section 4.3 details few-shot example creation.
Figure 2 summarizes the three tested approaches.

We provided the information displayed for each
approach and the models conducted each conversa-
tion within a multi-turn environment. After each
conversation, the generated code was executed in
a sandboxed Python environment with the Pandas
package installed. The custom function was im-
ported, and all attributes were stored in globals()
to allow the reuse of variables during the conversa-
tion. The value stored in the RESULT var is then
evaluated using the heuristic evaluator.

4.1 Prompt Templates
Figure 4 in Appendix B presents the system prompt
used for each approach. The system prompt pro-
vides clear instructions on guidelines, provided in-
formation, behavior, and formatting. The models

394

Figure 2: Overview of proposed approaches. (a): Prompt template using custom functions and data chunks as table
data. (b): Transferring the table data to a tidy data format. (c): Adding additional few-shot examples showing how
to reason step-by-step.

were prompted to first create a step-by-step plan
(Wei et al., 2022) and then generate the Python pro-
gram to solve the question. The model processes
three components required to answer the questions:
the question, the variables, and the tables, which
are passed via the user prompt (Figure 5). Addition-
ally, the system prompt mentions using two custom
functions for formatting: word_to_int(str) for
transferring numbers from variables in string for-
mat to integers and reformat_result(Any). We
also experimented with passing a list of custom
functions to the model, but often the functions were
not generic enough or the models had problems us-
ing them consistently over all data samples. This
did not lead to any improvements.

4.2 Tidy Data
For approaches (b) and (c) in Figure 2, we imple-
mented an algorithm to convert table data into tidy
format. This format is achieved when each variable
is represented as a column and each observation
is a row. Therefore, the year and value columns
were melted. Then, an algorithm identified column
names for companies, concepts, persons, and indus-
tries. This involves matching column names using
information from the Cypher query and general
pattern matching, such as the regex ‘usgaap:’ to
find the concept column.

4.3 Creation of Few-Shot Examples
As the final approach, the model was fed five static
few-shot examples. These examples should guide
the models on how reasoning steps should appear.
For each of the five categories, a manually con-
structed example from a validated correct data sam-
ple from the practice dataset was added to the
prompt. Figure 6 in Appendix B illustrates one
of the five few-shot examples.

5 Evaluation

This section presents the results of the three pro-
posed approaches, summarized in Table 2. Each
approach was evaluated across dataset splits using
four models: Llama 3.1 8B Instruct, Llama 3.1 70B
Instruct with FB8, GPT-4o-mini, and GPT-4o (De-
tails in Appendix C). These models were selected
to represent a mix of widely used lightweight and
large open and closed models. For each model, we
used the same model parameter for reproducible
results: temperature: 0, max_tokens: 2000,
top_p: 0.95. Each run was evaluated using the
heuristic evaluator as explained in Section 3.

5.1 Main Results

Table 2 shows the evaluation results of each ap-
proach. The tidy data approach with five few-shot
examples outperforms the original paper, achiev-
ing SOTA test pass rates across all models. For
LLama 3.1 8B and Lllama 3.1 70B, the pass per-
centage increases when using tidy data and is even
better when five few-shot examples are used. Al-
though the overall pass rate of 19% and 22% is still
low, the crash rate has been significantly reduced.
This pattern is particularly evident in the train and
test splits. Interestingly, the practice split shows
a higher pass rate without using tidy data, but the
error rate is notably lower with tidy data.

For GPT-4o-mini, performance increased by us-
ing tidy data and adding few-shot examples. Inter-
estingly, the crash rate was lower for both models
when no few-shot examples were used. This was
particularly noticeable in the practice split, where
the error rate dropped to 0. For GPT-4o, the per-
formance remains consistent across all three ap-
proaches. On average, the performance with tidy
data is better than without and with few-shot exam-

395

Model
Overall Practice (N=50) Train (N=200) Test (N=150)

Pass Fail Crash Pass Fail Crash Pass Fail Crash Pass Fail Crash

GPT-4 (Baseline) 18.2 52.4 26.8 - - - - - - - - -

LLama 3.1 8B
+ w/o Tidy Data 7.6 39.6 52.7 16.0 42.0 42.0 5.5 44.5 50.0 7.0 33.0 60.0
+ Tidy Data 12.1 55.2 32.6 4.0 74.0 22.0 14.5 62.0 23.5 11.0 40.7 49.3
+ Tidy Data + FW 19.6 60.7 20.0 4.0 74.0 22.0 18.0 61.0 21.0 27.0 56.0 18.0

LLama 3.1 70B
+ w/o Tidy Data 12.3 35.8 52.0 34.0 28.0 38.0 7.0 33.5 59.5 12.0 41.3 46.7
+ Tidy Data 16.0 50.5 33.5 12.0 52.0 36.0 17.0 53.0 30.0 16.0 46.7 37.3
+ Tidy Data + FW 22.1 61.4 16.5 30.0 56.0 14.0 16.5 65.0 18.5 27.0 58.3 14.7

GPT-4o-mini
+ w/o Tidy Data 31.6 47.8 20.6 34.0 46.0 20.0 26.5 52.0 21.5 37.0 44.7 19.3
+ Tidy Data 34.1 61.0 4.9 32.0 68.0 0.0 31.0 66.5 2.5 39.0 52.3 8.7
+ Tidy Data + FW 39.4 53.0 7.6 62.0 38.0 0.0 33.5 57.0 9.5 39.0 54.3 6.7

GPT-4o
+ w/o Tidy Data 50.5 41.8 7.7 66.0 34.0 0.0 45.5 42.5 12.0 52.0 43.3 4.7
+ Tidy Data 50.6 45.9 3.5 66.0 34.0 0.0 49.5 46.0 4.5 47.0 49.7 3.3
+ Tidy Data + FW 48.9 45.4 5.7 58.0 42.0 0.0 49.5 44.0 6.5 45.0 48.3 6.7

Table 2: Performance comparison of models across Practice, Train, and Test splits. The evaluation is done with
the heuristic evaluator. Values are all calculated in percentages. Pass: Result is equal to gold label. Fail: Result is
unequal to gold label. Crash: Executed code crashed in execution. Baseline taken from Nararatwong et al. (2024).
Bold: Best performance per model. Underline: Best overall performance per split. FW: Add 5 few-shot examples.

ples, but concerning the dataset splits, the results
vary in an insignificant way. The best result on
the test set was achieved without tidy data, but the
lowest crash rate was observed with tidy data and
without few-shot examples. Important to note here
is, that results from OpenAI models can vary even
with temperature=0 caused by the closed API.

In addition the best runs were evaluated with
GPT and human score (Appendix D), which is con-
sistent with the results presented.

5.2 Takeaways
These results suggest that tidy data improves perfor-
mance on the DBQR-QA, particularly with small
or quantized models. Llama models make fewer
syntax errors, generate more error-handling code,
and answer a greater number of questions correctly.
This improvement is primarily because the fun-
damental design of Pandas and most of its func-
tions align with the tidy data format. Transforming
data into this format reduces the complexity of the
code the model needs to generate and enables more
straightforward function calls to perform reason-
ing steps. However, despite these improvements,
models still struggle with correctly identifying the
necessary reasoning steps to solve problems.

The performance of the GPT family highlights
the ability of LLMs to construct stable reasoning
processes. However, the smaller improvement ob-
served with GPT-4o suggests that larger models
benefit less from tidy data compared to smaller
ones. Additionally, while adding few-shot exam-
ples significantly benefits GPT-4o-mini, this ap-
proach shows diminishing returns with GPT-4o.

6 Conclusion

In this paper, we present a novel approach using
tidy data to improve performance on the DBQR-
QA benchmark. We were able to show that small
and quantized models perform better on the bench-
mark and produce fewer syntax errors using tidy
data. The best performance was achieved using
GPT-4o with tidy data. The results demonstrate
that tidy data has a notable impact, particularly
for smaller models, by simplifying data input and
enhancing the model’s ability to perform reason-
ing. For larger models, it remains highly effective,
significantly reducing the error rate.

396

References
Chung-Chi Chen, Hen-Hsen Huang, and Hsin-Hsi Chen.

2021a. NQuAD: 70,000+ Questions for Machine
Comprehension of the Numerals in Text. In CIKM

’21: The 30th ACM International Conference on In-
formation and Knowledge Management, pages 2925–
2929, Virtual Event, Queensland, Australia. ACM.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A Dataset of
Numerical Reasoning over Financial Data. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3697–
3711, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang Ma,
Sameena Shah, and William Yang Wang. 2022. Con-
vFinQA: Exploring the Chain of Numerical Reason-
ing in Conversational Finance Question Answering.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, pages 6279–6292, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Prob-
lems. CoRR, abs/2110.14168. ArXiv: 2110.14168.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring Massive Multitask Language
Understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria. OpenReview.net.

Linyong Nan, Chia-Hsuan Hsieh, Ziming Mao, Xi Vic-
toria Lin, Neha Verma, Rui Zhang, Wojciech Kryscin-
ski, Nick Schoelkopf, Riley Kong, Xiangru Tang,
Murori Mutuma, Benjamin Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, and Dragomir R. Radev. 2021. FeTaQA: Free-
form Table Question Answering. Transactions of the
Association for Computational Linguistics, 10:35–49.

Rungsiman Nararatwong, Chung-Chi Chen, Natthawut
Kertkeidkachorn, Hiroya Takamura, and Ryutaro
Ichise. 2024. DBQR-QA: A Question Answering
Dataset on a Hybrid of Database Querying and Rea-
soning. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 15169–15182,
Bangkok, Thailand. Association for Computational
Linguistics.

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and
Maarten de Rijke. 2023. MultiTabQA: Generating
Tabular Answers for Multi-Table Question Answer-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 6322–6334, Toronto, Canada.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas, USA. The Association for Computational Lin-
guistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models.
In Advances in Neural Information Processing Sys-
tems, volume 35, pages 24824–24837, New Orleans,
Louisiana. Curran Associates, Inc.

Hadley Wickham. 2014. Tidy Data. Journal of Statisti-
cal Software, 59(10):1 – 23.

Hadley Wickham, Mine Çetinkaya Rundel, and Garrett
Grolemund. 2023. R for data science. O’Reilly
Media, Inc.

Shuo Zhang, Zhuyun Dai, Krisztian Balog, and Jamie
Callan. 2020. Summarizing and Exploring Tabular
Data in Conversational Search. In Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’20, pages 1537–1540, New York, NY, USA.
Association for Computing Machinery.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A Question Answering
Benchmark on a Hybrid of Tabular and Textual Con-
tent in Finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), pages 3277–3287, Virtual
Event. Association for Computational Linguistics.

https://doi.org/10.1145/3459637.3482155
https://doi.org/10.1145/3459637.3482155
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://api.semanticscholar.org/CorpusID:232478685
https://api.semanticscholar.org/CorpusID:232478685
https://doi.org/10.18653/v1/2024.findings-acl.900
https://doi.org/10.18653/v1/2024.findings-acl.900
https://doi.org/10.18653/v1/2024.findings-acl.900
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/V1/D16-1264
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1145/3397271.3401205
https://doi.org/10.1145/3397271.3401205
https://doi.org/10.18653/V1/2021.ACL-LONG.254
https://doi.org/10.18653/V1/2021.ACL-LONG.254
https://doi.org/10.18653/V1/2021.ACL-LONG.254

397

A Dataset Example

Parsed JSON Data
{
"sectionID": 1,
"sectionTitle": "simple", % Category
"question":
"Was Caterpillar's average total revenue
higher or lower than Realogy's lowest net
income from 2019 to 2021?",
% Variables
"vars": {
"year_1": 2019, % Start Year
"year_2": 2021 % End Year
"company_1": {
"mention": "Caterpillar",
"name": "CATERPILLAR INC"

"concept_1": {
"mention": "total revenue",

},
...
},
"queries": {
"var_q1_p1": "WITH [\"CATERPILLAR INC\"] AS companies, [\"us-gaap:Revenues\"] ...",
"var_q1_p2": "WITH [\"Realogy Holdings Corp.\"] AS companies, [\"us-gaap:ProfitLoss\"] ..."
}
"answer": "higher"

}

Parsed Pickle Data
{
'var_q1_p1': 2019 2020 2021
CATERPILLAR INC us-gaap:Revenues 5.380000e+10 4.174800e+10 5.097100e+10,
'var_q1_p2': 2019 2020 2021
Realogy Holdings Corp. us-gaap:ProfitLoss 185000000.0 356000000.0 350000000.0
}

Figure 3: Dataset sample from Practice split.

398

B Prompt Templates

Instructions:
You are a coding assistant tasked with providing a part of a Python script to solve the given question.

- **Guidelines**:
1. **Think step by step**: Break down the problem into logical steps before writing the Python code.
2. **Clarity**: Write clean, modular, and reusable code wherever possible, adhering to Python best practices.
3. **Edge Case Handling**: Handle potential edge cases, such as empty DataFrames, missing columns, NaN values, or
division by zero.
4. **Commenting**: Include meaningful high-level comments for each step of the solution, summarizing the logic
where needed.
5. **Error-Checking**: Ensure error-free code by validating inputs and providing meaningful fallbacks (e.g., handle
missing rows gracefully).
6. **Answer Format**: Stick to the desired format and answer with one number or word (e.g. higher/lower, yes/no, ...)
without repeat the question.
7. **Real Scenario**: Do not create mock data or create new functions, only use the provided df and vars.

- **Provided Information**:
- Variables: A pre-initialized dictionary "vars" contains all necessary static variables for solving the question. Do not
reinitialize it.
- If any value in "vars" represents a number as a string (e.g., "two", "three"), the "words_to_int" function must be called to
convert it into an integer before further processing.
- Always check for and handle such cases before using the variable in numerical operations.
- Table(s): Data is provided in one or more preloaded Pandas DataFrames ("df_0", "df_1", ..., "df_x"). Do not initialize or
modify their structure directly.
- The column "’value’" always contains numerical values as floats unless otherwise specified.
- Always verify column names in DataFrames before using them to avoid KeyErrors.
- Be always aware of type of the DataFrames column when using them.

- **Formatting**:
- Use "format_result" as the final step to format the solution output. Assign it to "RESULT".
- Ensure all outputs conform to the required format and handle multiple result types (e.g., scalars, lists, or dicts).
- If you would return a DataFrame convert it to a dict or list with the most relevant information.
- If you calculate a differences always use the absolute value.

- **Behavior**:
- If data or inputs are invalid or missing, handle the situation gracefully, providing a fallback or skipping steps as
appropriate.

Desired Format:
To solve the question we will follow these steps:
1.: First thinking step
2.: ...
Now, let’s write the Python code to implement these steps.
[Python Code START]
Write the Python code to solve the problem here
Step 1: <Brief description of the first step>
<code>
Step 2: <Brief description of the second step>
<code>
...
Final Step: Format the result
RESULT = format_result(<final_output>)
[Python Code END]

Figure 4: System prompt to answer the questions.

399

Question:
{{ user_prompt }}
Variables:
vars = {{ vars }}

{% for i in range(tables|length) %}
Table (df_{{ i }}):
Table Head (df_{{ i }}):
{{ tables[i] }}
Table Information (df_{{ i }}):
{{ table_infos[i] }}
{% endfor %}
Answer:

Figure 5: User prompt template to dynamically add the context.

Example 1: Extracting the right year
To solve the question we will follow these steps:
1. Filter the DataFrame for rows where the company is vars[’company_1’][’name’] and the concept is
vars[’concept_1’][’name’].
2. Check if the filtered DataFrame is empty. If it is empty, return a formatted result with None.
3. Calculate the total deferred revenues for all years by summing up the value column in the filtered DataFrame.
4. Initialize variables highest_average to 0 and year_to_exclude to None to keep track of the highest average and the year
excluded during calculations.
5. Iterate through each row in the filtered DataFrame and calculate.
6. Final Step: Format the result with the year_to_exclude that maximized the average and return it.
Now, let’s write the Python code to implement these steps.

[Python Code START]
“‘python
Step 1: Filter the DataFrame for the specific company and concept
filtered_df = df_0[
(df_0[’company’] == vars[’company_1’][’name’]) &
(df_0[’concept’] == vars[’concept_1’][’name’])
]

Step 2: Check if the filtered DataFrame is not empty
if filtered_df.empty:

RESULT = format_result(None)
else:
Step 3: Calculate the total deferred revenues for all years

total_revenue = filtered_df[’value’].sum()

Step 4: Initialize variables to track the highest average and the year to exclude
highest_average = 0
year_to_exclude = None

Step 5: Iterate over each year, calculate the average excluding that year, and find the maximum
for index, row in filtered_df.iterrows():
Calculate the sum excluding the current year
sum_excluding_year = total_revenue - row[’value’]

Calculate the average excluding the current year
average_excluding_year = sum_excluding_year / (vars[’num_1’] - 1)

Check if this is the highest average found so far
if average_excluding_year > highest_average:

highest_average = average_excluding_year
year_to_exclude = row[’year’]

Final Step: Format the result
RESULT = format_result(year_to_exclude)
“‘
[Python Code END]

Figure 6: One few-shot example added to the system prompt.

400

C Model Details

Table 3 presents the details of the models used for evaluation. All models are openly accessible, ensuring
reproducibility of the results.

Category Model Name Model Weights

Hugging Face meta-llama/Llama-3.1-8B-Instruct 8B
Hugging Face neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8 70B
Snapshot gpt-4o-mini-2024-07-18 -
Snapshot gpt-4o-2024-08-06 -

Table 3: Presentation of models used for the evaluation.

D Evaluation Results - GPT/ Human Score

In addition to the evaluation using the heuristic evaluator presented in the main results, two additional
metrics were employed in the shared task to assess the outcomes. Specifically, GPT-4 served as an
evaluator with a tailored prompt, while the best run from each dataset was also manually reviewed by
human evaluators. Table D presents the results for the best run across each metric and dataset split.

The findings reveal a consistent alignment between the GPT and human evaluation scores with those
of the heuristic evaluator. Notably, the GPT scores tend to be slightly lower, whereas human scores are
slightly higher than the grader scores. This consistency highlights the robustness of the results, irrespective
of the metric applied.

Practice (N=50) Train (N=200) Test (N=150)

Grader Score 54.0 33.0 52.0
GPT Score 54.0 31.0 51.0
Human Score 56.0 37.0 55.0
Average 54.67 33.67 52.67

Table 4: Comparison of grader, GPT, and human scores across practice, train, and test datasets. Bold: Best
performance per dataset split.)

